Rationalizing Rational Expectations? Tests and Deviations

Xavier D’Haultfoeuille† Christophe Gaillac‡ Arnaud Maurel§

August 27, 2019

Abstract

In this paper, we build a new test of rational expectations based on the marginal distributions of realizations and subjective beliefs. This test is widely applicable, including in the common situation where realizations and beliefs are observed in two different datasets that cannot be matched. We show that whether one can rationalize rational expectations is equivalent to the distribution of realizations being a mean-preserving spread of the distribution of beliefs. The null hypothesis can then be rewritten as a system of many moment inequality and equality constraints, for which tests have been recently developed in the literature. Next, we go beyond testing by defining and estimating the minimal deviations from rational expectations that can be rationalized by the data. In the context of structural models, we build on this concept to propose an easy-to-implement way to conduct a sensitivity analysis on the assumed form of expectations. Finally, we apply our framework to test for and quantify deviations from rational expectations about future earnings, and examine the consequences of such departures in the context of a life-cycle model of consumption.

Keywords: Rational expectations; Test; Subjective expectations; Data combination; Sensitivity analysis.

*First version: November 2018. We thank Peter Arcidiacono, Levon Barseghyan, Federico Bugni, Pierre Cahuc, Zhuoli Chen, Tim Christensen, Valentina Corradi, Christian Gourieroux, Nathael Gozlan, Gregory Jolivet, Jia Li, Matt Masten, Andrew Patton, Aureo de Paula, Mirko Wiederholt, Basit Zafar, Yichong Zhang and seminar participants at Amsterdam, Arizona State, Bocconi, CREST, Duke, Helsinki, Mannheim, National University of Singapore, NC State, OFCE, Oxford, Rice, Sciences Po, Singapore Management University, Surrey, Toronto, Toulouse School of Economics, and attendees of the 2017 Econometric Study Group (Bristol), the Conference on the Intersection of Econometrics and Applied Micro (Toronto, Oct. 17), the 2017 Triangle Econometrics Conference, the 2018 International Association for Applied Econometrics Conference (Montreal), the 2018 CEME NSF-NBER conference on “Inference in Nonstandard Problems” (Duke), and the 2019 Applied Micro Workshop at the University of Essex (ESRC Research Centre on Micro-Social Change) for useful comments and suggestions.

†CREST, xavier.dhaultfoeuille@ensae.fr.
‡CREST and TSE, christophe.gaillac@ensae.fr.
§Duke University, NBER and IZA, arnaud.maurel@duke.edu.
1 Introduction

How individuals form their beliefs about uncertain future outcomes is critical to understanding decision making. Despite longstanding critiques (see, among many others, Pesaran, 1987; Manski, 2004), rational expectations remain by far the most popular framework to describe belief formation (Muth, 1961). This theory states that agents have expectations that do not systematically differ from the realized outcomes, and efficiently process all private information to form these expectations. Rational expectations (RE) are a key building block in many macro- and micro-economic models, and in particular in most of the dynamic microeconomic models that have been estimated over the last two decades (see, e.g., Aguirregabiria and Mira, 2010; Blundell, 2017, for recent surveys).

In this paper, we build a new test of RE. Our test only requires having access to the marginal distributions of subjective beliefs and realizations, and, as such, can be applied quite broadly. In particular, this test can be used in a data combination context, where individual realizations and subjective beliefs are observed in two different datasets that cannot be matched. Such situations are common in practice (see, e.g., Delavande, 2008; Arcidiacono, Hotz and Kang, 2012; Arcidiacono, Hotz, Maurel and Romano, 2014; Stinebrickner and Stinebrickner, 2014; Kuchler and Zafar, 2019; Kapor, Neilson and Zimmerman, 2018). Besides, even in surveys for which an explicit aim is to measure subjective expectations, such as the Michigan Survey of Consumers or the Survey of Consumer Expectations of the New York Fed, expectations and realizations can typically only be matched for a subset of the respondents. And of course, regardless of attrition, whenever one seeks to measure long or medium-term outcomes, matching beliefs with realizations does require waiting for a long period of time before the data can be made available to researchers.

The tests of RE implemented so far in this context only use specific implications of the RE hypothesis. In contrast, we develop a test that exploits all possible implications of RE. Using the key insight that we can rationalize RE if and only if the distribution of realizations is a mean-preserving spread of the distribution of beliefs, we show that rationalizing RE is equivalent to satisfying one moment equality and (infinitely) many moment inequalities. As a consequence, if these moment conditions hold, RE cannot be rejected, given the data at our disposal. By exhausting all relevant implications of RE, our test is able to detect much more violations of rational expectations than existing tests.

To develop a statistical test of RE rationalization, we build on the recent literature on inference based on moment inequalities, and more specifically, on Andrews and Shi (2017). By applying their results to our context, we show that our test controls size asymptotically and is consistent

\footnote{Interestingly, the equivalence on which we rely, which is based on Strassen’s theorem (Strassen, 1965), is also used in the microeconomic risk theory literature, see in particular Rothschild and Stiglitz (1970).}
over fixed alternatives. We also provide conditions under which the test is not conservative.

We then consider several extensions to our baseline test. First, we show that by using a set of covariates that are common to both datasets, we can increase our ability to detect violations of RE. Another important issue is that of unanticipated aggregate shocks. Even if individuals have rational expectations, the mean of observed outcomes may differ from the mean of individual beliefs simply because of aggregate shocks. We show that our test can be easily adapted to account for such shocks. Finally, we prove that our test is robust to measurement errors in the following sense. If individuals have rational expectations but both beliefs and outcomes are measured with (classical) errors, then our test does not reject RE provided that the amount of measurement errors on beliefs does not exceed the amount of intervening transitory shocks plus the measurement errors on the realized outcomes. In particular, this allows for elicited beliefs to be noisier than realized outcomes. This provides a rationale for our test even in cases where realizations and beliefs are observed in the same dataset, since a direct test based on a regression of the outcome on the beliefs (see, e.g., Lovell, 1986) is, at least at the population level, not robust to any amount of measurement errors on the subjective beliefs.

Next, we go beyond testing and introduce the concept of minimal deviations from rational expectations that can be rationalized by the data. To do so, we use tools from the optimal transport literature (see Galichon, 2016, for an overview). In particular, building on the insights of a recent article by Gozlan et al. (2018), we construct the minimal deviations by projecting the subjective expectations on the space of expectations compatible with RE. A remarkable property of this projection is that it does not depend on the particular choice of distance between random variables that we consider. These minimal deviations from RE allow us to go beyond the binary result of the statistical test, and quantify the magnitude of the violations from RE. We then derive a consistent estimator of these minimal deviations. Importantly for practical purposes, this estimator can be easily implemented, and at a modest computational cost.

While we remain agnostic throughout most of our analysis on the information set of the agents, we also extend the concept of minimal deviations from rational expectations to accommodate restrictions on the information set. In the context of structural models, the proposed approach yields a natural and easy-to-implement sensitivity check on the assumed form of expectations. This procedure does not require observing the beliefs in the same dataset as the one used to estimate the model, and can thus be used quite generally. Overall, this method offers a middle ground between estimating structural choice models based on realized data only (standard approach a la Rust, 1987; Keane and Wolpin, 1997), and estimating more flexible choice models using subjective beliefs (as in, e.g., Stinebrickner and Stinebrickner, 2014b; Delavande and Zafar, 2018). In that sense, our approach shares similarities with Van der Klaauw (2012), who also made use of subjective beliefs observed from an auxiliary dataset to estimate a dynamic structural model. However, in contrast to our work, this paper maintains the RE hypothesis,
focusing instead on the efficiency gains from incorporating subjective expectations data in the analysis.

We apply our framework to test for and quantify deviations from rational expectations about future earnings. To do so, we combine elicited beliefs about future earnings with realized earnings, using data from the Labor Market module of the Survey of Consumer Expectations (SCE, New York Fed), and test whether household heads form rational expectations on their annual labor earnings. While a naive test of equality of means between earnings beliefs and realizations shows that earnings expectations are realistic in the sense of not being significantly biased, thus not rejecting the rational expectations hypothesis, our test does reject rational expectations at the 1% level. Taken together, our findings illustrate the practical importance of incorporating the additional restrictions of rational expectations that are embedded in our test. The results of our test also indicate that the RE hypothesis is more credible for certain subpopulations than others. For instance, we reject RE for individuals without a college degree, who exhibit substantial deviations from RE. On the other hand, we fail to reject the hypothesis that college-educated workers have rational expectations on their future earnings.

Finally, we explore the sensitivity of a standard life-cycle incomplete markets model of consumption to violations of the rational expectations hypothesis. Even though agents are about right on average about their future earnings, we show that minimal deviations from RE entail substantial changes in the predicted responses of consumers to income shocks. In addition to underlining the sensitivity of the model to the RE hypothesis, our results show that departures from RE account for some of the over-insurance to permanent income shocks, as well as the excess sensitivity of consumption to transitory shocks that have been documented in the literature (see, e.g., Hall and Mishkin, 1982; Blundell, Pistaferri and Preston, 2008; Kaplan and Violante, 2010).

By developing a test of rational expectations in a setting where realizations and subjective beliefs are observed in two different datasets, we bring together the literature on data combination (see, e.g., Cross and Manski, 2002, Molinari and Peski, 2006, Fan, Sherman and Shum, 2014, Buchinsky, Li and Liao, 2018, and Ridder and Moffitt, 2007 for a survey), and the literature on testing for rational expectations in a micro environment (see, e.g., Lovell, 1986; Gourieroux and Pradel, 1986; Ivaldi, 1992, for seminal contributions).

