
Statistical seriation in non-parametric latent space models: an

efficient and optimal algorithm

Abstract

We consider the problem of statistical seriation where one seeks to estimate the or-
dering between latent positions in [0, 1] from pairwise affinities. The observed affinity
between a pair of items is modeled as a noisy observation of a function f(xi, xj) of the
latent positions xi, xj of the two items in [0, 1]. The affinity function f is unknown, and
it is only assumed to fulfill some shape constraints ensuring that f(x, y) is large when
the distance between x and y is small, and vice-versa. This non-parametric modeling
offers a good flexibility to fit data. We shall consider an even more general setting where
f fulfills instead a local equivalence between the Euclidean distance in [0, 1] and the so-
called neighborhood distance. We introduce a computationally efficient procedure that
provably recovers the latent ordering of the xi’s with a maximum error of the order of√
n log(n), with high-probability. This rate is proven to be minimax optimal. Our general

result can be instantiated to the 1D localization problem [Giraud et al., 2021], leading to
new bounds for the maximum error in the localization of the xi’s. This answers an open
question raised in [Giraud et al., 2021] about the existence of optimal efficient algorithms.
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1 Introduction

In the seriation problem, one observes similarity measurements between pairs of objects, with
a belief that the similarities are characterized by a latent (unknown) ordering between the
objects. Specifically, close objects along the ordering share high similarities, while distant
objects share relatively low similarities. Seriation then seeks to recover such a latent ordering
from the observed similarities.

1.1 Motivation: Original Seriation Problem and its applications

Originally, this problem has its roots in archaeology, in particular for the chronological or-
dering of graves. Each grave contains artifacts, and the number of common artifacts between
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two graves represents their similarity. A high similarity between two graves means that they
should be close in the time line. More broadly, such seriation problems arise in many other
applications where one wants to order a collection of objects {1, . . . , n}, when observing a
n × n symmetric matrix A = [Aij ]1≤i,j≤n, called affinity matrix, which provides similarity
measurements between pairs of objects. These similarity measurements Aij can be real val-
ued scores, or they can be binary pieces of information, as when the matrix A encodes a
network structure.

Other applications include envelope reduction for sparse matrices [Barnard et al., 1995], reads
alignment in de novo sequencing [Garriga et al., 2011, Recanati et al., 2017], time synchro-
nization in distributed networks [Elson et al., 2004, Giridhar and Kumar, 2006], interval graph
identification [Fulkerson and Gross, 1965], or matchmaking problems [Bradley and Terry, 1952].

The principal assumption on the structure of the affinity matrix A is related to the notion of
Robinsonian matrices (also called R-matrices), which are defined as follows. The coefficients
of an R-matrix decrease when moving away from the main diagonal, i.e. each row and column
of the matrix is unimodal, with a maximum lying on the diagonal of the matrix. In practice,
the observed affinity matrix A is a disordered Robinsonian matrix, where the columns and
rows have been randomly permuted, and thus do not coincide with a latent ordering. Seriation
aims at finding a latent ordering π : [n]→ [n] such that Aπ =

[
Aπ(i)π(j)

]
i,j∈[n] is Robinsonian.

It is known that the seriation problem is solved exactly by a spectral algorithm [Atkins et al., 1998],
which computes an eigenvector (vi)i∈[n] of a matrix related to A. The permutation π that
sorts the (vi)i∈[n], i.e. such that vπ(1) < . . . , < vπ(n), turns out to be a latent ordering of
A. Note that this result of [Atkins et al., 1998] is reminiscent of popular spectral clusterings
[Von Luxburg, 2007], which infer the latent clustering of the data from an eigenvector of a
matrix induced by A.

1.2 Problem: Statistical Seriation in General Latent Space Models

Real-world data are often noisy, and the observation A may not be exactly a disordered
Robinsonian matrix, though its expectation EA is. In this situation, instead of recovering a
latent ordering π perfectly, one aims at building an estimator π̂ on the noisy data A which
only recovers π up to some estimation error. Because the global error of an estimator π̂, say∑n

i=1 |π̂(i)− π(i)|, provides limited information on each individual error |π̂(i)− π(i)|, it is of
practical interest to use instead the maximum error maxi=1,...n |π̂(i)− π(i)|.

As probabilistic tools, latent space models [Hoff et al., 2002] are widely-used to study pairwise
information data (e.g. networks). In 1D latent space models, the affinity matrix A is assumed
to be sampled as follows. The distribution is parametrized by a 1D metric space (X , d),
some (possibly random) latent positions x1, . . . , xn ∈ X and an affinity function f : X ×
X → R. Then, conditionally on x1, . . . , xn, the upper-diagonal entries Aij of the affinity
matrix are sampled independently, with conditional mean f(xi, xj). These latent space models
encompass many classical models, such as Robinsonian matrices, random geometric graphs,
graphon models and monotone Toeplitz matrices (see section 1.4 for these examples).

A simple and general assumption on the affinity f(xi, xj) is to decrease as the metric distance
d(xi, xj) increases. In particular, close points xi and xj share a high affinity, whereas distant
points share a small affinity. The ordering of the latent points x1, . . . , xn then gives a permu-
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tation that makes the observed matrix A almost Robinsonian, or more precisely, the expected
matrix EA Robinsonian. Indeed, an item i will have a higher affinity with an item j if xi and
xj are close in the metric space (X , d). The permutation π induced by the xi will thus reveal
the Robinsonian structure of A. Our aim in this paper is to estimate this permutation π.

However, even with such a shape assumption on f , which ensures that EA = [f(xi, xj)]i,j=1,...,n

is a disordered Robinsonian matrix, there is no guarantee that one can detect the Robinsonian
signal in the noisy data A. As an extreme example, one can observe that the constant function
f(x, y) = 1 fulfills this shape assumption, but leaves no hope of recovering any information on
the latent ordering, even in the noiseless case. To circumvent this issue, [Giraud et al., 2021]
introduce a bi-Lipschitz assumption, constraining the decay of f with d. On this non-
parametric class of bi-Lipschitz functions, it is proved in [Giraud et al., 2021] that the optimal

rate of estimation of a latent ordering π is maxi=1,...n |π̂(i) − π(i)| = O
(√

n log(n)
)
, when

the x1, . . . , xn uniformly spread in X .

Unfortunately, the algorithm (for bi-Lipschitz functions) in [Giraud et al., 2021] is mainly
theoretical, since its time-complexity is super polynomial. This left open the following ques-
tions: Is there any polynomial-time algorithm that achieves the optimal rate over
the class of bi-Lipschitz functions ? And when the xi’s do not uniformly spread
on X , is it still possible to achieve this rate ?

A natural idea would be to apply the spectral algorithm of [Atkins et al., 1998]. For instance,
[Giraud et al., 2021] show that such a spectral algorithm works under restrictive assumptions
about the “uniformity” of the signal (f(xi, xj))i,j∈[n], namely that f is geometric (i.e. f(xi, xj)
only depends on the latent positions xi, xj via their distance d(xi, xj)), and that the xi’s form
a uniform sample of X . This paper and others [Rocha et al., 2018, Janssen and Smith, 2020,
Cai and Ma, 2022] suggest that spectral algorithms work in such “uniform” restrictive set-
ups, but does not in more general settings, such as non-geometric set-up where f(xi, xj)
varies with the positions xi, xj in X (even if the distance d(xi, xj) is constant), or where the
x1, . . . , xn are not a uniform sample of X .

1.3 Contribution

In the current paper, we recover a latent permutation π induced by the latent positions
x1, . . . , xn, with some high-confidence, simultaneously for all indices π(i), i = 1, . . . , n. The
time complexity of our estimator π̂ is polynomial, hence the estimator is efficient, which
answers positively the first open question (written above in bold). Specifically, we show
that, for xi’s uniformly spread in the latent space X = [0, 1], endowed with the Euclidean
distance d(x, y) = |x− y|, our estimator π̂ achieves a maximum error maxi=1,...n |π̂(i)− π(i)|
of the order of

√
n log(n), with high-probability. The

√
n log(n)-rate of estimation is shown

to be optimal. In fact, we proves this result under more general assumptions, when f is
not necessarily bi-Lipschitz. Indeed, we assume instead a local equivalence between the
Euclidean distance in X = [0, 1] and some distance defined on the columns of the signal
matrix EA = [f(xi, xj)]i,j=1,...,n. The latter distance is defined in (3) and is related to the
so-called neighborhood distance [Lovász, 2012] which was introduced for the random graphs
generated by graphon models [Lovász, 2012].

In order to by-pass the assumption of a uniform spreading of the xi’s and answer the second
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open question (written above in bold), we quantify the estimation error of an estimator π̂ with
a slightly more general definition of loss, than the max error maxi=1,...n |π̂(i)−π(i)|. Indeed, we
say that a permutation π̂ has an error smaller than ϵn, if there exists a latent ordering π such
that, for all i, j satisfying |xi − xj | ≥ ϵn, we have the following implication: π(i) < π(j) =⇒
π̂(i) < π̂(j). With this new loss, we reformulate the result stated in the previous paragraph

as follows: Our efficient algorithm has the optimal error ϵoptn := O
(√

log(n)/n
)
, when the

xi’s spread uniformly on [0, 1]. We then show that a slightly refined algorithm achieves the
same optimal error ϵoptn even when the xi’s do not uniformly spread on [0, 1]. To the best of
our knowledge, this is the first efficient algorithm that achieves the optimal rate of learning in
such a general model, with unknown affinity function f and non-uniform sample x1, . . . , xn.
We hope that these mild assumptions help reduce the gap between practice and theory in the
seriation problem.

Our algorithm for ordering the latent points is to proceed to a first partial seriation based
on some estimation of the neighborhood distance, and then to expand this partial order in a
second stage by comparing each pair of indices at a time. Specifically, in the first step, we
estimate the neighborhood distances between latent points using the estimator introduced in
[Issartel, 2021]. We then rely on the local equivalence assumption between the neighborhood
distance and the Euclidean distance to get a rough ordering of the latent positions. Next, in
the second step of the procedure, we compare each pair of items according to their affinities
with the initial rough ordering computed in stage 1.

1.4 Related Literature

1.4.1 Examples of Models

Example 1: Random Geometric Graph [Gilbert, 1961, Penrose, 2003, Diaz et al., 2020, De Castro et al., 2017].
We observe a random graph with n nodes labelled by {1, . . . , n}. The graph is encoded into
an adjacency matrix A ∈ {0, 1}n×n, by setting Aij = 1 if there is an edge between nodes i
and j, and Aij = 0 otherwise. Let X be a latent space endowed with a metric d, and let
x1, . . . , xn be the latent positions of the nodes in X . The edges are sampled independently,
with probability P[Aij = 1] = g(d(xi, xj)), where g : [0,∞) 7→ [0, 1] is a non-increasing func-
tion. When X is one dimensional, this random graph model is an instance of the 1D latent
space model where Aij ∈ {0, 1}, and f(xi, xj) = g(d(xi, xj)).

Example 2: Graphons and f -Random Graphs [Diaconis and Janson, 2007, Lovász, 2012]. The
class of f -random graph models, also called graphon models, encompasses all the distributions
on random graphs that are invariant by permutation of nodes. It is parametrized by the set of
measurable functions f : [0, 1]×[0, 1]→ [0, 1]. The adjacency matrix A of the graph is sampled
as follows. First, n latent positions x1, . . . , xn are sampled i.i.d. uniformly on [0, 1]. Then,
conditionally on x1, . . . , xn, the edges are sampled independently, with conditional probability
P[Aij = 1|x1, . . . , xn] = f(xi, xj). The f -random graph model is then an instance of 1D
latent space model where Aij ∈ {0, 1}, and X = [0, 1]. Unless some additional constraints
are imposed on the shape of f , the affinity f(xi, xj) may vary arbitrarily with the distance
|xi − xj |.

Example 3: Robinsonian Matrices. A Robinsonian matrix (a.k.a. R-matrix) is any symmetric
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matrix B ∈ Rn×n whose entries decrease when moving away from the diagonal, i.e. such that
Bi,j ≥ Bi+1,j and Bi,j ≥ Bi,j−1, for all 1 ≤ j ≤ i ≤ n. A matrix F is called a disordered
R-matrix, when there exists a permutation π : [n] → [n] such that Fπ = [Fπ(i),π(j)]i,j is
an R-matrix. The noisy seriation problem [Fogel et al., 2013] amounts to find, from a noisy
observation of a disordered R-matrix F , a permutation π such that Fπ is an R-matrix. This
problem can be recast in the latent space terminology using the latent space X = [0, 1],
with latent positions xi = π−1(i)/n and the affinity function f(xi, xj) = Fi,j . Since Fπ

is an R-matrix, the function f(xπ(i), xπ(j)) = f(i/n, j/n) is decreasing with the distance
|xπ(i) − xπ(j)| = |i− j|/n.