On the empirical side, we contribute to a rapidly growing literature on the use of subjective expectations data in economics (see, e.g., Manski, 2004; Delavande, 2008; Van der Klaauw and Wolpin, 2008; Van der Klaauw, 2012; Arcidiacono, Hotz, Maurel and Romano, 2014; de Paula, Shapira and Todd, 2014; Stinebrickner and Stinebrickner, 2014; Wiswall and Zafar, 2015). In this paper, we show how to incorporate all of the relevant information from subjective beliefs combined with realized data to test for, and measure deviations from rational expectations.
By developing a new framework allowing to examine the sensitivity of behavioral models to departures from the rational expectations hypothesis, we also contribute to a small but growing body of research estimating structural choice models without imposing rational expectations (see, e.g., Buchinsky and Leslie, 2010; Stinebrickner and Stinebrickner, 2014; Barseghyan, Molinari and Teitelbaum, 2016; Kapor, Neilson and Zimmerman, 2018; and Agarwal and Somaini, 2018). We add to this literature by showing how a sensitivity analysis of the RE hypothesis can be conducted in frequent situations where the data used to estimate the structural model does not include beliefs, but such beliefs are observed in another dataset. At a broad level, our approach based on minimal deviations from rational expectations shares similarities with the cost statistic approach proposed by Barseghyan et al. (2016) to quantify the extent to which choice data violates the restrictions implied by expected utility maximization (and generalizations thereof).

Finally, our approach also shares some similarities with the sensitivity analysis methods recently proposed in the econometrics literature by Andrews, Gentzkow and Shapiro (2017), Armstrong and Kolesář (2018), Bonhomme and Weidner (2018), Christensen and Connault (2019) and Masten and Poirier (2019). Importantly, like Christensen and Connault (2019) and Masten and Poirier (2019), our approach allows for deviations that do not become negligible as the sample size grows.

The remainder of the paper is organized as follows. In Section 2, we present the set-up and discuss the main theoretical equivalences that we use to build our testing procedure. We also show how to quantify deviations in cases where we reject rational expectations. In Section 3, we discuss how to use deviations from rational expectations in order to conduct a sensitivity analysis in structural models. Section 4 is devoted to statistical aspects. We first present and study the asymptotic properties of the statistical tests for rational expectations. Then, we discuss the estimation of the minimal deviations from rational expectations. Section 5 illustrates the finite sample properties of our tests and estimators through Monte Carlo simulations. Section 6 applies our framework to expectations about future earnings. Finally, Section 7 concludes. The appendix collects various theoretical extensions, additional simulation results, additional material on the application, and all the proofs. The companion R package RationalExp, described in the user guide (D’Haultfoeuille, Gaillac and Maurel, 2018), performs the test of RE and computes the estimator of minimal deviations.

2 Set-up and main theoretical results

2.1 Set-up

We assume that the researcher has access to a first dataset containing the individual outcome variable of interest, which we denote by Y. She also observes, through a second dataset, the
elicited individual expectation on Y, denoted by ψ. Throughout the paper, we focus on situations where the researcher has access to elicited beliefs about mean outcomes, as opposed to probabilistic expectations about the full distribution of outcomes. The type of subjective expectations data we consider in the paper has been collected in various contexts, and used in a number of prior studies (see, among others, Delavande, 2008; Zafar, 2011b; Arcidiacono, Hotz and Kang, 2012; Arcidiacono, Hotz, Maurel and Romano, 2014; Hoffman and Burks, 2017).

Formally, $\psi = \mathbb{E}[Y|I]$, where I denotes the σ-algebra corresponding to the agent’s information set and $\mathbb{E} [\cdot |I]$ is the subjective expectation operator (i.e. for any U, $\mathbb{E} [U|I]$ is a I-measurable random variable). We are interested in testing the rational expectations (RE) hypothesis $\psi = \mathbb{E}[Y|I]$, where $\mathbb{E} [\cdot |I]$ is the conditional expectation operator generated by the true data generating process. Importantly, we remain agnostic throughout most of our analysis on the information set I. Our setting is also compatible with heterogeneity in the information different agents use to form their expectations. To see this, let $(U_1, ..., U_m)$ denote m variables that agents may or may not observe when they form their expectations, and let $D_k = 1$ if U_k is observed, 0 otherwise. Then, if I is the information set generated by $(D_1U_1, ..., D_mU_m)$, agents will use different subsets of the $(U_k)_{k=1,...,m}$ (i.e., different pieces of information) depending on the values of the $(D_k)_{k=1,...,m}$. By remaining agnostic on the information set, our analysis complements several studies which primarily focus on testing for different information sets, while maintaining the rational expectations assumption (see Cunha and Heckman, 2007, for a survey).

It is easy to see that the RE hypothesis imposes restrictions on the joint distribution of realizations Y and beliefs ψ. In this data combination context, the relevant question of interest is then whether one can rationalize RE, in the sense that there exists a triplet (Y', ψ', I') such that (i) the pair of random variables (Y', ψ') are compatible with the marginal distributions of Y and ψ; and (ii) ψ' correspond to the rational expectations of Y', given the information set I', i.e., $\mathbb{E}(Y'|I') = \psi'$. Hence, we consider the test of the following hypothesis:

$$H_0: \text{there exists a pair of random variables } (Y', \psi') \text{ and a sigma-algebra } I' \text{ such that }$$

$$\sigma(\psi') \subset I', Y' \sim Y, \psi' \sim \psi \text{ and } \mathbb{E} [Y'|I'] = \psi',$$

where \sim denotes equality in distribution. Rationalizing RE does not mean that the true realizations Y, beliefs ψ and information set I are such that $\mathbb{E} [Y|I] = \psi$. Instead, it means that there exists a triplet (Y', ψ', I') consistent with the data and such that $\mathbb{E} [Y'|I'] = \psi'$. In other words, rejecting H_0 implies that RE does not hold, in the sense that the true realizations, beliefs, and information set do not satisfy RE ($\mathbb{E} [Y|I] \neq \psi$). The converse, however, is not true.
2.2 Equivalences

2.2.1 Main equivalence

Let \(\delta = \mathbb{E}[Y] - \mathbb{E}[\psi] \), \(F_\psi \) and \(F_Y \) denote the cumulative distribution functions (cdf) of \(\psi \) and \(Y \), \(x_+ = \max(0,x) \), and define

\[
\Delta(y) = \int_{-\infty}^{y} F_Y(t) - F_\psi(t)dt.
\]

Throughout most of our analysis, we impose the following regularity conditions on the distributions of realized outcomes \((Y) \) and subjective beliefs \((\psi) \):

Assumption 1 \(\mathbb{E}(|Y|) < +\infty \) and \(\mathbb{E}(|\psi|) < +\infty \).

The following preliminary result will be useful subsequently.

Lemma 1 Suppose that Assumption 1 holds. Then \(H_0 \) holds if and only if there exists a pair of random variables \((Y', \psi') \) such that \(Y' \sim Y \), \(\psi' \sim \psi \) and \(\mathbb{E}[Y'|\psi'] = \psi' \).

Lemma 1 states that in order to test for \(H_0 \), we can focus on the constraints on the joint distribution of \(Y \) and \(\psi \), and ignore those related to the information set. This is intuitive given that we impose no restrictions on this set. Our main result is Theorem 1 below. It states that rationalizing RE (i.e., \(H_0 \)) is equivalent to a set of many moment inequality and equality constraints.

Theorem 1 Suppose that Assumption 1 holds. The following statements are equivalent:

(i) \(H_0 \) holds;

(ii) \((F_Y \text{ is a mean-preserving spread of } F_\psi) \) \(\Delta(y) \geq 0 \) for all \(y \in \mathbb{R} \) and \(\delta = 0 \);

(iii) \(\mathbb{E}[(y - Y)^+ - (y - \psi)^+] \geq 0 \) for all \(y \in \mathbb{R} \) and \(\delta = 0 \).

The implication (i) \(\Rightarrow \) (iii) and the equivalence between (ii) and (iii) are simple to establish. The key part of the result is to prove that (iii) implies (i). To show this, we first use Lemma 1, which states that \(H_0 \) is equivalent to the existence of \((Y', \psi') \) such that \(Y' \sim Y \), \(\psi' \sim \psi \) and \(\mathbb{E}[Y'|\psi'] = \psi' \). Then the result essentially follows from Strassen’s theorem (Strassen, 1965, Theorem 8).

It is interesting to note that Theorem 1 is related to the theory of risk in microeconomic theory. In particular, using the terminology of Rothschild and Stiglitz (1970), (ii) states that realizations \((Y) \) are more risky than beliefs \((\psi) \). The main value of Theorem 1, from a statistical point of view, is to transform \(H_0 \) into the set of moment inequality (and equality) restrictions given by (iii). We show in Section 4 how to build a statistical test of these conditions.
Comparison with alternative tests of rational expectations

We now compare our test with alternative ones that have been proposed in the literature. In the following discussion, as in this whole section, we reason at the population level and thus ignore statistical uncertainty. Accordingly, the tests we consider here are formally deterministic, and we compare them in terms of data generating processes violating the null hypothesis associated with each of them.