Example 4: Monotone Toeplitz Matrix : Given one monotone vector θ0 > θ1 > . . . > θn−1, a
monotone Toeplitz matrix is defined by Θij = θ|−(i−1)+(j−1)|, i, j ∈ [n]. A matrix F is called
a disordered monotone Toeplitz matrix, when there exists a permutation π of {1, . . . , n},
such that Fπ = [Fπ(i),π(j)]i,j is a monotone Toeplitz matrix. The noisy seriation problem
[Cai and Ma, 2022] amounts to find, from a noisy observation of a disordered monotone
Toeplitz matrix F , a permutation π such that Fπ is a monotone Toeplitz matrix. Once again,
this model can be recast in the latent space terminology using X = [0, 1], and xi = π−1(i)/n
and the affinity function f(xi, xj) = Fi,j .

1.4.2 Related Statistical Seriation

Geometric Setting. The geometric setting is characterized by an affinity function f(x, y) =
g(d(x, y)),for some real function g : [0,∞)→ R. Hence, the interaction f(xi, xj) only depends
on latent positions xi, xj via their distance d(xi, xj). For statistical seriation in such geometric
models, see [Giraud et al., 2021, section 4] and [Natik and Smith, 2021] which study spectral
algorithms in line with the original spectral solution of [Atkins et al., 1998]. In fact, the pa-
pers [Rocha et al., 2018, Janssen and Smith, 2020, Giraud et al., 2021, Cai and Ma, 2022] on
statistical seriation suggest that such spectral methods will not successfully recover the latent
ordering in more general models where the setting is not geometric, i.e. when the interaction
f(xi, xj) depends on the positions xi, xj in X . In the current paper, we investigate such
general models that are not (necessarily) geometric.

Monotone Toeplitz Matrix. For statistical seriation in disordered monotone Toeplitz
matrices, see [Cai and Ma, 2022]. These matrices have been discussed in Example 4 above.
A peculiarity of this class of matrices is that the latent order of an object i correlates with
the sum of its interactions (Fij)j∈[n]. Indeed, for an object located at an extremity of a
monotone Toeplitz matrix, this sum is relatively low. The efficient algorithm proposed in
[Cai and Ma, 2022] leverages this peculiarity to recover the latent ordering, and thus is specific
to monotone Toeplitz matrices. Unfortunately, such algorithms will not perform well in more
general models, such as the ones we consider in the current paper.

Notation: We write [n] the set of integers {1, . . . , n}. Given a square matrix F of size n×n
and a permutation π : [n]→ [n], we denote the permuted matrix

[
Fπ(i)π(j)

]
1≤i,j≤n

by Fπ. We

write |F |∞ = max
i,j∈[n]

|Fij | the maximum norm of F . For any finite set R, we denote its cardinal

number by #R.
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2 Statistical Seriation in Non-Parametric Latent Space Model

2.1 The Model

We observe a realization of a symmetric random matrix A ∈ Rn×n, whose values on the
diagonal are Aii = 0. We denote by Fij = E[Aij ] the mean value of Aij and by Eij = Aij−Fij

the centered random fluctuation. We assume that A has been generated by a latent space
model on [0, 1]: there exist x1, . . . , xn ∈ [0, 1] and a function f : [0, 1] × [0, 1] → R such that
Fij = f(xi, xj), so

Aij = Fij + Eij = f(xi, xj) + Eij , for 1 ≤ i < j ≤ n. (1)

Both the function f and the latent positions x1, . . . , xn are unknown. We emphasize that the
latent positions x1, . . . , xn are assumed to be fixed1. Let us describe our assumptions on the
spreading of the latent positions x1, . . . , xn, the shape of f , and the random fluctuations Eij .

2.1.1 Shape of the Affinity Function

As explained in the introduction, we have in mind that f(x, y) decreases with the Euclidean
distance |x − y|. Since there is no hope to recover a latent ordering π : [n] → [n] when
the function f is flat, a natural idea is to impose a minimal decreasing of f(x, y) with the
distance |x− y|. In the related problem of latent positions localization [Giraud et al., 2021],
the authors also require some Lipschitz continuity of f in their analysis. These two conditions
on f are enforced by the Bi-Lipschitz condition described below.

Definition 2.1. Bi-Lipschitz functions.[Giraud et al., 2021] For any fixed constants 0 <
α̃ ≤ β̃, let BL[α̃, β̃] be the set of all functions f : [0, 1] × [0, 1] → R that are symmetric (i.e.
f(x, y) = f(y, x) for all x, y ∈ [0, 1]) and that satisfy the two following conditions for all
x, y, y′ ∈ [0, 1],

|f(x, y)− f(x, y′)| ≤ β̃|y − y′| ;
f(x, y′)− f(x, y) ≥ α̃

(
|x− y| − |x− y′|

)
if |x− y| ≥ |x− y′| .

The first condition enforces Lipschitz continuity and the second one enforces a minimal de-
creasing of f(x, y) with |x− y|. In the geometric case f(x, y) = g(|x− y|) with g : [0, 1]→ R

continuously differentiable, these conditions hold when −β̃ ≤ g′(t) ≤ −α̃ for all t ∈ [0, 1].

The non-parametric assumption f ∈ BL[α̃, β̃], with 0 < α̃ ≤ β̃, is simple to interpret and
also offers a good flexibility to fit the data. However, it may be naive to assume such a
constraint on each pairwise interaction f(xi, xj), i, j ∈ [n], i ̸= j, so we shall instead consider
the following set of three assumptions (2), (4) and (5).

Latent Robinsonian Structure. A symmetric matrix B := [Bij ]1≤,i,j≤n ∈ R
n×n is Robin-

sonian, if its coefficients decrease when moving away from the diagonal, i.e. if for any
0 ≤ i < j ≤ n, one has Bjk − Bik < 0 for all k < i, and Bjk − Bik > 0 for all k > j.

1if they were random, our results would apply conditionally on the sampling of x1, . . . , xn.
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As discussed earlier, the seriation problem consists of ordering a disordered Robinsonian ma-
trix (when the rows and columns are not indexed according to the latent ordering). We shall
assume accordingly that the signal matrix F = [Fij ]1≤,i,j≤n = [f(xi, xj)]i,j∈[n] is a disordered
Robinsonian matrix, where the latent ordering is the one induced by the latent positions
x1, . . . , xn. This constraint is encapsulated in the following definition of latent Robinsonian
structure.

Definition 2.2. Latent Robinsonian Structure. The symmetric matrix [Fij ]1≤,i,j≤n :=
[f(xi, xj)]i,j∈[n] has a latent Robinsonian structure if, for any 0 ≤ xi < xj ≤ 1,

Fjk − Fik < 0 for all xk < xi, and Fjk − Fik > 0 for all xk > xj . (2)

Hence, for a symmetric matrix F having a latent Robinsonian structure (2), there exists a
permutation π : [n]→ [n] such that Fπ :=

[
Fπ(i)π(j)

]
1≤i,j≤n

is Robinsonian. This permutation

is either the one induced by xπ(1) < . . . < xπ(n) or its reverse πrev(·) = π(n − · + 1) which
satisfies xπrev(1) > . . . > xπrev(n).

Note that the latent Robinsonian structure (2) is implied by the bi-Lipschitz definition 2.1,
hence it is more general than the bi-Lipschitz condition. Besides, the definition (2) allows Fij

to depend on the positions xi of individuals, hence it encompasses the particular case of the
geometric model Fij = f(|xi−xj |) that only depends on the distances. In fact, the definition
(2) does not even imply that close individuals have a higher affinity than distant people. For
example, when |xi − xk| > |xi − xj |, the individual i may still have a higher affinity with k
than j, whenever j, k are on different sides of i (e.g. xk < xi < xk).

Local equivalence between the neighborhood distance and the Euclidean distance.
A key object for analyzing interaction data in latent space models is the neighborhood distance
[Lovász, 2012]:

dnb(i, j) =

(
1

n

n∑
ℓ=1

(Fiℓ − Fjℓ)
2

)1/2

, for i, j ∈ [n] , (3)

where the quantity dnb(i, j) may be interpreted as measuring the propensity of two individuals
i, j to interact with similar individuals. We assume the following “local equivalence” between
the neighborhood distance (3) and the Euclidean distance on [0, 1]: There exists a radius
R > 0 such that, for all i, j ∈ [n] satisfying |xi − xj | ∧ dnb(i, j) ≤ R,

α|xi − xj | ≤ dnb(i, j) ≤ β|xi − xj | . (4)

We emphasize that this equivalence is only assumed at a local level, where the distances
|xi − xj | ∧ dnb(i, j) are smaller than a radius R. Our analysis will go back and forth between
the interactions [Fij ]j∈[n] of individuals i and their latent features xi ∈ [0, 1], via the local

relation (4).

Remark that, for a bi-Lipschitz function f ∈ BL[α̃, β̃] and a signal Fij = f(xi, xj), one gets
dnb(i, j) ≤ β̃|xi − xj |, using the triangle inequality. And similarly, one derives α̃′|xi − xj | ≤
dnb(i, j) for some numerical constant α̃′ ∈ (0, α̃), when the x1, . . . , xn spread uniformly in
[0, 1]. In this sense, the local distance equivalence (4) is implied by the bi-Lipschitz condition.
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Strong Robinsonian signal. In the noisy set-up (1), the signal [Fij ]1≤,i,j≤n may be com-
pletely buried under the noise [Eij ]1≤,i,j≤n. Even with a latent Robinsonian structure (2),
the matrix F may be too “flat” to expect any recovery of the latent ordering. To exclude this
pathological case, it is natural to assume that, for any pair i, j of individuals, say xi < xj ,
there is a difference in their affinities with individuals xk in [0, xi], who are more similar
to xi than xj . The same should hold for xj with individuals xk in [xj , 1]. Formally, let
ρ, ρ′ ∈ (0, 1/4) such that, for all i, j satisfying |xi − xj | ≤ ρ and xi < xj , we have∑

k: xk≤xi−ρ′

Fik − Fjk ≥ ηR|xi − xj |n, if xi ≥ 1/2− ρ/2 (5)

∑
k: xk≥xj+ρ′

Fjk − Fik ≥ ηR|xi − xj |n, if xj ≤ 1/2 + ρ/2.

The condition (5) ensures that, at least in some regions [0, xi − ρ′] or [xj + ρ′, 1] of the space
[0, 1], the cumulative interactions of i and j are at a distance greater than ηR|xi − xj |, which
is the Euclidean distance between i and j, times a parameter ηR representing the strength of
the Robinsonian signal. We emphasize that this assumption is local as it only concerns close
points xi, xj (at Euclidean distance at most ρ).

Note that, if the affinity function f is a bi-Lipschitz function in BL[α̃, β̃], then the matrix
of coefficients Fij = f(xi, xj) satisfies (5) for some numerical constant ηR ∈ (0, α̃), provided
that the xi spread uniformly on [0, 1].

2.1.2 Spreading of the Latent Positions

When latent positions x1, . . . , xn are gathered in few groups in the latent space [0, 1], the signal
matrix F = [f(xi, xj)]i,j∈[n] is (almost) piece-wise constant and such data are well-studied in
clustering problems. By contrast, the latent positions are well spread over the latent space
in the seriation problem. Besides, a common assumption in the literature on latent space
models is that the x1, . . . , xn is a uniform sample of [0, 1]. Although this uniform spreading
assumption makes sense in the seriation problem, it is also restrictive as it does not cover
many applications (e.g. in pair-matching problems). Hence, to relax this uniform spreading
assumption, we only assume that the x1, . . . , xn cover all segments of length greater than ηs :

sup
x∈[0,1]

min
i∈[n]

|x− xi| ≤ ηs . (6)

The quantity ηs ∈ [0, 1] thus represents some (spatial) sparsity of the sample x1, . . . , xn.

2.1.3 Other Assumptions

Upper bound on the signal. Assume that there exists a constant M > 0 such that

|F |∞ := max
i,j∈[n]

|f(xi, xj)| ≤M . (7)

Sub-Gaussian noise. We assume that the entries Eij for 1 ≤ i < j ≤ n of the noise
matrix are independent and follow a sub-Gaussian(1) distribution. It means that, for any
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matrix B ∈ Rn×n and any real number t ≥ 0, we have

P

 ∑
1≤i<j≤n

BijEij ≥ t

√ ∑
1≤i<j≤n

B2
ij

 ≤ e−t2/2. (8)

2.2 Objective and Results

For a symmetric matrix F having a latent Robinsonian structure (2), there exists a permu-
tation π : [n] → [n] such that Fπ :=

[
Fπ(i)π(j)

]
1≤i,j≤n

is Robinsonian. This permutation is

either the one induced by xπ(1) < . . . < xπ(n) or its reverse πrev(·) = π(n − · + 1) satisfying
xπrev(1) > . . . > xπrev(n). We use accordingly the following definition of correct permutation.