Our test can clearly detect many more violations of rational expectations than the “naive” test of rational expectations simply based on the equality $E(Y) = E(\psi)$. It also detects more violations than a test based on the restrictions $E(Y) = E(\psi)$ and $V(Y) \geq V(\psi)$ (variance test), which has been considered in particular in the macroeconomic literature on the accuracy and rationality of forecasts (see, e.g. Patton and Timmermann, 2012). On the other hand, and as expected since it relies on the joint distribution of (Y, ψ), the “direct” RE test of $E(Y|\psi) = \psi$ can detect more violations of rational expectations than ours.

To better understand the differences between these four different tests (“naive”, variance, “direct” tests, and our test), it is helpful to consider important particular cases. Of course, if $\psi = E[Y|I]$, individuals are rational and none of the four tests reject their null hypothesis. Next, consider departures from rational expectations of the form $\psi = E[Y|I] + \eta$, with η independent of $E[Y|I]$. If $E(\eta) \neq 0$, subjective beliefs are biased, and individuals are on average either over-pessimistic or over-optimistic. It follows that $E(Y) \neq E(\psi)$, implying that all four tests reject their null hypothesis.

More interestingly, if $E(\eta) = 0$, individuals’ expectations are right on average, and the naive test does not reject the null. However, it is easy to show that, as long as deviations from RE are heterogeneous in the population ($V(\eta) > 0$), the direct test always leads to a rejection. In this setting, our test constitutes a middle ground, the rejection of which depends on the degree of dispersion of the deviations from RE (η) relative to the uncertainty shocks ($\varepsilon = Y - E[Y|I]$). In other words and intuitively, we reject the null hypothesis with our test whenever departures from rational expectations dominate the uncertainty shocks affecting the outcome. Formally, and using similar arguments as in Proposition 4 in Subsection 2.2.4, one can show that if ε is independent of $E[Y|I]$, our test rejects H_0 as long as the distribution of the uncertainty shocks stochastically dominates at the second-order the distribution of the deviations from RE.

Specifically, if $\varepsilon \sim N(0, \sigma_\varepsilon^2)$ and $\eta \sim N(0, \sigma_\eta^2)$, our test rejects if and only if $\sigma_\eta^2 > \sigma_\varepsilon^2$. In such a case, our test boils down to the variance test mentioned above: we reject whenever $V(\psi) > V(Y)$. But interestingly, if the discrepancy (η) between beliefs and rational expectations is not normally distributed, we can reject H_0 even if $V(\psi) \leq V(Y)$. Suppose for instance that $\varepsilon \sim N(0, 1)$ and

$$\eta = a (-1 \{U \leq 0.1\} + 1 \{U \geq 0.9\}), \ \ U \sim U[0,1] \text{ and } a > 0.$$

In other words, 80% of individuals are rational, 10% are over-pessimistic and form expectations
equal to $E[Y|I] - a$, whereas 10% are over-optimistic and expect $E[Y|I] + a$. Then one can show that our test rejects when $a \geq 1.755$, while for $a = 1.755$, $V(\eta) \simeq 0.616 \leq V(\varepsilon) = 1$.

Binary outcome Our test, and equivalence result do not require the outcome Y to be continuously distributed. In the particular case where Y is binary, our test reduces to the naive test of $E(Y) = E(\psi)$. Indeed, when Y is a binary outcome and $\psi \in [0,1]$, one can easily show that as long as $E(Y) = E(\psi)$, the inequalities $E[(y - Y)^+ - (y - \psi)^+] \geq 0$ automatically hold for all $y \in \mathbb{R}$. This applies to expectations about binary events, such as, e.g., being employed or not at a given date.

Interpretation of the boundary condition Finally, to shed further light on our test and on the interpretation of H_0, it is instructive to derive the distributions of $Y|\psi$ that correspond to the boundary condition ($\Delta(y) = 0$). The proposition below shows that, in the presence of rational expectations, agents whose beliefs ψ lies at the boundary of H_0 have perfect foresight, i.e. $\psi = E[Y|I] = Y$.\(^2\)

Proposition 1 Suppose that (Y, ψ) satisfies RE, $u \mapsto F^{-1}_{Y|\psi}(\tau|u)$ is continuous for all $\tau \in (0,1)$, and $\Delta(y_0) = 0$ for some y_0 in the interior of the support of ψ. Then $Y|\psi = y_0$ is degenerate.

2.2.2 Equivalence with covariates

In practice we may observe additional variables $X \in \mathbb{R}^{d_X}$ in both datasets. Assuming that X is in the agent’s information set, we modify H_0 as follows:\(^3\)

$$H_{0X} : \text{there exists a pair of random variables } (Y', \psi') \text{ and a sigma-algebra } I' \text{ such that }$$

$$\sigma(\psi', X) \subset I', \ Y'|X \sim Y|X, \ \psi'|X \sim \psi|X \text{ and } E[Y'|I'] = \psi'.$$

Adding covariates increases the number of restrictions that are implied by the rational expectation hypothesis, thus improving our ability to detect violations of rational expectations. Proposition 2 below formalizes this idea and shows that H_{0X} can be expressed as a system of many conditional moment inequalities and equalities.

Proposition 2 Suppose that Assumption 1 holds. The following two statements are equivalent:

(i) H_{0X} holds;

(ii) Almost surely, $E[(y - Y)^+ - (y - \psi)^+]|X| \geq 0$ for all $y \in \mathbb{R}$ and $E[Y - \psi|X] = 0$.

Moreover, if H_{0X} holds, H_0 holds as well.

\(^2\)For any cdf F, we let F^{-1} denote its quantile function, namely $F^{-1}(\tau) = \inf\{x : F(x) \geq \tau\}$.

\(^3\)See complementary work by Gutknecht et al. (2018), who use subjective expectations data to relax the rational expectations assumption, and propose a method allowing to test whether specific covariates are included in the agents’ information sets.
2.2.3 Equivalence with unpredictable aggregate shocks

There may be cases where the restriction \(E[Y|\psi] = \psi \) (or, in the presence of covariates, \(E[Y|\psi, X] = \psi \)) is too strong, in the sense that such a restriction may be violated, even though the rational expectations hypothesis holds. This occurs in particular in frequent situations where the outcome \(Y \) is affected by unpredictable, aggregate shocks.

These types of shocks arise in a variety of contexts, but for concreteness we consider in the following the case of individual income. Suppose that the logarithm of income of individual \(i \) at period \(t \), denoted by \(Y_{it} \), satisfies a Restricted Income Profile model:

\[
Y_{it} = \alpha_i + \beta_t + \varepsilon_{it},
\]

where \(\beta_t \) capture aggregate (macroeconomic) shocks, \(\varepsilon_{it} \) follows a zero-mean random walk, and \(\alpha_i, (\beta_t)_t \) and \((\varepsilon_{it})_t \) are assumed to be mutually independent. Let \(I_{it-1} \) denote individual \(i \)'s information set at time \(t-1 \), and suppose that \(I_{it-1} = \sigma(\alpha_i, (\beta_{t-k})_{k \geq 1}, (\varepsilon_{it-k})_{k \geq 1}) \). If individuals form rational expectations on their future outcomes, their beliefs in period \(t-1 \) about their future log-income in period \(t \) are given by

\[
\psi_{it} = E[Y_{it}|I_{it-1}] = \alpha_i + \beta_t - E[\beta_t | (\beta_{t-k})_{k \geq 1}] + \varepsilon_{it-1}.
\]

Thus, \(Y_{it} = \psi_{it} + c_t + \varepsilon_{it} - \varepsilon_{it-1} \), with \(c_t = \beta_t - E[\beta_t | (\beta_{t-k})_{k \geq 1}] \). Therefore, although individuals form rational expectations, we have

\[
E[Y_{it}|I_{it-1}, c_t] = \psi_{it} + c_t \neq \psi_{it}.
\]

Note that we condition on \(c_t \) here since it is an aggregate shock that is common to all individuals. This implies that we can only identify the distributions of \(Y_{it} \) and \(\psi_{it} \) conditional on \(c_t \). Equivalently, \(c_t \) may be considered as non-random here.

In such context, dropping indexes \(i \) and \(t \) and maintaining the conditioning on the aggregate shocks implicit, rationalizing RE does not correspond to \(E[Y|\mathcal{Z}] = \psi \), but instead to \(E[Y|\mathcal{Z}] = c_0 + \psi \) for some \(c_0 \in \mathbb{R} \). A similar reasoning applies to multiplicative instead of additive aggregate shocks. In such a case, the null takes the form \(E[Y|\mathcal{Z}] = c_0 \psi \), for some \(c_0 > 0 \). In these two examples, \(c_0 \) is identifiable: by \(c_0 = E(Y) - E(\psi) \) in the additive case, and by \(c_0 = E(Y)/E(\psi) \) in the multiplicative case. Formally, we consider the following null hypothesis for testing RE in the presence of aggregate shocks:

\[
H_{0S} : \text{there exist random variables } (Y', \psi'), \text{ a sigma-algebra } \mathcal{T}', \text{ and } c_0 \in \mathbb{R} \text{ such that}
\]

\[
\sigma(\psi') \subset \mathcal{T}', \ Y' \sim Y, \ \psi' \sim \psi \ \text{and } \ E[q(Y', c_0)|\mathcal{T}'] = \psi'.
\]

where \(q(.,.) \) is a known function supposed to satisfy the following restrictions.
Assumption 2 \(\mathbb{E} (|\psi|) < +\infty \) and for all \(c \), \(\mathbb{E} (|q(Y,c)|) < +\infty \). Moreover, \(\mathbb{E} [q(Y,c)] = \mathbb{E} [\psi] \) admits a unique solution, \(c_0 \).