Definition 2.3 (Correct Permutation). Let x1, . . . , xn be n points in [0, 1]. We say that a
permutation π : [n]→ [n] is correct for the latent points x1, . . . , xn, when it satisfies either

∀i, j ∈ [n] : {xi < xj} ←→ {π(i) < π(j)} ,

or
∀i, j ∈ [n] : {xi > xj} ←→ {π(i) < π(j)} .

In other words, π satisfies xπ−1(1) < . . . < xπ−1(n) or the reverse xπ−1(1) > . . . > xπ−1(n).

Our objective in this paper is to estimate a correct permutation from the observed matrix A
defined in (1). Because A is a noisy observation of F , there is no hope of recovering exactly
a correct permutation, hence this seriation problem requires a definition of estimation error
for any estimator π̂2. As discussed in the introduction, we choose a slightly more general
definition than the maximum error maxi=1,...n |π̂(i) − π(i)|, in order to handle the situation
where x1, . . . , xn is a non-uniform sample of [0, 1].

Definition 2.4 (Estimation Error). A permutation π̂ has an (estimation) error smaller than
ϵn, if there exists a correct permutation π such that, for all i, j satisfying |xi − xj | ≥ ϵn, we
have the following implication: π(i) < π(j) =⇒ π̂(i) < π̂(j).

Remark: in general, the latent positions x1, . . . , xn are not identifiable from the observation
A. This comes from the mean F = EA itself which can be induced by many different
representations (x1, . . . , xn, f). For a detailed discussion about the representations of F and
their non-identifiability, please consult [Giraud et al., 2021, section 2.2]. To be precise about
the performance of a procedure π̂, one should refine Definition 2.4 by considering the class of
representations of F , then taking a representation (x1, . . . , xn, f) that minimizes the error ϵn of
π̂. Since a formal treatment of representations would be cumbersome and not meaningful for
the current problem of estimation, we simply consider a fixed representation (x1, . . . , xn, f) in
the sequel. For a special care of the non-identifiability of representations, the interested reader
may refer to the work [Giraud et al., 2021] on the estimation of latent positions x1, . . . , xn.

2An estimator is a function whose input is the observation A, and output is a permutation π̂ : [n] → [n].
For simplicity, we denote the estimator itself by π̂.
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Although the goal is to estimate a correct permutation, most of our analysis will concern
comparison functions h : [n] × [n] → {−1, 0, 1}. In this convenient detour, also used by
[Janssen and Smith, 2020], a comparison function h is closely related to a permutation π, if
h is a good approximation of the following comparison function:

hπ(i, j) =

{
−1 if π(i) < π(j)
1 if π(i) > π(j) .

(9)

Conversely, a comparison function h naturally leads to the following permutation πh:

Sh(i) =
∑
j∈[n]

h(i, j)

πh(i) = #
{
j ∈ [n] : Sh(j) ≤ Sh(i)

}
, (10)

where the ties of Sh are handled arbitrary, so that πh is a permutation. Observe that πhπ = π.
In line with Definition 2.4, we introduce the following definitions of correctness and error for
a comparison function.

Definition 2.5. •We say that a comparison function h : [n] × [n] → {−1, 0, 1} is correct, if
there exists a correct permutation π : [n]→ [n] such that, for all i, j,

h(i, j) = 1− 21π(i)<π(j) . (11)

•A comparison function ĥ has an error smaller than ϵn, if it fulfills (11) for all i, j satisfying
|xi − xj | ≥ ϵn.

As an intermediate result, Theorem 2.6 deals with the estimation of a correct comparison
function. Specifically, the two-step seriation algorithm described in section 3 takes the data
A as input, and then outputs a comparison function ĥ. The accuracy of ĥ is guaranteed by
the next theorem.

Theorem 2.6. We assume that the observed matrix A is generated by the noisy model (1)
where the signal matrix F has a latent Robinsonian structure (2). We also assume that the five
hypotheses (4) to (8) hold, and that the model parameters α, β, ηs, R, ρ, ρ′ and the algorithm
parameters δ, δ1, δ2, δ3, L satisfy some conditions (to be specified later). Then, with probability

higher than 1− 5/n, the comparison function ĥ has an error less than 10
ηR

√
log(n)

n .

Let us give a reformulation of Theorem 2.6. There exists a correct comparison function h,
such that, with high probability, the output ĥ of the two-step seriation algorithm satisfies

∀i, j ∈ [n] : |xi − xj | ≥
10

ηR

√
log(n)

n
=⇒ ĥ(i, j) = h(i, j) .

In the next section, we describe the two-step seriation algorithm and give theoretical guaran-
tees for each part of the algorithm. Theorem 2.6 will follow directly from these guarantees.

We use the comparison function ĥ and the relation (10) to define the following estimator

π̂ := πĥ (12)
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of a correct permutation. We show in section 3.3 that π̂ inherits the same accuracy as that
of ĥ, when the spatial sparsity ηs in (6) is small, and more precisely when ηs is smaller than

O
(
η−1
R

√
log(n)/n

)
. Unfortunately, there is no guarantee for ηs to be as small as that. Hence,

in order to remove this strong dependence on ηs, we add an algorithmic step to π̂ and get
a refined estimator π̂ref . The next corollary ensures that the accuracy of π̂ref is almost the

same as that of ĥ, (almost) independently of the value of ηs.

Corollary 2.7. Under the assumptions of Theorem 2.6, the permutation π̂ref defined in

section 3.3 has an error less than 20
ηR

√
log(n)

n , with probability at least 1− 5/n.

Corollary 2.7 follows from Theorem 2.6 and the analysis done in section 3.3.

We show in section 4 that the error 20
ηR

√
log(n)

n is optimal (in the minimax sense).

1D Localization. Let us consider the 1D Localization problem introduced in [Giraud et al., 2021],
and more specifically its counterpart on the latent space X = [0, 1] (instead of X = the unit
sphere C of R2 as in their paper). The objective is to estimate all the positions x1, . . . , xn in
maximum error max

i,j∈[n]
|x̂i − xi| ∧ max

i,j∈[n]
|x̂i − (1− xi)|. Here, the minimum allows to handle the

identifiability issue coming from the map x 7→ 1− x on the latent positions xi in [0, 1].

In this 1D Localization problem, the observed affinity matrix A is assumed to be generated
by the noisy model (1), the xi’s to form a uniform sample of [0, 1], and the affinity function f
to belong to the class BL[α̃, β̃] of bi-Lipschitz functions (of Definition 2.1), where 0 < α̃ ≤ β̃
are any numerical constants. It was proved in [Giraud et al., 2021] that the optimal rate of

localization in maximum error is O
(√

log(n)/n
)
, when the latent space X is the unit sphere

C of R2. Unfortunately, their optimal algorithm has a super-polynomial time-complexity and
thus is mainly theoretical. An open question raised in their paper was whether there exists an
optimal efficient algorithm for this localization problem. We answer positively this question
in the sequel. (Remark: our latent space X is not the same as in their paper, but we think
that the optimal rates are the same in both situations X = [0, 1] and X = C. Indeed, for
the localization problem in X = [0, 1], it should be easy to prove that any estimator has
a maximum error of localization greater than

√
log(n)/n (up to a multiplicative numerical

constant), e.g. by adapting the proof of [Giraud et al., 2021] for X = C).

We could apply the refined estimator π̂ref , but since the latent positions uniformly spread in
[0, 1], it is sufficient to apply the simpler estimator (12) and get an estimation π̂ of a correct
ordering, with an error analyzed in Corollary 3.7. From this estimation, we can derive the
estimators x̂1, . . . , x̂n by setting x̂i = π̂(i)/n for i = 1, . . . , n.

Corollary 2.8. Let α̃, β̃ be any numerical constants. Assume that the observed matrix A is
generated by the noisy model (1) with sub-Gaussian noise (8), and that the affinity function
f belongs to the class BL[α̃, β̃] of bi-Lipschitz functions, and that the xi’s form a uniform
sample of [0, 1], and that (7) holds for some numerical constant M > 0. Then, there exists a
constant Cα̃, depending only on α̃, such that, with probability at least 1− 6/n, we have

max
i,j∈[n]

|x̂i − xi| ∧ max
i,j∈[n]

|x̂i − (1− xi)| ≤ Cα̃

√
log(n)

n
.
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Corollary 2.8 follows from an application of Corollary 3.7 which guarantees some performance
of π̂. For details, a sketch of proof of Corollary 2.8 is written in appendix B.

3 Two-Step Seriation Algorithm

The recipe for ordering the latent points is to proceed to a first partial seriation based on the
neighborhood distance (3) and then to expand the partial order in a second stage using the
strong Robinsonian signal (5).

Stage 1:
(i) Distance Estimation: We know from [Issartel, 2021] how to estimate dnb with maximum
error |d̂nb−dnb|∞ < δ := O

(√
βηs + (log(n)/n)1/4

)
under the assumption (6) on the spreading

of latent points, and the assumption (4) on the local distance equivalence. We simply denote
the neighborhood distance dnb by d in the rest of the paper.
(ii) Local Partitioning : If the neighborhood distance d is locally equivalent to the Euclidean
distance as in (4), then for each xi we will be able to split apart the points at (Euclidean)
distance at least O(δ) of xi into two groups: those smaller than xi and those larger than xi.
(iii) Consensus: By symmetry, we are not able to know which one the two groups is on
the left of xi and which one is on the right in [0, 1]. So we choose arbitrarily a direction,
but this choice must be coherent between the n partitions made at each i ∈ [n]. Hence, we
apply a consensus step to get a partial order, which compares (without mistakes) all points
at (Euclidean) distance larger than O(δ). In other words, we output a comparison function
ĥ with an error less than O(δ).

Stage 2:
In a second stage, we use the latent Robinsonian structure (2) and the strong Robinsonian
signal (5) in order to expand the partial ordering to points at (Euclidean) distance as close
as O((η−1

R

√
log(n)/n) ∧ δ). This expansion is performed by testing sums based on the initial

(partial) order of stage 1.

Throughout the section 3, we assume that the observed matrix A is generated by the noisy
model Aij = Fij + Eij introduced in (1), with Fij = f(xi, xj) having a latent Robinsonian
structure as in (2). These assumptions are implicit in each proposition of section 3.

3.1 Stage 1: a First (non-optimal) Seriation based on Neighborhood Dis-
tance

Stage 1 is a threefold procedure where we (i) estimate the latent distances, (ii) proceed to a
local partitioning for each i, (iii) give a common orientation to these partitions.

3.1.1 Distance Estimation

Recall that the neighborhood distance dnb is simply denoted by d in the sequel. We shall
estimate it using the distance estimator d̂ introduced in [Issartel, 2021, Eq.(11)]. Hereafter,
we call distance estimation (DE) algorithm, the data driven procedure in [Issartel, 2021] that
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outputs the distance estimates
[
d̂(i, j)

]
i,j∈[n]

.

Proposition 3.1. We assume that the signal bound (7), the positions spreading (6), the local
distance equivalence (4) and the sub-Gaussian condition (8) hold. Also assume that ηs ≤ R.
Then, with probability at least 1− 1/n3, the maximum error of d̂ is upper bounded by

max
i,j∈[n]

∣∣∣d2(i, j)− d̂2(i, j)
∣∣∣ < C

(
Mβηs + (1 ∨M)

√
log(n)

n

)

for some numerical constant C > 0.

For a proof of Proposition 3.1, see appendix A.1. It follows from Proposition 3.1 that

|d̂− d|∞ < δ :=
√
C

(√
Mβηs + (1 ∨

√
M)

(
log(n)

n

)1/4
)

(13)

with probability higher than 1− 1/n3.

3.1.2 Local Partitioning (or local comparison)

Local Partitioning (LP)

Input: the matrix
[
d̂(i, j)

]
1≤i,j≤n

of distance estimates, and some real numbers

δ1, δ2, δ3 > 0.

1. Build a graph Gi of nodes {1, . . . , n} as follows: link all k, ℓ ∈ [n] \ {i}
fulfilling

d̂(k, ℓ) ≤ δ1 and d̂(i, k) ∨ d̂(i, ℓ) ≥ δ2 . (14)

2. Output all connected components C1(i), C2(i), . . . including at least one
point xk such that

d̂(xk, xi) ≥ δ3 .

.

For the sake of brevity, we use the equivalence k ←→ xk between an index k and its associated
point xk, for instance saying that “a point xk belongs to a connected component ofGi” (though
it is, strictly speaking, k that belongs to Gi).

Proposition 3.2. Assume that the local distance-equivalence (4) and the spreading (6) of
latent positions hold and that

δ1 ≥ δ + βηs , δ2 ≥ δ +
β

α
(δ1 + δ) , R ≥ ηs ∨ (δ + δ1) ∨ (δ2 + δ)

1 ∧ α
.

Then, conditionally to the event |d̂ − d|∞ < δ, the following statements hold for any i ∈ [n]
and ρ := (δ2 + δ)/α:
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1. all points of a connected component of Gi are on the same side of i;

2. all the xℓ such that xℓ ≤ xi − ρ (resp. xℓ ≥ xi + ρ) are in a same connected component
linking points all on the same side of xi.

In addition if ηs ≤ 1/4 and δ + βρ ≤ δ3 < (R ∧ (α/4))− δ, then

3. there exist at least one, and at most two, non-empty connected components C1(i), C2(i),
including points xk such that d̂(k, i) ≥ δ3.

At this stage, under the above assumptions, there exists for each Gi, at least one, and at most
two, non-empty connected components C1(i) and C2(i) output by the LP algorithm. If Cℓ(i)
for some ℓ ∈ [2] is non-empty, then Cℓ(i) is on one side of xi and includes (possibly among
others) the points at Euclidean distance at least ρ of xi. The proof of Proposition 3.2 is in
appendix A.2.

3.1.3 Consensus among all Local Comparisons

It is now time to give a common orientation to the n partial orderings induced by the n
pairs of components C1(i), C2(i), i ∈ [n]. Note that C2(i) may be the empty set. We use the
consensus algorithm (CA) described below. If one of the steps of CA fails, then break (it will
not happen under the event |d̂− d|∞ < δ, which occurs with probability at least 1− 1/n3).

Consensus algorithm (CA)

Input: the connected components
[
Ck(i)

]
k∈[2],i∈[n] output by the LP algorithm.

1. choose a point i∗ having 2 non-empty connected components C1(i∗), C2(i∗)
of size at least ⌊η−1

s /4⌋ each. Choose an arbitrary sign: set C−(i∗) = C1(i∗)
and C+(i∗) = C2(i∗).

2. for i = 1, . . . , n and i ̸= i∗:

• if Gi has a single connected component C1(i), then: if i ∈ Cϵ(i∗) for
some ϵ ∈ {−,+}, set C−ϵ(i) = C1(i) and Cϵ(i) = ∅.

• if Gi has two connected components, then: if Ck(i) ∩ Cϵ(i∗) = ∅ for
some ϵ ∈ {−,+}, k ∈ [2], set C−ϵ(i) = Ck(i) and Cϵ(i) = Ck′(i) for
k′ ̸= k, k′ ∈ [2].

.

Proposition 3.3. We assume that the hypotheses of Proposition 3.2 hold and that ηs ≤ ρ ≤
1/8 and δ3+ δ ≤ R∧ (α/8). Conditionally to the event |d̂− d|∞ < δ, the consensus algorithm
runs. With no loss of generality, we can assume that

argmin
i∈C−(i∗)∪C+(i∗)

xi
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belongs to C−(i∗), otherwise switch the labels ϵ ∈ {−,+} of Cϵ(i∗). Then, the following
inequalities hold for all i ∈ [n],

∀ k ∈ C−(i), ∀ k′ ∈ C+(i) : xk < xi < xk′ .

The proof of Proposition 3.3 can be found in appendix A.3.

3.1.4 Comparison Function Estimator

The connected components produced by the CA algorithm are inputs for the CFI algorithm
presented below, which will output a comparison function ĥ whose accuracy is controlled by
Proposition 3.4.

Comparison Function Implementation (CFI)

Input: the connected components [Cϵ(i)]ϵ∈{−,+},i∈[n] output by the CA algo-
rithm.

1. for i, j = 1, . . . , n, with i < j:

• if j ∈ Cϵ(i), then set ĥ(i, j) = −ϵ1, otherwise set ĥ(i, j) = 0.

• if ĥ(i, j) = 0 and i ∈ Cϵ(j), then set ĥ(i, j) = ϵ1.

2. for i, j = 1, . . . , n, with i > j: set ĥ(i, j) = −ĥ(j, i).

3. for i = 1, . . . , n: set ĥ(i, i) = 0.

.

Proposition 3.4. We assume that the hypotheses of Proposition 3.2 and 3.3. Then, condi-
tionally to the event |d̂nb − dnb|∞ < δ, the CFI algorithm outputs a comparison function ĥ
that has an error smaller than ρ.

The proof of Proposition 3.4 is written in appendix A.4.

3.2 Stage 2: Expansion of the Comparison Function Estimator

In the second stage, we want to compare the pairs i, j that have not been successfully deter-
mined in the first stage, that is, those satisfying ĥ(i, j) = 0 after the call to the CFI algorithm.
By Proposition 3.4, such pairs of points are at distance less than |xi− xj | < ρ. Our objective
is to reduce this distance to (c/ηR)

√
log(n)/n. With the assumption (5) in mind, one might

think about the natural test below:
If the inequality

max
ϵ∈{−,+}

∑
k∈Cϵ(i)

ϵ(Ajk −Aik) ≥ L
√
n log(n) (15)

holds, then it is very likely that xj > xi, and we set ĥ(i, j) = −1. Unfortunately, such a test
may have cumbersome statistical dependencies with the first stage, as the terms Ajk−Aik in
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the sum (15) have already been used for the construction of Cϵ(i) (over which the sum is). To
avoid these complications when comparing two indices i, j, we use the CE algorithm described
below, which will go through the first stage again, but with proxy data A−(i,j) which have

removed the ith, jth lines of A. Thus, using the square matrix [Ast]s,t∈[n]
s,t ̸=i,j

instead of A will

remove the dependency between stage 1 and 2.

The CE algorithm runs the same (DE and LP) algorithms as before, but without the points
xi, xj . Accordingly, our analysis will use Propositions 3.1, 3.2 once again, but with respect to
A−(i,j). The notations used earlier for A have the following counterparts for A−(i,j): Denote by

d−(i,j) the neighborhood distance (3) based on F−(i,j), and by d̂−(i,j) the distance estimator
built by the DE algorithm from A−(i,j). For k = 1, . . . , n and k ̸= i, j, write C1−(i,j)(k),

C2−(i,j)(k) the connected components output by the LP algorithm, when the using input d̂−(i,j).
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Comparaison Expansion (CE)

Input: data matrix A, the connected components Cϵ(i), ϵ ∈ {−,+}, i ∈ [n] out-

put by the CA algorithm, and the estimator ĥ computed by the CFI algorithm.

For i = 1, . . . , n:

• If C+(i) ∪ C−(i) = ∅, then break.

• For ϵ = −,+ such that Cϵ(i) ̸= ∅, compute

iϵ ∈ argmin
j∈Cϵ(i), s.t. d̂(i,j)≥δ3

d̂(i, j) .

• For j = 1, . . . , n such that j ̸= i and ĥ(i, j) = 0:

1. Compute the distance estimator d̂−(i,j) using DE algorithm on A−(i,j).

2. For ϵ = −,+ such that Cϵ(i) ̸= ∅:
(a) Compute Cℓ−(i,j)(i

ϵ), ℓ ∈ [2], calling to LP algorithm with input

d̂−(i,j).

(b) Denote by Cϵ
−(i,j)(i

ϵ) the component Cℓ−(i,j)(i
ϵ), ℓ ∈ [2], contained

in Cϵ(i).

3. If
max

ϵ∈{−,+}

∑
k∈Cϵ

−(i,j)
(iϵ)

ϵ(Ajk −Aik) ≥ L
√
n log(n) (16)

then set ĥ(i, j) = −1 and ĥ(j, i) = 1.

4. Otherwise: if

max
ϵ∈{−,+}

∑
k∈Cϵ

−(i,j)
(iϵ)

ϵ(Aik −Ajk) ≥ L
√

n log(n) (17)

then set ĥ(i, j) = 1 and ĥ(j, i) = −1.

.

A sum over an empty set is by convention equal to zero. Specifically in point 3 and 4 above,
we set

∑
k∈Cϵ

−(i,j)
(iϵ) ϵ(Ajk −Aik) = 0 when Cϵ

−(i,j)(i
ϵ) = ∅.

Proposition 3.5. Assume that the Robinsonian properties (2) and (5), the sub-Gaussian
noise (8) and the hypotheses of Proposition 3.2 and 3.3 hold. Also assume that

δ3 ≥ βρ+ δ , R ≥ (ρ+ ηs) ∨ (δ3 + 3δ + βηs) ,

α > 8(δ3 + δ) , 8ηs < 1 ,

ρ ≤ ρ′ <
1

4
, 2(δ3 + 3δ + βηs) < α(ρ′ − ρ) .

Then, conditionally to the event |d − d̂|∞ ∨ maxi,j∈[n],i ̸=j |d−(i,j) − d̂−(i,j)|∞ ≤ δ, the CE
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algorithm runs. Additionally, with probability higher than 1 − 4/n and for L > 4, it outputs

a comparison function ĥ having an error less than 2L
ηR

√
log(n)

n .

Proposition 3.5 is proved in appendix A.5.

The probability of having

|d− d̂|∞ ∨ max
i,j∈[n],i ̸=j

|d−(i,j) − d̂−(i,j)|∞ > δ

is at most 1/n (this follows from a union bound and Proposition 3.1). Hence, the conclusion
of Proposition 3.5 holds with probability at least 1−5/n. Theorem 2.6 follows, taking L = 5.

3.3 From Comparison Function to Permutation

For any comparison function h, recall that one can define a permutation πh from h as follows:

Sh(i) =
∑
j∈[n]

h(i, j)

πh(i) = #
{
j ∈ [n] : Sh(j) ≤ Sh(i)

}
, (18)

breaking ties arbitrarily (whenever Sh does not take different values), so that πh is a per-
mutation of [n]. The following lemma ensures that πh is almost as accurate as h, when the
sample sparsity ηs is small.

Lemma 3.6. Assume that the positions spreading (6) holds. Then, for any comparison
function h with an error less than ν, the permutation πh in (18) has an error less than
2ν + ηs.

The proof of Lemma 3.6 is written in appendix A.6.

Hence, we can use the output ĥ of section 3 and the relation (18) to define the permutation

π̂ := πĥ. The error of ĥ is smaller than 10
ηR

√
log(n)

n by Theorem 2.6, so Lemma 3.6 yields the
following corollary.

Corollary 3.7. Under the assumptions of Theorem 2.6, the permutation π̂ := πĥ has an

error less than 20
ηR

√
log(n)

n + ηs, with probability at least 1− 5/n.

In Corollary 3.7, there are two error terms: the first term ηs represents the spatial sparsity
of the latent points x1, . . . , xn in [0, 1]. This term can be much greater than the second term

20
ηR

√
log(n)

n which is small when the Robinsonian signal strength ηR is large. It is therefore
important to remove the additional error term ηs in Corollary 3.7. We do it using an extra
algorithmic step which breaks the ties of Sĥ in a non arbitrary fashion.
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Permutation Estimator (PE)

Input: comparison function h.

Set Sh(i) =
∑

j∈[n] h(i, j) for all i ∈ [n].

Set gh(i) = #
{
j ∈ [n] : Sh(j) ≤ Sh(i)

}
for all i ∈ [n]. a

For k = 1, . . . , n, set Ck = #g−1
h (k) and define a permutation πref as follows:

• if Ck = 1, set πref
(
g−1
h (k)

)
= k.

• if Ck = 2, then there exist s, t ∈ g−1
h (k), s ̸= t, such that h(s, t) ∈ {0,−1}.

Set πref (s) = k − 1 and πref (t) = k.

• if Ck ≥ 3, then

1. compute V = DS(h, g−1
h (k)) with the notation V = (vi)i∈[Ck].

2. set πref (vi) = k − (Ck − i) for all i ∈ [Ck].

Output: permutation πref .

aThe function gh is not a permutation when there exist i ̸= j such that Sh(i) = Sh(j).

Dichotomic Splitting (DS)

Input: comparison function h, a set E of indices with cardinal number #E ≥ 2.

• compute E−
i , i, E

+
i = SIT(h,E).

• if #E−
i ≥ 2, then compute V − = DS(h,E−

i );
else if #E−

i = 1, do V − = [j] for j ∈ E−
i ;

else V − = ∅.