In the previous examples of additive and multiplicative aggregate shocks, we have, respectively, \(q(y,c) = y - c \) and \(q(y,c) = y/c \). Then Assumption 2 holds under Assumption 1 above. By applying our main equivalence result (Theorem 1) to \(q(Y,c_0) \) and \(\psi \), we obtain the following result.

Proposition 3 Suppose that Assumption 2 holds. Then the following statements are equivalent:

(i) \(H_{0\psi} \) holds;

(ii) \(\mathbb{E} [((y - q(Y,c_0))^+ - (y - \psi)^+)] \geq 0 \) for all \(y \in \mathbb{R} \).

A couple of remarks are in order. First, this result can be extended in a straightforward way to a setting with covariates. This is important not only to increase the ability of our test to detect violations of RE, but also because this allows for aggregate shocks that differ across observable groups. We discuss further this extension, and the corresponding statistical test, in Appendix A. Second, in the presence of aggregate shocks, the null hypothesis does not involve a moment equality restriction anymore; the corresponding moment is used instead to identify \(c_0 \). Related, a clear limitation of the naive test (\(\mathbb{E} (Y) = \mathbb{E} (\psi) \)) is that, unlike our test, it is not robust to aggregate shocks. In this case, rejecting the null could either stem from violations of the rational expectation hypothesis, or simply from the presence of aggregate shocks.

2.2.4 Robustness to measurement errors

We have assumed so far that \(Y \) and \(\psi \) were perfectly observed; yet measurement errors in survey data are pervasive (see, e.g. Bound, Brown and Mathiowetz, 2001). We explore in the following the extent to which our test is robust to measurement errors. Specifically, assume that the true variables \((\psi,Y) \) are unobserved. Instead, we only observe \(\hat{\psi} \) and \(\hat{Y} \), which are affected by classical measurement errors.

\[
\hat{\psi} = \psi + \xi_\psi \quad \text{with} \quad \xi_\psi \perp \perp \psi, \quad \mathbb{E} [\xi_\psi] = 0
\]

\[
\hat{Y} = Y + \xi_Y \quad \text{with} \quad \xi_Y \perp \perp Y, \quad \mathbb{E} [\xi_Y] = 0.
\]

Then one can show that if RE holds (and assuming away aggregate shocks, for simplicity), so that \(\mathbb{E} [Y|\psi] = \psi \), it is nevertheless the case that \(\mathbb{E} [\hat{Y}|\hat{\psi}] \neq \hat{\psi} \), as long as \(\text{Cov}(\xi_Y, \hat{\psi}) = \text{Cov}(\xi_\psi, Y) = 0 \) and \(\text{Var}(\xi_\psi) > 0 \). In other words, the direct test is not robust to any measurement errors on the

4See Zafar (2011a) who does not find evidence of non-classical measurement errors on subjective beliefs elicited from a sample of Northwestern undergraduate students.
subjective beliefs \(\psi \). Even if individuals have rational expectations, the direct test will reject the null in the presence of even a small degree of measurement errors on the elicited beliefs. The following proposition shows that our test, on the other hand, is robust to a certain degree of measurement errors on the beliefs. As above, we let \(\varepsilon = Y - \psi \) denote the uncertainty shocks.

Proposition 4 Suppose that \(Y \) and \(\psi \) satisfy \(H_0 \) and let \((\hat{\psi}, \hat{Y}) \) be defined as in (1). Suppose also that \(\varepsilon + \xi_Y \perp \psi \) and \(F_{\xi_Y} \) dominates at the second order \(F_{\xi_Y+\varepsilon} \). Then \(\hat{Y} \) and \(\hat{\psi} \) satisfy \(H_0 \).

The key condition is that \(F_{\xi_Y} \) dominates at the second order \(F_{\xi_Y+\varepsilon} \), or, equivalently here, that \(F_{\xi_Y+\varepsilon} \) is a mean-preserving spread of \(F_{\xi_Y} \). Recall that in the case of normal variables, \(\xi_\psi \sim N(0, \sigma_1^2) \) and \(\xi_Y + \varepsilon \sim N(0, \sigma_2^2) \), this is in turn equivalent to imposing \(\sigma_1^2 \leq \sigma_2^2 \). Thus, even if there is no measurement error on \(Y \), so that \(\xi_Y = 0 \), this condition may hold provided that the variance of measurement errors on \(\psi \) is smaller than the variance of the uncertainty shocks on \(Y \). More generally, this allows elicited beliefs to be - potentially much - noisier than realized outcomes, a setting which may be relevant in practice. Overall, these results support the use of our test rather than the direct test even in cases where realizations and beliefs are observed in the same dataset.

2.2.5 Other extensions

We now briefly discuss other relevant directions in which Theorem 1 can be extended. First, another potential source of uncertainty on \(\psi \) is rounding. Rounding practices by interviewees are common in the case of subjective beliefs. Under additional restrictions, it is possible in such a case to construct bounds on the true beliefs \(\psi \) (see, e.g., Manski and Molinari, 2010). We show in Appendix B that our test can be generalized to accommodate this rounding practice.

Second, we have implicitly maintained the assumption so far that subjective beliefs and realized outcomes are drawn from the same population. In Appendix C, we relax this assumption and show that our test can be easily extended to allow for sample selection under unconfoundedness, through an appropriate reweighting of the observations.

Third, our equivalence result and our test can be extended to accommodate situations with multiple outcomes \((Y_k)_{k=1,...,K} \) and multiple subjective beliefs \((\psi_k)_{k=1,...,K} \) associated with each of these outcomes. Specifically, whether one can rationalize rational expectations in this environment can be written as:

\[
E(Y_k|\psi_1, ..., \psi_K) = \psi_k, \text{ for all } k \in \{1, ..., K\}
\]

which, in turn, is equivalent to the distribution of the outcomes \(Y_k \) being a mean-preserving spread of the distribution of the beliefs \(\psi_k \). This situation arises in various contexts, including cases where respondents declare their subjective probabilities of making particular choices.
among \(K + 1 \) possible alternatives. This also arises in situations where expectations about the distribution of a continuous outcome \(Y \) are elicited through questions of the form “what do you think is the percent chance that \([Y]\) will be greater than \([y]\)?”, for different values \((y_k)_{k=1,\ldots,K}\). In such cases, it is natural to build a RE test based on the multiple outcomes \(1\{Y > y_k\}_{k=1,\ldots,K} \) and subjective beliefs \((\psi_k)_{k=1,\ldots,K}\), where \(\psi_k\) is the subjective survival function of \(Y\) evaluated at \(y_k\).

2.3 Minimal deviations from rational expectations

In the following we introduce the concept of minimal deviations from rational expectations, and build on optimal transport methods to provide conditions under which these minimal deviations exist and are unique.

For the cases where \(H_0\) is rejected, we propose a way to quantify the degree to which subjective expectations differ from rational expectations. To do so, we consider the minimal modifications - in a sense to be made precise below - to the distribution of subjective beliefs \(\psi\) that are such that the modified distribution of beliefs is compatible with the rational expectations hypothesis. We refer to the discrepancy between the true beliefs and the modified beliefs as the minimal deviations from rational expectations. We first consider such deviations without imposing any constraints on the information set of the agents.

Formally, we define the set:

\[
\Psi = \left\{ (Y', \psi', \psi'') : Y' \sim Y, \psi' \sim \psi \text{ and } \mathbb{E}(Y'|\psi'') = \psi'' \right\}.
\]

In this set, \((Y', \psi')\) corresponds to a vector that is compatible with the data, whereas \(\psi''\) correspond to alternative individual expectations, in a counterfactual situation where people would form rational expectations on their future outcomes. It follows from Lemma 1 that, again, such rational expectations could be formed based on any information set, with possibly heterogeneous information across agents. And, still in view of Lemma 1, the subset of \(\Psi\) for which \(\psi' = \psi''\) corresponds to the set of random variables \((Y', \psi')\) that are compatible with the data and with the rational expectations hypothesis. However, if \(H_0\) does not hold - which is the relevant situation here - such a subset is, by definition, empty. The idea is then to try and find a vector \((Y', \psi', \psi'') \in \Psi\) such that \(\psi'\) and \(\psi''\) are closest, in the sense of a family of metrics defined below.

The following theorem shows that there exists a solution to this problem. Importantly, this solution turns out to be, for a large class of metrics, independent of the specific metric considered. The solution is also unique.

Assumption 3 \(\mathbb{E}(Y^2) < +\infty, \mathbb{E}(\psi^2) < +\infty, \text{ and } F_\psi \text{ has no atom.}\)
Theorem 2 Suppose that Assumption 3 holds. Then there exists a unique function g^* such that:

(i) $g^*(\psi)$ is consistent with RE (namely, there exists Y' such that $(Y', \psi, g^*(\psi)) \in \Psi$);

(ii) for any convex function $\rho : \mathbb{R}^+ \to \mathbb{R}^+$ satisfying $\rho(0) = 0$,

$$E[\rho(|\psi - g^*(\psi)|)] = \inf_{(Y', \psi', \psi'') \in \Psi} E[\rho(|\psi' - \psi''|)].$$

Moreover, g^* is non-decreasing.