• if #E+
i ≥ 2, then compute V + =DS(h,E+

i );
else if #E+

i = 1, do V + = [j] for j ∈ E+
i ;

else V + = ∅.

Output: the list [V −, i, V +] if V − ̸= ∅ and V + ̸= ∅,
the list [i, V +] if V − = ∅ and V + ̸= ∅,
the list [V −, i] if V − ̸= ∅ and V + = ∅.
.

Split In Two (SIT)

Input: comparison function h, set E of indices with cardinal number #E ≥ 2.

Take any index i ∈ E and compute

E−
i = {j ∈ E\{i} : h(i, j) = 1 or h(i, j) = 0} , E+

i = {j ∈ E : h(i, j) = −1} .

Output: E−
i , i, E

+
i .

.
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Lemma 3.8. For any comparison function h with an error less than ν, the permutation πref
output by the PE algorithm has an error less than 2ν.

The proof of Lemma 3.8 is written in appendix A.6.

We use the output ĥ of section 3 as input in the PE algorithm to get a permutation π̂ref .

Theorem 2.6 and Lemma 3.8 then ensure that that π̂ref has an error less than 20
ηR

√
log(n)

n .
Corollary 2.7 follows.

4 Minimax lower bound

In this section, we prove that the η−1
R

√
log(n)/n rate in Corollary 2.7 is minimax optimal. Let

us consider the observation model A = F +E, where we assume that the entries {Aij : i < j}
follow independent Bernoulli distributions with parameters Fij = f(xi, xj). We focus on this
particular case of sub-Gaussian distributions for the derivation of a lower bound, as we have
in mind random graph applications. The lower bound will hold for this random graph model,
and a fortiori for the more general case of sub-Gaussian noise considered in previous sections.

To prove the lower bound, we consider the simpler setting where f0 is known to the statistician,
and is an affine function of the Euclidean distance,

f0(x, y) =
3

4
− η̃R|x− y|

2
, for all x, y ∈ [0, 1],

with a parameter η̃R ∈ (0, 1]. This function f0 corresponds to a geometric latent model as dis-
cussed in the introduction. Let Xn be the set of regular positions Xn =

{
x = (π(j)/n)1≤j≤n :

π ∈ Πn

}
, where Πn is the collection of permutations of [n]. One readily checks that all as-

sumptions (4) to (8) are satisfied for f0 and any x ∈ Πn. Indeed, the condition (6) on the
spreading of latent positions holds for any ηs ≥ 1/n. The strong Robinsonian property (5) is
satisfied with

ηR = cη̃R

for some numerical constant c ∈ (0, 1) and ρ, ρ′ ∈ (0, 1/8). The local bi-Lipschitz assump-
tion (4) is fulfilled with α = c′ η̃R and β = c′′ η̃R for some numerical constants c′, c′′ ∈ (0, 1)
and radius R ∈ (0, 1/4).

We have a one-to-one correspondence Xn
∼= Πn, via the application sending any x =

(x1, . . . , xn) ∈ Xn to πx ∈ Πn such that πx(i) = nxi for all i ∈ [n]. This permutation
preserves the ordering of the latent positions:

∀i, j ∈ [n] : {xi < xj} ←→ {πx(i) < πx(j)} .

Let us define a pseudo-metric on Xn
∼= Πn which captures the error ϵ introduced in Definition

2.4 for the estimation of a correct permutation. Given a scalar ϵ ∈ [0, 1] and two permutations
πx, πx′ ∈ Πn, we introduce the event Eϵ(πx, πx′) on which πx, πx′ agree up to ϵ:

Eϵ(πx, πx′) =

{
either {πx(i) < πx(j)} ←→ {πx′(i) < πx′(j)} for all i, j satisfying |i− j| ≥ nϵ,

or {πx(i) > πx(j)} ←→ {πx′(i) < πx′(j)} for all i, j satisfying |i− j| ≥ nϵ

}
.
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We take the infimum over ϵ to get the following pseudo-metric

D(πx, πx′) = argmin
ϵ∈[0,1]

{
the event Eϵ(πx, πx′) holds

}
. (19)

Recall that P(x,f0) denotes the distribution of A with representation (x, f0).

Theorem 4.1. There exist three positive numerical constants C,C ′, C ′′ such that for any
n ≥ C ′ and ηR ≥ C ′′√log(n)/n, we have the lower bound

inf
π̂

sup
x∈Πn

P(x,f0)

[
D(π̂, πx) ≥

C

ηR

√
log(n)

n

]
≥ 1

2
,

where the infimum holds over all σ(A)-measurable functions π̂.

The proof of Theorem 4.1 is given in appendix C. The lower bound is written over the
collection of n-tuples x ∈ Πn, which is a subclass of the class considered in our upper bounds
(since all x ∈ Πn satisfy the condition (6) for any ηs ≥ 1/n). The lower bound matches the
upper bound of Corollary 2.7 up to some multiplicative numerical constant. Therefore, it
implies the optimality of the η−1

R

√
log(n)/n estimation rate of our estimator (in the minimax

sense). The fact that the lower bound holds even for a known function (f0) entails that the
η−1
R

√
log(n)/n estimation rate is not driven by the (absence of) knowledge of the affinity

function in our setting (1).
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A Proof of Theorem 2.6 (Upper Bound)

A.1 Proof of Proposition 3.1 (Distance Estimation)

For any index i ∈ [n], we define the index mi ∈ [n], mi ̸= i, such that xmi is, with respect
to the Euclidean distance, one of the closest points to xi among the latent points x1, . . . , xn.
Formally, let

mi ∈ argmin
j∈[n]
j ̸=i

|xi − xj | .

A direct adaptation of [Issartel, 2021, Proof of Theorem 7] allows us to derive the following
bound on the error of d̂, where we only used the sub-Gaussian condition (8) and the signal
bound (7). There exists some numerical constant C > 0 such that, with probability higher
than 1− 1/n3,

max
i,j∈[n]

∣∣∣d2(i, j)− d̂2(i, j)
∣∣∣ < C

(
M [d(i,mi) + d(j,mj)] + (1 ∨M)

√
log(n)

n

)
.

The spreading (6) of latent positions ensures that |xi − xmi | ≤ ηs for all i. Besides, ηs ≤ R,
so that we can use the local distance equivalence (4) to obtain

∀i, j ∈ [n], d(i,mi) + d(j,mj) ≤ β
(
|xi − xmi |+ |xj − xmj |

)
≤ 2βηs ,

which concludes the proof of Proposition 3.1. □

A.2 Proof of Proposition 3.2 (Local Partitioning analysis)

Points 1 and 2 of Proposition 3.2 deal with the properties of the connected components, while
point 3 is about the existence and the number of connected components. We divide the proof
accordingly in two parts.

A.2.1 Points 1 and 2 of Proposition 3.2

For the convenience of the reader, we write below a proposition that encapsulates the two
first points of Proposition 3.2.

Proposition. Assume that the local distance equivalence (4) and the positions spreading (6)
hold and that

δ1 ≥ δ + βηs , δ2 ≥ δ +
β

α
(δ1 + δ) , R ≥ ηs ∨ (δ + δ1) ∨ (δ2 + δ)

1 ∧ α
.

Then, conditionally to the event |d̂ − d|∞ < δ, the following statements hold for ρ :=
(δ2 + δ)/α:

1. all points of a connected component of Gi are on the same side of i;
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2. all the xℓ such that xℓ ≤ xi − ρ (resp. xℓ ≥ xi + ρ) are in a same connected component
linking points all on the same side of xi.

Proof.

Lemma A.1. If there exists κ, ρ such that the four conditions

d(k, ℓ) ≤ δ1 + δ =⇒ |xk − xℓ| ≤ κ (20)

|xi − xℓ| ≤ κ =⇒ d(i, ℓ) ≤ δ2 − δ (21)

d(i, ℓ) < δ2 + δ =⇒ |xi − xℓ| < ρ (22)

d(ℓ, ℓ+ 1) ≤ δ1 − δ (23)

are met for all i, k, ℓ, then conditionally to the event |d̂− d|∞ < δ we have

1. when (14) is met, then either xk, xℓ > xi or xk, xℓ < xi;

2. all the xℓ such that xℓ ≤ xi − ρ (resp. xℓ ≥ xi + ρ) are in a same connected component
linking points all on the same side of xi.

Proof of Lemma A.1: Conditions (20) and (21) together with |d̂− d|∞ < δ ensure that if
(14) holds, then |xk − xℓ| ≤ κ and |xi − xℓ| ∨ |xi − xk| > κ, so k and ℓ are on the same side
with respect to i.

In addition, condition (22) and |d̂ − d|∞ < δ yield the implication: if |xi − xℓ| ≥ ρ, then
d̂(i, ℓ) ≥ δ2. Say for example that xℓ ≤ xi − ρ. As d̂(ℓ, ℓ− 1) ≤ δ1 by (23), we have (14) with
k = ℓ − 1. Hence, xℓ and xℓ−1 are linked. By induction, we obtain that all points on the
left of xℓ are linked together. Thus, all points at distance at least ρ from xi are connected
together and they belong to a same side of i. □

Let us now check that the conditions of Lemma A.1 are fulfilled.

Lemma A.2. Under the assumptions of the proposition above, the conditions from (20) to
(23) are fulfilled with

κ :=
δ1 + δ

α
and ρ :=

δ2 + δ

α
.

Proof of Lemma A.2. First, d(k, ℓ) ≤ δ + δ1 ≤ R, so we get from the local distance
equivalence (4) that

|xk − xℓ| ≤
1

α
d(k, ℓ) ≤ δ + δ1

α
= κ .

For |xi − xℓ| ≤ κ ≤ R, we have
d(i, ℓ) ≤ βκ ≤ δ2 − δ.

For d(i, ℓ) < δ2 + δ ≤ R, we have

|xi − xℓ| <
δ2 + δ

α
= ρ.

Finally, the positions spreading (6) ensures that |xℓ − xℓ+1| ≤ ηs ≤ R, so we have

d(ℓ, ℓ+ 1) ≤ βηs ≤ δ1 − δ.

The proof of Lemma A.2 is complete, as well as the proof of the proposition above, which
corresponds to the points 1 and 2 of Proposition 3.2. □

24



A.2.2 Point 3 of Proposition 3.2

The proposition below encapsulates the point 3 of Proposition 3.2. It states that for each graph
Gi there exists at least one, and at most two, non-empty connected components C1(i), C2(i)
output by the LP algorithm.

Proposition. Assume that ηs ≤ 1/4 and ρ ≤ R and

δ + βρ ≤ δ3 < (R ∧ (α/4))− δ.

Then, under the assumptions of the proposition of sub-section A.2.1, and for any i ∈ [n],
there exist at least one, and at most two, non-empty connected components C1(i) and C2(i)
including points xk such that d̂(k, i) ≥ δ3.

Proof. Given i ∈ [n], let xk be a point such that d̂(k, i) ≥ δ3. If |xi − xk| < ρ, then we have
d̂(k, i) < βρ+ δ using the local distance equivalence (4) with ρ ≤ R. So d̂(k, i) ≥ δ3 ≥ δ+ βρ
enforces that |xi− xk| ≥ ρ. We know that, on each side of xi, all points at distance at least ρ
are connected together. Hence, there are at most 2 connected components in Gi containing
points xk that satisfy d̂(k, i) ≥ δ3.

In addition, when d̂(k, i) < δ3 ≤ R−δ, we have |xk−xi| ≤ (δ3+δ)/α < 1/4. As either xi−x1
or xn − xi is greater than or equal to 1/4 for ηs ≤ 1/4, then there exists at least one xk such
that d̂(i, k) ≥ δ3. The proof is complete. □

A.3 Proof of Proposition 3.3 (Consensus Algorithm analysis)

Throughout the section A.3, we assume that x1 < x2 < . . . < xn (with no loss of generality).
This allows us to rewrite the statement of Proposition 3.3 as follows.

Proposition. We assume that the hypotheses of Proposition 3.2 hold and that ηs ≤ ρ ≤ 1/8
and δ3 + δ ≤ R ∧ (α/8). Conditionally to the event |d̂ − d|∞ < δ, the consensus algorithm
runs. With no loss of generality, we can assume that minC−(i∗)∪C+(i∗) ∈ C−(i∗), otherwise
switch the labels ϵ of Cϵ(i∗). Then, we have maxC−(i) < i < minC+(i) for all i ∈ [n].

Proof. Let us analyze the points 1 and 2 of the Consensus Algorithm (CA) separately.

• Point 1 of CA: The point 1 of the Consensus Algorithm runs, if there exists an index
i∗ that has two non-empty connected components of cardinal number greater than (or equal
to) ⌊η−1

s /4⌋.