Theorem 2 shows that there exists a unique transformation of the subjective beliefs ψ such that (i) the transformed beliefs $g^*(\psi)$ are consistent with RE, and, remarkably, (ii) this transformation is minimal for all metrics (indexed by ρ) used to measure the distance between the true and modified beliefs distributions. Moreover, the modified beliefs are obtained as a monotonically increasing change of the original beliefs. These minimal modifications can be geometrically interpreted as the projections from the true subjective beliefs onto the set of beliefs that are consistent with RE.

The proof of Theorem 2 can be summarized as follows. We first show, using our main equivalence result (Theorem 1 above) and Proposition 3.1 in Gozlan et al. (2018), that

$$\inf_{(Y', \psi', \psi'') \in \Psi} E[\rho(|\psi' - \psi''|)] = \inf_{(Y', \psi') : Y' \sim Y, \psi' \sim \psi} E \left[\rho \left(|\psi' - E[Y'|\psi']| \right) \right].$$

The optimization problem on the right-hand side is an optimal transport problem, in the sense that it corresponds to an optimization over probability measures whose marginals are fixed. Though non-standard, as it involves $E[Y'|\psi']$, this problem has been recently studied by Gozlan et al. (2018). In particular, it follows from their results that there exists a cdf G^* such that, for all ρ,

$$\inf_{(Y', \psi', \psi'') \in \Psi} E[\rho(|\psi' - \psi''|)] = \inf_{(\psi', \psi'') : \psi' \sim \psi, \psi'' \sim G^*} E \left[\rho \left(|\psi' - \psi''| \right) \right].$$

By a strict convexity argument based on Theorem 1 again and Pass (2013), we show that such a G^* is unique. Finally, using standard results in optimal transport, we show that the equipercentile mapping $g^* = G^*-1 \circ F_{\psi}$ is the unique function satisfying (3). That G^*, and therefore also the minimal transformation g^* do not depend on the metric ρ is a remarkable result, which is due to the specific geometric properties of the set of cdf’s G such that the distribution of realizations F_Y is a mean-preserving spread of G (see, in particular, Theorem 2.10 in Gozlan et al., 2018).

3 Sensitivity to departures from rational expectations in structural models

We now consider minimal deviations from rational expectations in the presence of constraints on the information set. Such constraints are typically imposed in structural models, along
with the rational expectations hypothesis. An important motivation for considering minimal deviations from RE in this setting, then, is to assess the sensitivity of structural models to the RE hypothesis. An alternative way of evaluating how critical the rational expectations hypothesis is for a given model would be to solve the model and estimate it, using elicited beliefs about future outcomes both on and off the agents’ actual choice paths. However, the data requirements are formidable, and, as a consequence, this approach has only been pursued in a handful of studies (see, e.g., Arcidiacono et al., 2014; Stinebrickner and Stinebrickner, 2014a,b; Wiswall and Zafar, 2015, 2018). Our approach can be used much more broadly. Notably, it applies to the frequent cases where the model cannot be solved and estimated using available subjective beliefs data.

Specifically, consider a structural model that imposes both a rational expectations formation process and an information set I^M of the agents, such that individual expectations about the outcome Y are given by $E[Y|I^M]$. In the following, we refer to this assumption ($\psi = E[Y|I^M]$) as the restricted RE hypothesis. Note that with auxiliary data on the subjective beliefs, we can test for the restricted RE hypothesis by simply testing whether $F\psi = F_{E[Y|I^M]}$.

Suppose that the restricted RE hypothesis is rejected. Then, consider the set $\Psi^M = \{(\psi', \psi'') : \psi' \sim \psi, \psi'' \sim E[Y|I^M]\}$. As with the set Ψ in the unconstrained case, if we reject RE, there is no pair of the form (ψ', ψ'') in Ψ^M. The goal here is then to find a pair $(\psi', \psi'') \in \Psi^M$ such that ψ' is as close to ψ'' as possible. The discrepancy between the restricted model-based RE and the beliefs ψ'' corresponds to the minimal deviations from RE that are consistent with the data on subjective beliefs.

Similarly to Theorem 2 in the absence of constraints on the information set, Theorem 3 below shows that there exists a solution to this problem, which is moreover independent of the metric. To define this solution, we introduce $h^M = F^{-1} \circ F_{E[Y|I^M]}$.

Theorem 3 Suppose that $F_{E[Y|I^M]}$ has no atom. Then, for any convex function $\rho : \mathbb{R}^+ \to \mathbb{R}^+$ satisfying $\rho(0) = 0$, we have

$$
(h^M (E[Y|I^M]), E[Y|I^M]) \in \arg\min_{(\psi', \psi'') \in \Psi^M} E[\rho(|\psi' - \psi''|)].
$$

Moreover, if ρ is strictly convex, $h^M (E[Y|I^M])$ is unique in the sense that for any other ψ' such that $(\psi', E[Y|I^M]) \in \Psi^M$ satisfying (4), $\psi' = h^M (E[Y|I^M])$ almost surely.

5In this context, the distribution of rational expectations $E[Y|I^M]$ is identified. It follows that the set Ψ^M only involves the distribution of expectations, in contrast to the set Ψ in the unconstrained case, which also depends on the distribution of realizations.

6At a high level, it is interesting to note that our approach to measuring the deviations from RE is similar in spirit to the approach proposed by Hansen and Jagannathan (1997) to quantify specification error when estimating stochastic discount factors in the context of GMM asset pricing models.
Theorem 3 implies that among all random variables that are consistent with the true subjective beliefs, \(h^M \left(\mathbb{E} \left[Y \mid I^M \right] \right) \) is closest to the rational expectations \(\mathbb{E} \left[Y \mid I^M \right] \), for any metric indexed by \(\rho \). Theorem 3 relies on results on optimal transport on the real line. In such a case, the optimal map has been shown to be independent of the cost function (see, e.g., Rachev and Rüschendorf, 1998, Chapter 3), which is why again here, the minimal deviations from RE do not depend on the specific metric considered.

A couple of remarks are in order. First, \(h^M \left(\mathbb{E} \left[Y \mid I^M \right] \right) \) is \(I^M \)-measurable, which implies that it is compatible with the information set \(I^M \) imposed by the model. Second, by construction, \(h^M \left(\mathbb{E} \left[Y \mid I^M \right] \right) \) is consistent with the observed subjective beliefs, since their marginal distributions coincide. Hence, given the data and the constraints imposed by the model on the information set, we can rationalize that \(\psi = h^M \left(\mathbb{E} \left[Y \mid I^M \right] \right) \).\(^7\) For this reason, we refer to \(h^M \left(\mathbb{E} \left[Y \mid I^M \right] \right) \) as pseudo-beliefs. We use the term pseudo-beliefs here to emphasize that, even though both sets of beliefs are observationally equivalent, \(h^M \left(\mathbb{E} \left[Y \mid I^M \right] \right) \) does in general not coincide with the true subjective expectations \(\psi \). By construction, the pseudo-beliefs are identifiable.

Finally and importantly, since \(h^M = F^{-1}_\psi \circ F_{\mathbb{E}[Y|I^M]} \), the pseudo-beliefs are simply obtained by an equipercentile mapping from the distribution of rational expectations to the distribution of the true subjective beliefs. As a result, the pseudo-beliefs can also be easily estimated, as discussed in more detail below. Besides, it directly follows that the pseudo-beliefs are obtained as a monotone transformation of rational expectations. Many of the beliefs distortions that have been considered in the behavioral literature are assumed to follow a similar type of monotonicity property (see Section 4.2 in Barseghyan et al., 2016, and references therein).

Next, having computed the pseudo-beliefs for a given structural model, we can compare the results obtained with these pseudo-beliefs with those obtained under the baseline RE model. Importantly, this provides a way to assess the sensitivity of the findings to violations of RE, holding fixed the restrictions on the information set implied by the model. Findings from the baseline model that exhibit significant sensitivity to these minimal deviations should be interpreted with caution.

We conclude this discussion by noting that, in certain models, the parameters or predictions of interest may also involve subjective beliefs about additional features of the distribution of future outcomes, such as, e.g., subjective variances. In these cases, one can still use our approach to evaluate the sensitivity of the model predictions to minimal deviations from rational expectations, after replacing rational expectations by pseudo-beliefs about future outcomes, while

\(^7\)On the other hand, it is generally impossible to rationalize the model-free beliefs generated from \(g^* \), namely \((g^*)^{-1} \left(\mathbb{E} \left[Y \mid I^M \right] \right) \). Their distribution does not coincide with the distribution of the observed subjective beliefs in general.
leaving the higher-order moments unchanged.\(^8\)

4 Statistical tests and estimation

4.1 Statistical tests

In this section we propose a testing procedure for \(H_0 X\), which can be easily adapted to the case where no covariate common to both datasets is available to the analyst. To simplify notation, we use a potential outcome framework to describe our data combination problem. Specifically, instead of observing \((Y, \psi)\), we suppose to observe only, in addition to the covariates \(X\), \(\tilde{Y} = DY + (1 - D)\psi\) and \(D\), where \(D = 1\) (resp. \(D = 0\)) if the unit belongs to the dataset of \(Y\) (resp. \(\psi\)). We assume that the two samples are drawn from the same population, which amounts to \(D \perp \perp (X,Y,\psi)\) (see Assumption 4-(i) below).\(^9\)

In order to build our test, we use the characterization (ii) of Proposition 2:

\[
E[(y - Y)^+ - (y - \psi)^+ | X] \geq 0 \quad \forall y \in \mathbb{R} \quad \text{and} \quad E[Y - \psi | X] = 0.
\]

Equivalently but written more compactly with \(\tilde{Y}\) only,

\[
E[W(y - \tilde{Y})^+ | X] \geq 0 \quad \forall y \in \mathbb{R} \quad \text{and} \quad E[W\tilde{Y} | X] = 0,
\]

where \(W = D/E(D) - (1 - D)/E(1 - D)\). This formulation of the null hypothesis allows us to apply the instrumental functions approach of Andrews and Shi (2017, AS), who consider the issue of testing many conditional moment inequalities and equalities. We then build on their results to establish that our test controls size asymptotically and is consistent over fixed alternatives.\(^{10}\)

The initial step is to transform the conditional moments into the following unconditional moments conditions:

\[
E[W(y - \tilde{Y})^+ h(X)] \geq 0, \quad E[(Y - \psi) h(X)] = 0.
\]

for all \(y \in \mathbb{R}\) and \(h\) belonging to a suitable class of non-negative functions.