Let i∗ be an index such that xi∗ belongs to the interval [1/2−ηs, 1/2+ηs]. We know from the
spreading assumption (6) that such an index i∗ exists. Under the assumption ηs ≤ ρ ≤ 1/8,
all indices k in

V := {k : xk ∈ [0, 1/4]}

satisfy xk ≤ xi∗ −ρ. The point 2 of Proposition 3.2 then ensures that V is included in a same
connected component of Gi∗ , say C, which is located on one side of i∗. If d̂(i∗, 1) < δ3 ≤ R−δ,
then the local distance equivalence (4) yields |xi∗ −x1| ≤ (δ3+ δ)/α < 1/4, which contradicts
the fact that |xi∗ −x1| ≥ 1/2− 2ηs ≥ 1/4 by the positions spreading (6). Hence, d̂(i∗, 1) ≥ δ3
with 1 ∈ C (since 1 ∈ V ⊂ C). It then follows from the point 3 of Proposition 3.2 that C is
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necessarily one of the two connected components C1(i∗), C2(i∗) released by the LP algorithm.
We thus have V ⊂ Cl(i∗) for some l ∈ [2].

Similarly, we can show that the other component Cl′(i∗), l′ ̸= l, l′ ∈ [2], contains V ′ :=
{k : xk ∈ [3/4, 1]}. Hence, denoting C1(i∗), C2(i∗) by C+(i∗), C−(i∗), with the convention
min C1(i∗) ∪ C2(i∗) ∈ C−(i∗) which means 1 ∈ C−(i∗), we conclude that

V ⊂ C−(i∗) and V ′ ⊂ C+(i∗) . (24)

The cardinal numbers of V and V ′ are greater than (or equal to) ⌊η−1
s /4⌋ since, by the

spreading assumption (6), each interval [0, 1/4], [3/4, 1] contains at least ⌊η−1
s /4⌋ different

points xi. Hence, the point 1 of the Consensus Algorithm runs. From the display (24)
together with the point 2 of Proposition 3.2, we finally get

maxC−(i∗) < i∗ < minC+(i∗) . (25)

• Point 2 of CA: Let i ∈ {1, . . . , n}, i ̸= i∗.

(i) When Gi has a single connected component, we have d̂(1, i) ∧ d̂(n, i) ≤ δ3. This yields
d(1, i) ∧ d(n, i) ≤ δ3 + δ ≤ R, and thus

α|xi − x1| ≤ d(1, i) ≤ δ3 + δ , or α|xi − xn| ≤ d(n, i) ≤ δ3 + δ .

We use δ3 + δ ≤ α/8 and the positions spreading (6) to get

xi ≤ x1 + 1/8 ≤ ηs + 1/8 ≤ 1/4 , or xi ≥ xn − 1/8 ≥ 1− ηs − 1/8 ≥ 3/4 .

Hence, either i ∈ V or i ∈ V ′. It then follows from (24) that i ∈ Cϵ(i∗) for exactly one
ϵ ∈ {±}. Thus, the Consensus Algorithm outputs C−ϵ(i) = C1(i) and Cϵ(i) = ∅.

(ii) When Gi has two connected components, if for example i∗ < i, then the connected
component Ck(i) containing xn has a void intersection with Cϵ(i∗) containing x1. In addition
of this empty intersection, exactly one of the three other intersections may be empty too,
namely the one between C−ϵ(i∗) and Ck′(i) for k′ ̸= k. The two remaining intersections are
indeed non-empty since x1 ∈ Cϵ(i∗)∩Ck′(i) and xn ∈ C−ϵ(i∗)∩Ck(i). Regardless of the order
in which the algorithm tests (the emptiness of) these four intersections, the output is always
C−ϵ(i) = Ck(i) and Cϵ(i) = Ck′(i).

It follows from the analyses (i) and (ii) above that the point 2 of CA runs. It is then not
difficult to check that the output of CA satisfy maxC−(i) < i < minC+(i), using the reference
partition (25) and Proposition 3.2.

The proof of Proposition 3.3 is complete. □

A.4 Proof of Proposition 3.4 (CFI analysis)

Throughout the section A.4, we assume that x1 < x2 < . . . < xn, with no loss of generality.
Let h be the correct comparison function defined by h(i, j) = 1− 21xi<xj for all i, j.

The correct comparison matrix [h(i, j)]i,j∈[n] is anti-symmetric by definition, hence (in the

point 2 of CFI algorithm) we set the lower triangle of the matrix
[
ĥ(i, j)

]
i,j∈[n]

as equal
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to the opposite of its upper triangle. We analyze this upper triangle in the following. Let
i, j ∈ [n], i < j, such that |xi − xj | ≥ ρ.

• 1st Case: Gi has two non-empty connected components C−(i) and C+(i). We know
from Proposition 3.2 that j belongs to one of these two components (since |xi − xj | ≥ ρ).

The output of the CFI algorithm is therefore ĥ(i, j) = −ϵ1. Proposition 3.3 then ensures that
ĥ(i, j) coincides with the value h(i, j) = 1− 21i<j of the correct comparison function h.

• 2nd Case: Gi has exactly one non-empty connected component Cϵ(i). If j ∈ Cϵ(i), then
the CFI algorithm outputs ĥ(i, j) = −ϵ1 again, and Proposition 3.3 allows us to conclude as
in the 1st case.

Assume therefore that j /∈ Cϵ(i). It is sufficient to analyze the case ϵ = − (the case ϵ = +

being symmetric). Thus, C−(i) is the unique non-empty connected component of Gi, and
j /∈ C−(i). If xj < xi, then xj − ρ ≤ xi (since |xi− xj | ≥ ρ), so the point 2 of Proposition 3.2
yields j ∈ C−(i), which is a contradiction. Hence, xj > xi.

If xj < 1/2, then xi < 1/2. If d̂(i, n) < δ3 ≤ R−δ, then the local distance equivalence (4) yields
|xi−xn| ≤ (δ3+ δ)/α < 1/4, which contradicts the fact that |xi−xn| ≥ (1− ηs)− 1/2 ≥ 1/4,
deduced from the positions spreading (6). Hence, d̂(i, n) ≥ δ3, leading to n ∈ C+(i), which is
a contradiction with C+(i) = ∅. Therefore, xj ≥ 1/2.

If d̂(j, 1) < δ3 ≤ R − δ, then (4) yields |xj − x1| ≤ (δ3 + δ)/α < 1/4, which contradicts the

fact that |xj −x1| ≥ 1/2− ηs ≥ 1/4. Hence, d̂(j, 1) ≥ δ3, implying that the component C−(j)
is non-empty with 1 ∈ C−(j). Since xj − ρ ≥ xi, the point 2 of Proposition 3.2 ensures that

i ∈ C−(j). The CFI algorithm therefore outputs ĥ(i, j) = ϵ1 = −1, which matches the correct
value h(i, j) = 1− 21i<j . This concludes the analysis of the 2nd case.

The proof of Proposition 3.4 is complete. □

A.5 Proof of Proposition 3.5 (CE analysis)

Throughout the section A.5, we assume that x1 < x2 < . . . < xn (with no loss of generality),
and we denote by h the following correct comparison function h(i, j) = 1−21xi<xj for all i, j.

We start with three lemmas, the first one controlling the random fluctuations of the noise.

Lemma A.3. Assume that the sub-Gaussian error (8) holds. Then, with probability higher
than 1− 4/n,

max
ϵ,i,j,ℓ

1√
2|Cϵ

−(i,j)(ℓ)|

∣∣∣ ∑
k∈Cϵ

−(i,j)
(ℓ)

(Eik − Ejk)
∣∣∣ < 2

√
2 log(n) (26)

Proof Lemma A.3. The sets C−
−(i,j)(ℓ), C

+
−(i,j)(ℓ) are independent of Eik − Ejk, k ∈ [n].

Then, for any ϵ ∈ {−,+} we have that, conditionally on Cϵ
−(i,j)(ℓ),

P

 1√
2|Cϵ

−(i,j)(ℓ)|

∣∣∣∣∣∣∣
∑

k∈Cϵ
−(i,j)

(ℓ)

(Eik − Ejk)

∣∣∣∣∣∣∣ ≥ t

 ≤ 2e−t2/2 ,
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using the sub-Gaussian property (8). The lemma follows from the choice of value t =
2
√
2 log(n), together with a union bound over all possible indices i, j, l in [n] and ϵ ∈ {−,+}.

□

The next lemma shows that xi is close to xi+ , xi− .

Lemma A.4. Assume that the spreading (6) and the local distance equivalence (4) hold,
and that δ3 ≥ βρ + δ and R ≥ (ρ + ηs) ∨ (δ3 + 3δ + βηs). Also assume that the hypotheses
of Proposition 3.2 and Proposition 3.3 hold. Conditionally to the event |d̂ − d|∞ < δ, the
following holds for any i ∈ [n]. If iϵ exists for ϵ ∈ {−,+}, then

α|xi − xiϵ | ≤ δ3 + βηs + 3δ . (27)

Proof of Lemma A.4. We only prove the bound for xi+ , the one for xi− being similar. Set

b+ = min
{
j ∈ C+(i) : d̂(i, j) ≥ δ3

}
.

Assume that i+ ∈ [n] exists. Then, C+(i) is non-empty, and by definition of C+(i) there
exists k such that d̂(i, k) ≥ δ3. Hence, b+ ∈ [n] exists. We also know from Proposition 3.2
that the set C+(i) includes all points xk satisfying xk − ρ ≥ xi.

• If b+ − 1 /∈ C+(i), then xb+−1 − xi < ρ. Proposition 3.3 ensures that xb+ > xi, so
we have 0 < xb+ − xi = (xb+ − xb+−1) + (xb+−1 − xi) < ηs + ρ, using the spreading
assumption (6). As ρ+ ηs ≤ R, the local distance equivalence (4) yields

d̂(i+, i) ≤ d̂(b+, i) ≤ β(ρ+ ηs) + δ ≤ δ3 + βηs ,

where we used the definition of i+ in the first inequality, the event |d̂− d|∞ < δ in the
second one, and δ3 ≥ βρ+ δ in the last one.

• If b+ − 1 ∈ C+(i), then by definition of b+ we have d̂(b+ − 1, i) < δ3. It then follows
from the triangular inequality that d(b+, i) ≤ d(b+, b+− 1)+ d(b+− 1, i) ≤ βηs+ δ3+ δ,
using the spreading assumption (6) and the local distance equivalence (4). Hence, we
get from the definition of i+ that

d̂(i+, i) ≤ d̂(b+, i) ≤ βηs + δ3 + 2δ .

To conclude, we have
d(i+, i) ≤ δ3 + βηs + 3δ ≤ R ,

hence the bound (27) follows from the local distance equivalence (4). □

In the following lemma, we give some conditions on the positions xi, xj so that the indices iϵ

exist and the sets Cϵ(i), Cϵ
−(i,j)(i

ϵ) are non-empty.
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Lemma A.5. Assume that the hypotheses of Proposition 3.2, 3.3 and Lemma A.4 hold. Also
assume that δ3 ≥ βρ+δ and R ≥ (δ3+δ)∨ρ and δ3+δ < α/8 and ηs < 1/8 and ρ ≤ ρ′ < 1/4
and δ3+3δ+βηs < α(ρ′−ρ)/2. Conditionally to the event |d̂−d|∞ < δ, we have the following
implication for any i, j ∈ [n] such that |xi − xj | < ρ.
If xi ≤ 1/2 + ρ/2, then

(a) C+(i) ̸= ∅ , (b) i+ exists ,

and conditionally to the event |d̂−(i,j) − d−(i,j)|∞ < δ,

(c) C+
−(i,j)(i

+) ̸= ∅ , (d)
{
k : xk ≥ xi ∨ xj + ρ′

}
⊂ C+

−(i,j)(i
+) .

Similarly: If xi ≥ 1/2− ρ/2, then

(a’) C−(i) ̸= ∅ , (b’) i−exists ,

(c’) C−
−(i,j)(i

−) ̸= ∅ , (d’)
{
k : xk ≤ xi ∧ xj − ρ′

}
⊂ C−

−(i,j)(i
−) .

Proof of Lemma A.5. Given i ∈ [n], assume that xi ≤ 1/2 + ρ/2 and |d̂− d|∞ < δ.

(a) If d̂(i, n) < δ3 ≤ R−δ, then the local distance equivalence (4) yields |xi−xn| ≤ (δ3+δ)/α <
1/4, which contradicts the fact that |xi−xn| ≥ (1−ηs)−(1/2+ρ/2) ≥ 1/4. Hence, d̂(i, n) ≥ δ3,
leading to n ∈ C+(i) and C+(i) ̸= ∅.

(b) When Cϵ(i) ̸= ∅, the index iϵ exists by construction of the set Cϵ(i). Hence, the existence
of i+ follows directly from the point (a) of Lemma A.5.

Given j ∈ [n] \ {i} such that |xi−xj | < ρ, assume (in the sequel) that |d̂−(i,j)− d−(i,j)|∞ < δ.

(c) By Proposition 3.3, we have xk > xi for all k ∈ C+(i), in particular xi+ > xi as i
+ ∈ C+(i).

It follows from this and the equation (27) of Lemma A.4 that

0 < xi+ − xi ≤
δ3 + 3δ + βηs

α
<

ρ′ − ρ

2
<

1

8
. (28)

If d̂−(i,j)(i
+, n) < δ3 ≤ R − δ, then the local distance equivalence (4) yields |xi+ − xn| ≤

(δ3 + δ)/α < 1/8, which contradicts the fact that |xi+ − xn| ≥ |xn − xi| − |xi+ − xi| ≥
|(1−ηs)− (1/2+ρ/2)|−1/8 ≥ 1/8. Hence, d̂−(i,j)(i

+, n) ≥ δ3, thus leading to n ∈ C+
−(i,j)(i

+)

and C+
−(i,j)(i

+) ̸= ∅.

Above, the quantity d̂−(i,j)(i
+, n) and the set C+

−(i,j)(i
+) are well-defined since {i, j}∩{i+, n} =

∅. Indeed, we have i ̸= n and j ̸= n because xi ≤ 1/2 + ρ/2 < 5/8 and xj ≤ xi + ρ < 7/8
while xn ≥ 1− ηs > 7/8. We also have

i ̸= i+ and j ̸= i+ , (29)

since i+ satisfies d̂(i, i+) ≥ δ3 ≥ βρ + δ which implies |xi − xi+ | ≥ ρ (indeed, we know from
the local distance equivalence (4) that the contraposition holds: |xi − xi+ | < ρ ≤ R =⇒
d̂(i, i+) < βρ+ δ ). The second relation j ̸= i+ then follows from the fact that |xi− xj | < ρ.

(d) Given an index k ∈ [n] satisfying xk ≥ xi + ρ′, we get from (28) that

xk − xi+ = (xk − xi)− (xi+ − xi) > (ρ′ + ρ)/2 ≥ ρ ,
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which implies k ∈ C+
−(i,j)(i

+) by Proposition 3.2 and 3.3, whenever C+
−(i,j)(i

+) ̸= ∅. As

C+
−(i,j)(i

+) ̸= ∅ is guaranteed by the point (c) of Lemma A.5, we obtain {k : xk ≥ xi + ρ′} ⊂
C+
−(i,j)(i

+), and a fortiori {k : xk ≥ xi ∨ xj + ρ′} ⊂ C+
−(i,j)(i

+).

This concludes the proof of the points (a) to (d) for xi ≤ 1/2+ ρ/2. By symmetry, the points
(a’) to (d’) for xi ≥ 1/2− ρ/2 follow from a similar proof. □

We are now ready to prove Proposition 3.5, which is rewritten below for the convenience of
the reader.

Proposition. Assume that the Robinsonian properties (2) and (5), the sub-Gaussian noise
(8) and the hypotheses of Proposition 3.2 and 3.3 hold. Also assume that the hypotheses of
Lemma A.4 and A.5 hold. Then, conditionally to the event |d− d̂|∞ ∨maxi,j∈[n],i ̸=j |d−(i,j)−
d̂−(i,j)|∞ ≤ δ, the CE algorithm runs. Additionally, with probability higher than 1− 4/n and

for L > 4, it outputs a comparison function ĥ having an error less than 2L
ηR

√
log(n)

n .

Proof. Given i ∈ [n], le us show that (a) the CE algorithm runs until the point 3 of the
pseudo-code (at least), and (b) the output ĥ of CE algorithm has a small error.

(a) The CE algorithm runs until point 3:

Assume that the event |d− d̂|∞ ≤ δ holds. If xi ≤ 1/2 + ρ/2, then Lemma A.5 ensures that
C+(i) ̸= ∅ and i+ exists. Otherwise, when xi > 1/2+ ρ/2, we obviously have xi ≥ 1/2− ρ/2,
and Lemma A.5 yields C−(i) ̸= ∅ and the existence of i−. In any case, C−(i) ∪ C+(i) ̸= ∅,
so the CE algorithm does not break at the first bullet point of the pseudo-code, and will run
until the third bullet point, where it will scan the indices j such that ĥ(i, j) = 0. Proposition
3.4 implies that such j satisfy

|xi − xj | < ρ . (30)

At the point 1 of the third bullet point, the distance estimator d̂−(i,j) is computed without

the points xi, xj . Conditionally to the event |d− d̂|∞ ∨maxi,j∈[n],i ̸=j |d−(i,j) − d̂−(i,j)|∞ ≤ δ,
we analyze the rest of the algorithm.

At the point 2, the algorithm takes an ϵ such that Cϵ(i) ̸= ∅, which exists (as proved in
the before last paragraph). With no loss of generality, we assume that C+(i) ̸= ∅. The
algorithm then computes the components Cℓ−(i,j)(i

+), ℓ ∈ [2], which enjoy the theoretical

properties stated in Proposition 3.2. These components are well-defined, in particular i+ is
not equal to i or j, as checked in (29). By definition of i+, we know that d̂(i, i+) ≥ δ3, which
implies |xi − xi+ | ≥ ρ. Hence, xk − ρ ≥ xi for all k ∈ {i+, . . . , n}, so Proposition 3.2 and
3.3 yield {i+, . . . , n} ⊂ C+(i). As {i+, . . . , n} contains one of the two components C1−(i,j)(i

+),

C2−(i,j)(i
+), we finally get for some ℓ ∈ [2] that

C+
−(i,j)(i

+) := Cℓ−(i,j)(i
+) ⊂ {i+, . . . , n} ⊂ C+(i) , (31)

where we denoted Cℓ−(i,j)(i
+) by C+

−(i,j)(i
+).
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The same applies to the case ϵ = − when C−(i) ̸= ∅, meaning that we have, for some ℓ′ ∈ [2],

C−
−(i,j)(i

−) := Cℓ′−(i,j)(i
−) ⊂ {0, . . . , i−} ⊂ C−(i) . (32)

Hence, we proved that the CE algorithm runs until the point 3 of the pseudo-code (at least),
where it will (possibly) update the estimator ĥ through the tests (16-17). These tests are
trivial whenever the sums involved in (16-17) are by convention equal to zero, due to being over
empty sets C−

−(i,j)(i
−), C+

−(i,j)(i
+). Fortunately, this does not happen under our assumptions,

since Lemma A.5 guarantees C−
−(i,j)(i

−) ∪ C+
−(i,j)(i

+) ̸= ∅.

(b) The Output ĥ has a Small Error:

It suffices to show that, for all j satisfying (30), the value ĥ(i, j) matches the correct value
h(i, j) = 1− 21xi<xj .

• 1st Case xi < xj . Observe that the CE algorithm outputs the correct value h(i, j) if
the inequality (16) is satisfied. Hence, all we need is to show that this inequality holds w.h.p..
Under the event (26) which holds with probability higher than 1− 4/n (by Lemma A.3), we
have the following lower bound for all ϵ ∈ {−,+},∑

k∈Cϵ
−(i,j)

(iϵ)

ϵ(Ajk −Aik) =
∑

k∈Cϵ
−(i,j)

(iϵ)

ϵ(Fjk − Fik) +
∑

k∈Cϵ
−(i,j)

(iϵ)

ϵ(Ejk − Eik)

≥
∑

k∈Cϵ
−(i,j)

(iϵ)

ϵ(Fjk − Fik)− max
ϵ∈{−,+}

∣∣∣ ∑
k∈Cϵ

−(i,j)
(iϵ)

(Ejk − Eik)
∣∣∣

≥
∑

k∈Cϵ
−(i,j)

(iϵ)

ϵ(Fjk − Fik)− 4
√
n log(n) . (33)

To lower bound the sum in (33), we are going to use the Robinson property (5) for all j
satisfying (30) : ∑

k: xk≤xi−ρ′

Fik − Fjk ≥ ηR|xi − xj |n, if xi ≥ 1/2− ρ/2

∑
k: xk≥xj+ρ′

Fjk − Fik ≥ ηR|xi − xj |n, if xj ≤ 1/2 + ρ/2 .

If xi ∨ xj ≤ 1/2 + ρ/2, then Lemma A.5 ensures that {k : xk ≥ xj + ρ′} ⊂ C+
−(i,j)(i

+), thus
yielding

max
ϵ∈{−,+}

∑
k∈Cϵ

−(i,j)
(iϵ)

ϵ(Fjk − Fik) ≥
∑

k∈C+
−(i,j)

(i+)

(Fjk − Fik) ≥
∑

k: xk≥xj+ρ′

(Fjk − Fik)

≥ ηR|xi − xj |n ,

where in the before last inequality we used the latent Robinsonian structure (2), i.e. Fjk −
Fik > 0 for all xk > xj , and the fact that all k ∈ C+

−(i,j)(i
+) satisfy xk > xj . (For a check of

this fact, see the 2nd case below).
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From this last display and (33) we get that the following inequality

max
ϵ∈{−,+}

∑
k∈Cϵ

−(i,j)
(iϵ)

ϵ(Ajk −Aik) ≥ ηR|xi − xj |n− 4
√

n log(n) (34)

holds with probability higher than 1− 4/n.

If xi ∨ xj > 1/2 + ρ/2, then we have xi ≥ 1/2−ρ/2 using (30). Lemma A.5 then ensures that

{k : xk ≤ xi − ρ′} ⊂ C−
−(i,j)(i

−), leading to (34) once again.

Hence, (34) holds (whatever the value of xi ∨ xj). The right-hand side of (34) is greater

than L
√

n log(n) whenever |xi − xj | ≥ 2L
ηR

√
log(n)

n for L > 4. The desired inequality (16) is

therefore satisfied with probability at least 1−4/n, under the assumptions of the proposition.

• 2nd Case xj < xi. With probability higher than 1 − 4/n, the following upper bound
holds for any ϵ ∈ {−,+},∑

k∈Cϵ
−(i,j)

(iϵ)

ϵ(Ajk −Aik) ≤
∑

k∈Cϵ
−(i,j)

(iϵ)

ϵ(Fjk − Fik) +
∣∣∣ ∑
k∈Cϵ

−(i,j)
(iϵ)

(Eik − Ejk)
∣∣∣

≤
∑

k∈Cϵ
−(i,j)

(iϵ)

ϵ(Fjk − Fik) + 4
√
n log(n) , (35)

where we used Lemma A.3 in the last inequality. For any j satisfying (30), we have |xi−xj | <
ρ ≤ |xi − xi± |, so j does not belong to any of the sets C−

−(i,j)(i
−) and C+

−(i,j)(i
+) since

they satisfy (32) and (31). In other words, xk < xi, xj < x′k for all k ∈ C−
−(i,j)(i

−) and

k′ ∈ C+
−(i,j)(i

+), which allows us to use the Robinsonian structure (2) to get

Fjk − Fik > 0 for all k ∈ C−
−(i,j)(i

−) ,

Fjk′ − Fik′ < 0 for all k′ ∈ C+
−(i,j)(i

+) .

(For the case xj > xi analyzed here, we actually switch the roles of i, j in (2), since (2) is
written for xi < xj). Therefore,

∑
k∈Cϵ

−(i,j)
(iϵ) ϵ(Fjk − Fik) ≤ 0 for any ϵ ∈ {−,+}, and (35)

yields ∑
k∈Cϵ

−(i,j)
(iϵ)

ϵ(Ajk −Aik) ≤ 4
√

n log(n) (36)

which holds with probability higher than 1 − 4/n. The right-hand side of (36) is (strictly)
smaller than L

√
n log(n) for L > 4, so, with high probability, (16) is not satisfied and the CE

algorithm moves to the next step (the point 4 of the pseudo-code) where it will test (17). If
(17) holds, then the algorithm will recover the correct value h(i, j). We can check that (17)
holds w.h.p. by following the same analysis as in the 1st case above. (For the current case
xj < xi however we would switch the indices i and j in the Robinson property (5) to have∑

k: xk≤xj−ρ′

Fjk − Fik ≥ ηR|xi − xj |n, if xj ≥ 1/2− ρ/2

∑
k: xk≥xi+ρ′

Fik − Fjk ≥ ηR|xi − xj |n, if xi ≤ 1/2 + ρ/2 . )

This concludes the analysis of the 2nd case, as well as the proof of Proposition 3.5. □
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A.6 Proof of Lemma 3.6 and 3.8

Proof of Lemma 3.6. Throughout the proof, we assume that x1 < x2 < . . . < xn with no
loss of generality, and we assume a direction for h, say h(1, n) = −1. Denote by h∗ the correct
comparison function defined by h∗(s, t) = 1−21xs<xt . Let πh be the permutation induced by
h, as defined in (18).