We suppose to observe a sample \((D_i, X_i, \tilde{Y}_i)_{i=1\ldots n}\) of \(n\) i.i.d. copies of \((D, X, \tilde{Y})\). For notational convenience, we let \(\bar{X}_i\) denote the nontransformed vector of covariates, and redefine \(X_i\) as:

\[
X_i = \Phi_0 \left(\hat{\Sigma}_{\bar{X},n}^{-1/2} \left(\bar{X}_i - \bar{X} \right) \right),
\]

\(^8\)Of course, in a richer data environment where elicited beliefs about higher moments of the outcome distribution are available to the analyst, one can also use our method to compute the pseudo-beliefs associated with each of these moments, and then incorporate the corresponding departures from RE in the model.

\(^9\)See Appendix C for a discussion of how to extend our test to allow for sample selection under unconfoundedness.

\(^{10}\)Other testing procedures could be used to implement our test, such as that proposed by Linton et al. (2010).
where, for any \(x = (x_1, \ldots, x_{d_X}) \), we let \(\Phi_0(x) = (\Phi(x_1), \ldots, \Phi(x_{d_X}))^T \). Here \(\Phi \) denotes the standard normal cdf, \(\Sigma_{X,n} \) is the sample covariance matrix of \((\bar{X}_i)_{i=1 \ldots n} \) and \(\bar{X}_n \) its sample mean.

Now that \(X_i \in [0,1]^{d_X} \), we consider instrumental functions \(h \) that are indicators of belonging to specific hypercubes within \([0,1]^{d_X} \). Namely, we consider the class of functions \(\mathcal{H}_r = \{ h_{a,r}, a \in A_r \} \), with \(A_r = \{1,\ldots,2r\}^{d_X} \) \((r \geq 1) \), \(h_{a,r}(x) = \mathbb{I}\{x \in C_{a,r}\} \) and, for any \(a = \langle a_1, \ldots, a_{d_X} \rangle^T \in A_r \),

\[
C_{a,r} = \prod_{u=1}^{d_X} \left(\frac{a_u - 1}{2r}, \frac{a_u}{2r} \right).
\]

Finally, to define the test statistic \(T \), we need to introduce additional notation. First, we define, for any given \(y \),

\[
m \left(\bar{D}_i, \bar{Y}_i, X_i, h \right) = \begin{pmatrix}
m_1 \left(\bar{D}_i, \bar{Y}_i, X_i, h \right), & m_2 \left(\bar{D}_i, \bar{Y}_i, X_i, h \right)
m_1 \left(\bar{D}_i, \bar{Y}_i, X_i, h \right), & w_i \bar{Y}_i h \left(X_i \right)
\end{pmatrix}, \tag{5}
\]

where \(w_i = nD_i / \sum_{j=1}^{n} D_j - n(1 - D_i) / \sum_{j=1}^{n} (1 - D_j) \). Let \(\bar{m}_n(h,y) = \sum_{i=1}^{n} m \left(\bar{D}_i, \bar{Y}_i, X_i, h \right) / n \) and define similarly \(\bar{m}_{n,j} \) for \(j = 1,2 \). For any function \(h \) and any \(y \in \mathbb{R} \), we also define, for some \(\epsilon > 0 \),

\[
\Sigma_n(h,y) = \Sigma_n(h,y) + \epsilon \text{Diag} \left(\hat{\Sigma} \left(\bar{Y} \right), \hat{\Sigma} \left(\bar{Y} \right) \right),
\]

where \(\Sigma_n(h,y) \) is the sample covariance matrix of \(\sqrt{n} \bar{m}_n(h,y) \) and \(\hat{\Sigma} \left(\bar{Y} \right) \) is the empirical variance of \(\bar{Y} \). We then denote by \(\Sigma_{n,jj}(h,y) \) the \(j \)-th diagonal term of \(\Sigma_n(h,y) \).

Then the (Cramér-von-Mises) test statistic \(T \) is defined by

\[
T = \sup_{y \in \mathbb{Y}} \sum_{r=1}^{\min(n, \max \bar{Y}_i)} \sum_{a \in A_r} \left(1 - p \left(-\sqrt{n} \bar{m}_{n,1}(h_{a,r},y) / \Sigma_{n,11}(h_{a,r},y)^{1/2} \right) + p \left(\sqrt{n} \bar{m}_{n,2}(h_{a,r},y) / \Sigma_{n,22}(h_{a,r},y)^{1/2} \right) \right)^2,
\]

where \(\mathbb{Y} = \left[\min_{i=1,\ldots,n} \bar{Y}_i, \max_{i=1,\ldots,n} \bar{Y}_i \right] \), \(p \in (0,1) \) is a parameter that weights the moments inequalities versus equalities and \((r_n)_{n \in \mathbb{N}} \) is a deterministic sequence tending to infinity.

To test for rational expectations in the absence of covariates, we set the instrumental function equal to the constant function \(h(X) = 1 \), and the test statistic is simply written as:

\[
T = \sup_{y \in \mathbb{Y}} \left(1 - p \left(-\sqrt{n} \bar{m}_{n,1}(y) / \Sigma_{n,11}(y)^{1/2} \right) + p \left(\sqrt{n} \bar{m}_{n,2}(y) / \Sigma_{n,22}(y)^{1/2} \right) \right)^2,
\]

where, using the notations introduced above, \(\bar{m}_{n,j}(y) = \bar{m}_{n,j}(1,y) \) and \(\Sigma_{n,jj}(y) = \Sigma_{n,jj}(1,y) \) \((j = 1,2) \).
Whether or not covariates are included, the resulting test is of the form $\varphi_{n,\alpha} = \mathbb{1}\{T > c_{n,\alpha}^*\}$ where the estimated critical value $c_{n,\alpha}^*$ is obtained by bootstrap using as in AS the Generalized Moment Selection method. Specifically, we follow these three steps:

1. Compute the function $\varphi_n(y, h) = \left(\varphi_{n,1}(y, h), 0\right)^\top$ for $(y, h) \in \hat{\mathcal{Y}} \times \bigcup_{r=1}^n \mathcal{H}_r$, with

$$
\varphi_{n,1}(y, h) = \Sigma_{n,11}B_n \mathbb{1}\left\{n^{1/2} \Sigma_{n,11}^{-1/2} \bar{m}(y, h) > 1\right\},
$$

and where $B_n = \left(b_0 \ln(n)/\ln(\ln(n))\right)^{1/2}$, $b_0 > 0$, $\kappa_n = (\kappa \ln(n))^{1/2}$, and $\kappa > 0$. To compute $\Sigma_{n,11}$, we fix ϵ to 0.05, as in AS.

2. Let $\left(D_i^*, \tilde{Y}_i^*, X_i^*\right)_{i=1,\ldots,n}$ denote a bootstrap sample, i.e., an i.i.d. sample from the empirical cdf of $\left(D, \tilde{Y}, X\right)$, and compute from this sample the bootstrap counterparts of \bar{m}_n and Σ_n, \bar{m}_n^* and Σ_n^*. Then compute the bootstrap counterpart of T, T^*, replacing $\Sigma_n(y, h_{a,r})$ and $\sqrt{n}\bar{m}_n(y, h_{a,r})$ by $\Sigma_n^*(y, h_{a,r})$ and $\sqrt{n}\left(\bar{m}_n^* - \bar{m}_n\right)(y, h_{a,r}) + \varphi_n(y, h_{a,r})$, respectively.

3. The threshold $c_{n,\alpha}^*$ is the quantile (conditional on the data) of order $1 - \alpha + \eta$ of $T^* + \eta$ for some $\eta > 0$. Following AS, we set η to 10^{-6}.

Note that, despite the multiple steps involved, the testing procedure remains computationally easily tractable. In particular, for the baseline sample we use in our application (see Section 6.1), the RE test only takes 2 minutes.\(^{11}\)

We now turn to the asymptotic properties of the test. For that purpose, it is convenient to introduce additional notation. Let \mathcal{Y} and \mathcal{X} denote the support of Y and X respectively, and

$$
\mathcal{L}_F = \left\{(y, h_{a,r}) : y \in \mathcal{Y}, (a, r) \in A_r \times \mathbb{N} : \mathbb{E}_F\left[W(y - \tilde{Y})^+ h_{a,r}(X)\right] = 0\right\},
$$

where, to make the dependence on the underlying probability measure explicit, \mathbb{E}_F denotes the expectation with respect to the distribution F of $\left(D, \tilde{Y}, X\right)$. Finally, let \mathcal{F} denote a subset of all possible cumulative distribution functions of $\left(D, \tilde{Y}, X\right)$ and \mathcal{F}_0 be the subset of \mathcal{F} such that H_{0X} holds. We impose the following conditions on \mathcal{F} and \mathcal{F}_0.