Let j be an index in [n] such that xj ≥ xi + 2ν + ηs. In order to prove that πh(j) > πj(i), it
is enough to show that

Sh(j)− Sh(i) :=
n∑

k=1

(h(j, k)− h(i, k)) ≥ 0 and h(i, j) = −1 . (37)

In fact, checking h(i, j) = −1 is only useful in the case of a tie Sh(j)− Sh(i) = 0.

We introduce a partition of the latent space [0, 1], composed of five consecutive intervals:

I1 = [0, xi − ν], I2 = (xi − ν, xi + ν) , I3 = [xi + ν, xj − ν],

I4 = (xj − ν, xj + ν), I5 = [xj + ν, 1],

assuming that xi > ν and xj + ν < 1
(
the other cases xi ≤ ν or xj + ν ≥ 1 can be analyzed

similarly, with a slight adaptation of the current proof
)
. This spatial partition is associated

with the following partition of indices: Rs = {k ∈ [n] : xk ∈ Is}, s ∈ [5].

For xk ∈ I1 ∪ I5, we have |xi− xk| ∧ |xj − xk| ≥ ν. Then, since h has an error less than ν, the
values h(i, k) and h(j, k) are equal to the values h∗(i, k) and h∗(j, k) of the correct comparison
function h∗. Hence, h(i, k) = h(j, k) = 1 for all k ∈ R1, and h(i, k) = h(j, k) = −1 for all
k ∈ R5, thus leading to ∑

k∈R1∪R5

(h(j, k)− h(i, k)) = 0 .

For xk ∈ I2, we have xj − xk ≥ ν, hence h(j, k) matches the correct value h∗(j, k) = 1 for all
k ∈ R2. Since h only takes values in {−1, 0, 1}, we have |h(i, k)| ≤ 1 for all k, so that∑

k∈R2

(h(j, k)− h(i, k)) ≥ 0 .

By symmetry for xk ∈ I4, a similar reasoning yields
∑

k∈R4
(h(j, k)− h(i, k)) ≥ 0 .

For xk ∈ I3, we have |xi − xk| ∧ |xj − xk| ≥ ν, so h(i, k) and h(j, k) match the true values
h∗(i, k) and h∗(j, k), which means that h(i, k) = −1 and h(j, k) = +1. Hence∑

k∈R3

(h(j, k)− h(i, k)) ≥ 2#R3 ,

where #R3 is the cardinal number of the set R3.

Gathering the last displays together, we obtain that the desired inequality (37) holds. This
concludes the proof of Lemma 3.6. □

Proof of Lemma 3.8. Let h be a comparison function with an error less than ν, and, with
no loss of generality, assume that the direction of h is h(1, n) = −1, with x1 < x2 < . . . < xn.
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Denote by h∗ the correct comparison function h∗(s, t) = 1− 21xs<xt . Given the output πref
of the PE algorithm (described in section 3.3), and indices i, j ∈ [n] satisfying 2ν ≤ xj − xi,
we want to show that πref (i) < πref (j).

• 1st Case gh(i) ̸= gh(j). Following the lines of the proof of Lemma 3.6, we know that
gh(i) ≤ gh(j). Hence, gh(i) < gh(j), leading to πref (i) < πref (j).

• 2nd Case gh(i) = gh(j). We denote by k the number k := gh(i) = gh(j). If Ck = 2,
then πref (i) = k − 1 < k = πref (j). Assume therefore that Ck ≥ 3 in the sequel.

The PE algorithm calls to the DS algorithm, which will call itself using sets E with
smaller and smaller cardinal numbers #E. Hence, the procedure will end in a finite
number of calls to the DS algorithm. In each of these calls, the DS algorithm computes
E−

s , s, E
+
s = SIT(h,E). We separate the analysis of this output in two cases.

2nd.(a) Let s ∈ {i, j}. We have h(i, j) = h∗(i, j) = −1 and h(j, i) = h∗(j, i) = 1 since the
comparison function h has an error less than ν, and i,j satisfy 2ν ≤ xj −xi. Hence, the
SIT algorithm orders i, j correctly, which means that j ∈ E+

s when s = i, and i ∈ E−
s

when s = j. In any case, the output πref of the PE algorithm satisfies πref (i) < πref (j).

2nd.(b) Otherwise, when s /∈ {i, j}, we have i, j ∈ E−
s ∪ E+

s . If i, j belong to the same set E−
s

or E+
s , then #E−

s ≥ 2 or #E+
s ≥ 2, and the DS algorithm will call itself via DS(h,E−

s )
or DS(h,E+

s ). Since the cardinal numbers of E−
s and E+

s decrease at each call, we can
consider the call having entries #E−

s ≤ 1 and #E+
s ≤ 1. Thus, i, j do not belong to

the same set E−
s or E+

s . Depending on the position xs, we have the following analysis.
· If xs /∈ (xi, xj), for instance xs < xi, then xj−xs ≥ 2ν. This yields h(s, j) = h∗(s, j) =
−1 and so j ∈ E+

s . Since #E+
s ≤ 1, we necessarily have i ∈ E−

s , which allows us to
conclude that πref (i) < πref (j).
· If xs ∈ (xi, xj), then h(s, i) = h∗(s, i) = 1 or h(s, j) = h∗(s, j) = −1. Indeed, h has an
error less than ν, and it follows from |xi − xj | ≥ 2ν that |xi − xs| ≥ ν or |xj − xs| ≥ ν.
Hence, i ∈ E−

s or j ∈ E+
s . Since #E−

s ∨ #E+
s ≤ 1, we get that i ∈ E−

s and j ∈ E+
s ,

leading once again to πref (i) < πref (j).

The proof of Lemma 3.8 is complete. □

B Sketch of proof of Corollary 2.8

As discussed in section 2.1.1, the bi-Lipschitz condition f ∈ BL[α̃, β̃] implies the hypotheses
(2), (4) and (5) for some numerical constant ηR > 0 only depending on α̃. Besides, the xi’s

fulfill the spreading condition (6) for ηs ≤ C ′
(√

log(n)/n
)
with probability at least 1− 1/n

for some numerical constant C ′ > 0. Hence, we can apply Corollary 3.7 to get an estimation
of the latent ordering with an error smaller than ϵn = (20η−1

R + C ′)
√
log(n)/n.

To deduce an error of localization of the xi’s, we can rely on Dvoretzky–Kiefer–Wolfowitz
(DKW) inequality. Indeed, the x1, . . . , xn are independent and uniformly distributed on
[0, 1]. We shorten x1, . . . , xn by x, and for any interval I we denote |I| its length, and NI(x)
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the number of points xi which lie in I. We deduce from DKW inequality that, for any t > 0,

P

(
sup

I⊂ [0,1]

∣∣∣∣NI(x)

n
− |I|

∣∣∣∣ > 4t

)
≤ 2e−2nt2 ,

so that, choosing t =
√

log(n)/n, we obtain

P

(
sup
I⊂ I

∣∣∣∣NI(x)

n
− |I|

∣∣∣∣ > 4

√
log(n)

n

)
≤ 2

n2
.

We can now easily deduce that max
i,j∈[n]

|x̂i − xi| ∧ max
i,j∈[n]

|x̂i − (1 − xi)| ≤ Cα̃

√
log(n)

n , for some

numerical constant Cα̃ depending only on α̃. Corollary 2.8 follows. □.

C Proof of Theorem 4.1 (Lower Bound)

Proof of Theorem 4.1. We establish the lower bound η−1
R

√
log(n)/n in the particular

setting where the observations Aij are independent Bernoulli random variables of parameters
Fij = f0(xi, xj), for the specific function

f0(xi, xj) =
3

4
− η̃R|xi − xj |

2
, (38)

with ηR = cη̃R for some numerical constant c ∈ (0, 1), and η̃R ∈ [C0

√
log(n)/n, 1] where C0

is a numerical constant that will be set later.

Our minimax lower bound is based on Fano’s method as stated below. For two configura-
tion x and x′ in Xn, we denote the Kullback-Leibler divergence of P(x,f0) and P(x′,f0) by
KL(P(x,f0) ∥P(x′,f0)). Given the pseudo-metric D defined in (19), a radius ϵ > 0 and a subset
S ⊂ Xn

∼= Πn, the packing number M(ϵ,S, D) is defined as the largest number of points
in S that are at least ϵ away from each other with respect to D. Below, we state a specific
version of Fano’s lemma.

Lemma C.1 (from [Yu, 1997]). Consider any subset S ⊂ Xn
∼= Πn. Define the Kullback-

Leibler diameter of S by

dKL(S) = sup
x,x′∈S

KL(P(x,f0) ∥P(x′,f0)) .

Then, for any estimator π̂ and for any ϵ > 0, we have

sup
x∈S

P(x,f0)

[
D(π̂, πx) ≥

ϵ

2

]
≥ 1− dKL(S) + log(2)

logM(ϵ,S, D)
.

In view of the above proposition, we mainly have to choose a suitable subset S, control its
Kullback-Leibler diameter, and get a sharp lower bound of its packing number. A difficulty
stems from the fact that the loss D(π̂, πx) is invariant when reversing the ordering of πx.
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Let k := (C1/η̃R)
√
n log(n), for a small enough numerical constant C1 ∈ (0, 1] that will be set

later. To ensure that k ≤ n/4, we enforce the condition η̃R ≥ C0

√
log(n)/n, with C0 := 4C1.

We introduce n/4 vectors x(s) ∈Xn, s = 1, . . . , n/4. For each s ∈ [n/4], let x
(s)
j be such that

x
(s)
j =

j

n
, ∀j ∈ [n] \ {s, s+ k} , x(s)s =

s+ k

n
, x

(s)
s+k =

s

n
.

Each vector of positions x(s) is therefore equal to the vector (j/n)j∈[n] up to an exchange
of the two positions s/n and (s + k)/n. This collection of n/4 vectors is denoted by S :=
{x(1), . . . ,x(n/4)}. Obviously S ⊂Xn

∼= Πn, and one can readily checks that

D(πx(t) , πx(s)) ≥
k

n
, ∀s, t ∈

[n
4

]
, s ̸= t , (39)

which in turn ensures that the packing number M(ϵn,S, D) of radius ϵn := k/n satisfies
M(ϵn,S, D) ≥ n/4.

To upper bound the KL diameter of S, we use the following claim whose proof is postponed
to the end of the section.

Claim C.2. For any x,x′ ∈Xn, we have KL(P(x,f0) ∥P(x′,f0)) ≤ 8
∑

i,j(f0(xi, xj)−f0(x′i, x′j))2.

Together with the definition (38) of f0, we get

KL(P(x(t),f0)
∥P(x(s),f0)

) ≤ C2n(η̃Rϵn)
2 ≤ C2(C1)

2 log(n) ,

for some numerical constant C2. Then, choosing the constant C1 in the definition of k such
that C1 = (2

√
C2)

−1 leads to dKL(S) ≤ log(n)/4.

Applying Lemma C.1 to this set S, we arrive at

inf
x̂

sup
x∈S

P(x,f0)

[
D(π̂, πx) ≥

ϵn
2

]
≥ 1− log(n)/4 + log(2)

log(n/4)
≥ 1

2
,

as soon as n is greater than some numerical constant. The lower bound ϵn/2 is of the order
of η−1

R

√
log(n)/n since η̃R is equal to ηR up to a multiplicative numerical constant. Theorem

4.1 is proved. □

Proof of Claim C.2. By definition of the Kullback-Leibler divergence, and Fij := f0(xi, xj)
and F ′

ij := f0(x
′
i, x

′
j), we have

KL(P(x,f0) ∥P(x′,f0)) =
∑
i<j

Fij log
Fij

F ′
ij

+ (1− Fij) log
1− Fij

1− F ′
ij

,

and since log(t) ≤ t− 1 for all t > 0, it follows that

KL(P(x,f0) ∥P(x′,f0)) ≤
∑
ij

(Fij − F ′
ij)

2

F ′
ij(1− F ′

ij)
≤ 8

∑
i,j

(Fij − F ′
ij)

2 ,

where the second inequality follows from the fact that 1/4 ≤ F ′
ij ≤ 3/4.
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