Assumption 4

(i) For all $F \in \mathcal{F}$, $D \perp \perp (X, Y, \psi)$;

(ii) There exists $M > 0$ such that $\tilde{Y} \in [-M, M]$ for all $F \in \mathcal{F}$. Also, $\inf_{F \in \mathcal{F}} \mathbb{E}_F\left[\tilde{Y}\right] > 0$ and $0 < \inf_{F \in \mathcal{F}} \mathbb{E}_F\left[D\right] \leq \sup_{F \in \mathcal{F}} \mathbb{E}_F\left[D\right] < 1$;

\(^{11}\)This CPU time is obtained using our companion R package, on an Intel Xeon CPU E5-2643, 3.30GHz with 256Gb of RAM.
(iii) For all $F \in \mathcal{F}_0$, K_F, the asymptotic covariance kernel of $n^{-1/2} \text{Diag} \left(\mathbb{Y}_F \left(\tilde{Y} \right) \right)^{-1/2} \mathbb{m}_n$ is in a compact set K_2 of the set of all 2×2 matrix valued covariance kernels on $\mathbb{Y} \times \cup_{r \geq 1} \mathcal{H}_r$ with uniform metric d defined by
\[
d(K, K') = \sup_{(y, h, y', h') \in (\mathbb{Y} \times \cup_{r \geq 1} \mathcal{H}_r)^2} \| K(y, h, y', h') - K'(y, h, y', h') \|.
\]

The main result of this section is Theorem 4. It shows that, under Assumption 4, the test $\varphi_{n, \alpha}$ controls the asymptotic size and is consistent over fixed alternatives.

Theorem 4 Suppose that $r_n \to \infty$ and Assumption 4 holds. Then:

(i) $\limsup_{n \to \infty} \sup_{F \in \mathcal{F}_0} \mathbb{E}_F [\varphi_{n, \alpha}] \leq \alpha$;

(ii) If there exists $F_0 \in \mathcal{F}_0$ such that \mathcal{L}_{F_0} is nonempty and there exists (j, y_0, h_0) in $\{1, 2\} \times \mathcal{L}_{F_0}$ such that $K_{F_0, jj}(y_0, h_0, y_0, h_0) > 0$, then, for any $\alpha \in [0, 1/2)$,
\[
\lim_{\eta \to 0} \limsup_{n \to \infty} \sup_{F \in \mathcal{F}_0} \mathbb{E}_F [\varphi_{n, \alpha}] = \alpha.
\]

(iii) If $F \in \mathcal{F} \setminus \mathcal{F}_0$, then $\lim_{n \to \infty} \mathbb{E}_F (\varphi_{n, \alpha}) = 1$.

Theorem 4 (i) is closely related to Theorem 5.1 and Lemma 2 in AS. It shows that the test $\varphi_{n, \alpha}$ controls the asymptotic size, in the sense that the supremum over \mathcal{F}_0 of its level is asymptotically lower or equal to α. To prove this result, the key is to establish that, under Assumption 4, the class of transformed unconditional moment restrictions that characterize the null hypothesis satisfies a manageability condition (see Pollard, 1990). Using arguments from Hsu (2016), we then exhibit cases of equality in Theorem 4 (ii), showing that, under mild additional regularity conditions, the test has asymptotically exact size (when letting η tend to zero). Finally, Theorem 4 (iii), which is based on Theorem 6.1 in AS, shows that the test is consistent over fixed alternatives.

Extension to account for aggregate shocks This testing procedure can be easily modified to accommodate unanticipated aggregate shocks. Specifically, using the notation defined in Section 2.2.3, we consider the same test as above after replacing \tilde{Y} by $\tilde{Y}_\hat{c} = Dq(Y, \hat{c}) + (1 - D)\psi$, where \hat{c} denotes a consistent estimator of c_0. The resulting test is given by $\varphi_{n, \alpha, \hat{c}} = \mathbb{I} \{ T(\hat{c}) > c_{n, \alpha}^* \}$ (where $T(\hat{c})$ is obtained by replacing \tilde{Y} by $\tilde{Y}_\hat{c}$ in the original test statistic). Such tests have the same properties as those above under some mild regularity conditions on $q(\cdot, \cdot)$, which hold in particular for the leading examples of additive and multiplicative shocks ($q(y, c) = y - c$ and $q(y, c) = y/c$). We refer the reader to Appendix A for a detailed discussion of this extension.
4.2 Estimation of the minimal deviations from rational expectations

While \(g^* \) does not have a simple form in general, we propose a simple procedure to construct a consistent estimator of it, based on i.i.d. copies \((Y_i)_{i=1}^{n_Y}\) and \((\psi_i)_{i=1}^{n_\psi}\) of the realizations \(Y\) and subjective beliefs \(\psi\). For simplicity, we suppose in the following that the two samples have equal size, which we denote (with a slight abuse of notation) by \(n\).\(^{12}\)

To define our estimator, it is useful to note first that, from the proof of Theorem 2, we have

\[
g^* = \arg \min_{g \in G_0} \mathbb{E} \left[(\psi - g(\psi))^2 \right],
\]

where the set \(G_0\) is defined by

\[
G_0 = \{ g \text{ non-decreasing} : \mathbb{E} \left[(y - Y)^+ - (y - g(\psi))^+ \right] \geq 0 \ \forall y \in \mathbb{R}, \ \mathbb{E}[g(\psi)] = \mathbb{E}[Y] \}.
\]

By Theorem 1, \(g \in G_0\) means that we can rationalize \(\mathbb{E}[Y|g(\psi)] = g(\psi)\). Among such functions \(g\), \(g^*(\psi)\) is then defined as being closest to \(\psi\) for the \(L^2\) norm.

To estimate \(g^*\), the idea is to replace expectations and cdfs by their empirical counterparts, both in (6) and in the set \(G_0\). Denoting by \((Y(i))_{i=1}^{n}\) and \((\psi(i))_{i=1}^{n}\) the ordered statistics of \((Y_i)_{i=1}^{n}\) and \((\psi_i)_{i=1}^{n}\), we first focus on the estimation of \((g^*(\psi(1)), ..., g^*(\psi(n)))\). The empirical counterpart \(\hat{G}_0\) of \(G_0\) is

\[
\hat{G}_0 = \left\{ \left(\tilde{\psi}(1), ..., \tilde{\psi}(n)\right) : \tilde{\psi}(1) < ... < \tilde{\psi}(n), \sum_{i=1}^{n} (y - Y(i))^+ - (y - \tilde{\psi}(i))^+ \geq 0 \ \forall y \in \mathbb{R}, \sum_{i=1}^{n} Y(i) - \tilde{\psi}(i) = 0 \right\}.
\]

Note that here we consider vectors \(\left(\tilde{\psi}(1), ..., \tilde{\psi}(n)\right)\) instead of functions \(g\) as in \(G_0\), since \(g\) may be assimilated with a vector when \(\psi\) has a finite support. On the surface, the set \(\hat{G}_0\) appears to be complicated because of the infinitely many inequalities. However, one can show, using Proposition 2.6 in Gozlan et al. (2018), that \(\hat{G}_0\) boils down to the following set, which only involves a finite number of inequalities:

\[
\hat{G}_0 = \left\{ \left(\tilde{\psi}(1), ..., \tilde{\psi}(n)\right) : \tilde{\psi}(1) < ... < \tilde{\psi}(n), \sum_{i=j}^{n} Y(i) - \tilde{\psi}(i) \geq 0 \ j = 2, ..., n, \sum_{i=1}^{n} Y(i) - \tilde{\psi}(i) = 0 \right\}.
\]

\(^{12}\)If both samples do not have equal size, one can first apply our analysis after taking a random subsample of the larger one, with the same size as the smaller one. Then we can compute the average of the estimates over a large number of such random subsamples.
Then, as the empirical counterpart of (6), our estimator of \((g^*(\psi(1)), \ldots, g^*(\psi(n)))\) satisfies:

\[
(\hat{g}^*(\psi(1)), \ldots, \hat{g}^*(\psi(n))) = \arg \min_{\psi(1) \leq \cdots \leq \psi(n)} \sum_{i=1}^{n} \left(\psi(i) - \tilde{\psi}(i) \right)^2 \quad \text{s.t.} \quad \sum_{i=j}^{n} Y(i) - \tilde{\psi}(i) \geq 0, \ j = 2 \ldots n, \\
\sum_{i=1}^{n} Y(i) - \tilde{\psi}(i) = 0. \tag{8}
\]

Finally, for any \(t \in \mathbb{R}\), we let

\[
\hat{g}^*(t) = \hat{g}^*(\min_{i=1 \ldots n} \{ \psi_i \} : \psi_i \geq \min\{t, \psi(n)\}).
\]

Theorem 5 shows that \(\hat{g}^*\) is a consistent estimator of the transformation \(g^*\).

Theorem 5 (Convergence of empirical minimal deviations) Suppose that Assumption 3 holds. Then, for all \(t\) that is a continuity point of \(g^*\) and such that \(F_{\psi}(t) \in (0, 1)\), we have, as \(n \to \infty\),

\[
\hat{g}^*(t) \to g^*(t) \quad \text{a.s.}
\]

Program (8) is a particular convex quadratic programming problem, which turns out to be solvable very efficiently. The algorithm below, devised by Suehiro et al. (2012), shows that \((\hat{g}^*(\psi(1)), \ldots, \hat{g}^*(\psi(n)))\) can be obtained with only \(O(n^2)\) elementary operations. The idea is to rely on the first-order conditions of the program, which have a simple form. Using our R package and for the baseline sample we use in the application, the estimation of the minimal deviations from RE takes less than a minute.

Computation of \((\hat{g}^*(\psi(1)), \ldots, \hat{g}^*(\psi(n)))\).

1. Let \(t = 0\) and \(i_0 = 0\).
2. While \(i_t < n\):
 (a) Let \(t = t + 1\).
 (b) Let \(C^t(i) = \sum_{k=i_t-1}^{n-i_t-1} (Y(k) - \psi(k)) / (i - i_t-1)\), for \(i = i_t-1 + 1, \ldots, n\) and let \(i_t = \arg\min_{i \in \{i_t-1+1, \ldots, n\}} C^t(i)\). If there are multiple minimizers, choose the largest one as \(i_t\).
 (c) Set \(\hat{g}^*(\psi(k)) = \psi(k) + C^t(i_t)\), for \(k \in \{n+1-i_t, \ldots, n-i_t-1\}\).

4.3 Pseudo-beliefs estimation and implications for structural models

Turning to the case of structural models, estimation of \(h^M\) - the transformation such that \(h^M \left(E[Y|Z^M]\right) \) is consistent with the observed subjective beliefs while being “closest” to the
rational expectations $\mathbb{E} [Y \mid \mathcal{I}^M]$ (see Section 3 for a formal definition) - is simpler than that of g^* in the absence of restrictions on the information set, given its simple, explicit form. Specifically, for a given vector of parameters θ of the structural model, we can estimate h^M by

$$
\hat{h}^M = \hat{F}_\psi^{-1} \circ \mathbb{E}[Y \mid \mathcal{I}^M, \theta],
$$

(9)

where $F_{\mathbb{E}[Y \mid \mathcal{I}^M], \theta}$ denotes the distribution of $\mathbb{E} [Y \mid \mathcal{I}^M]$ when the true value of the parameter vector is θ, and \hat{F}_ψ^{-1} is the empirical quantile of the subjective beliefs. For a fixed θ, it follows from the asymptotic normality of quantiles (see, e.g. Van der Vaart, 2000, Corollary 21.5) that this estimator is root-n consistent and asymptotically normal.

Recall, however, that the primary motivation behind the estimation h^M is to conduct a sensitivity analysis on the structural model. In other words, h^M is usually not the parameter of interest. Instead, the parameters (or predictions) of interest are generally a function of θ, and possibly of the beliefs too. In the modified model where rational expectations are replaced by the pseudo-beliefs $h_M(\mathbb{E} [Y \mid \mathcal{I}^M])$, it follows that such a parameter of interest is given by $\phi = f(\theta, F��)$, for some function f. This parameter can be estimated in two steps. First, θ is estimated in the modified model. Letting $\hat{\theta}$ denote the corresponding estimator, we then estimate in a second step ϕ by $\hat{\phi} = f(\hat{\theta}, \hat{F}_\psi)$, where \hat{F}_ψ denotes the empirical cdf. of the subjective beliefs. In particular, if θ is estimated by maximum likelihood or GMM, $\hat{\theta}$ can be represented as a GMM estimator including a first-step estimator (that of $F��$). Since the estimator of $F��$ is root-n consistent, $\hat{\theta}$ is also root-n consistent and asymptotically normal, under mild regularity restrictions (see, e.g. Chen, Linton and Van Keilegom, 2003). Root-n consistency and asymptotic normality of $\hat{\phi}$ follows, as long as f is (Hadamard) differentiable. Importantly for practical purposes, bootstrap will also be valid under standard regularity conditions (Chen et al., 2003).

5 Monte Carlo simulations

In this section we study the finite sample performances of the test without covariates through Monte Carlo simulations. The finite sample performances of the version of our test that accounts for covariates are reported and discussed in Appendix D.

We suppose that the outcome Y is given by

$$
Y = \rho \psi + \varepsilon,
$$

with $\rho \in [0, 1]$, $\psi \sim \mathcal{N}(0, 1)$ and

$$
\varepsilon = \zeta (-\mathbb{I}\{U \leq 0.1\} + \mathbb{I}\{U \geq 0.9\}),
$$

where ζ, U and ψ are mutually independent, $\zeta \sim \mathcal{N}(2, 0.1)$ and $U \sim \mathcal{U}[0, 1]$.

23
In this setup, \(E(Y|\psi) = \rho \psi \) and expectations are rational if and only if \(\rho = 1 \). But since we observe \(Y \) and \(\psi \) in two different datasets, there are values of \(\rho \neq 1 \) for which our test cannot reject the null hypothesis. More precisely, we can show that as the sample size \(n \) grows to infinity, we reject the null if and only if \(\rho \leq \rho^* \approx 0.616 \). Besides, given this data generating process, the naive test \(E(Y) = E(\psi) \) always fails to reject RE, while the RE test based on variances is only able to detect a subset of violations of RE that correspond to \(\rho < 0.445 \).

Results reported in Figure 1 show the power curves of the test \(\varphi_\alpha \) for five different sample sizes \((n_Y = n_\psi = n \in \{400; 800; 1,200; 1,600; 3,200\}) \) as a function of the parameter \(\rho \), using 800 simulations for each value of \(\rho \). We use 500 bootstrap simulations to compute the critical values of the test. The test statistic \(T \) involves the three tuning parameters \(b_0, \kappa, \) and \(p \) (see Section 4 for definitions). As described p.643 in Andrews and Shi (2013), there exists in practice a large range of admissible values for these parameters. Following Section 4.2 of Beare and Shi (2019), we set them equal to the smallest (resp. highest) value such that the rejection rate under the null is below the nominal size 0.05, and obtain \(b_0 = 0.3, \kappa = 0.001, \) and \(p = 0.05 \).

Several remarks are in order. First, as expected, under the alternative (i.e. for values of \(\rho \leq \rho^* = 0.616 \)), rejection frequencies increase with the sample size \(n \). In particular, for the largest sample size \(n = 3,200 \), our test always results in rejection of the RE hypothesis for values of \(\rho \) as large as .45. Second, in this setting, our test is conservative in the sense that rejection frequencies under the null are smaller than \(\alpha = 0.05 \), for all sample sizes. This should not necessarily come as a surprise since the test proposed by AS has been shown to be conservative in alternative finite-sample settings (see, e.g. Table 1 p.22 in AS for the case of first-order
stochastic dominance tests). However, for the version of our test that accounts for covariates and for the data generating process considered in Appendix D, rejection frequencies under the null are very close to the nominal level.

Next, we report in Figure 2 below the estimated minimal deviations from rational expectations. Specifically, we plot the differences between the beliefs ψ and the modified beliefs $\hat{g}^*(\psi)$, where the transformation \hat{g}^* is computed using the estimator of Section 4.2, for $\rho = 0.3$ and $n = 800$. In the same figure, we also report the true minimal deviations $\psi - g^*(\psi)$, obtained by solving (8) with a large number of observations ($n = 10,000$), as g^* does not have a closed form representation in this setting.

![Figure 2: Estimation and true value of $\psi - g^*(\psi)$.](image)

Note: The plain black curve corresponds to the average of $\psi - \hat{g}^*(\psi)$ over 1, 000 simulations (with $n = 800$), and the light dotted black curves are the 2.5% and 97.5% quantiles of $\psi - \hat{g}^*(\psi)$.

Comparing these two curves shows that the estimator g^* exhibits a fairly small bias over the support of ψ. The 2.5% and 97.5% quantiles of $\psi - \hat{g}^*(\psi)$, in light dotted black lines, are also reasonably close to each other, showing that the estimator is already fairly accurate with a sample of size $n = 800$.\footnote{We obtain very similar patterns on the accuracy of the estimator for alternative values of ρ.} Finally, we compute the coverage of the bootstrap confidence intervals of $g^*(\psi)$, which is very close to the nominal rates for most values of ψ in $[-3, 3]$. For $\rho = 0.3$ and $n = 800$, the mean coverage rates over values of ψ in $[-3, 3]$ are equal to 98.6% and 95.4% for
nominal rates of 99% and 95%, respectively. Overall, these findings support the use of bootstrap to construct confidence intervals around the estimated minimal deviations.

6 Application to earnings expectations

6.1 Data

Using the tests discussed in Section 4, we now investigate whether household heads form rational expectations on their future earnings. We use for this purpose data from the Survey of Consumer Expectations (SCE), a monthly household survey that has been conducted by the Federal Reserve Bank of New York since 2012 (see Armantier, Topa, Van der Klaauw and Zafar, 2017, for a detailed description of the survey, and Kuchler and Zafar, 2019; Conlon, Philossoph, Wiswall and Zafar, 2018; Fuster, Kaplan and Zafar, 2018 for recent articles using the SCE). The SCE is conducted with the primary goal of eliciting consumer expectations about inflation, household finance, labor market, as well as housing market. It is a rotating internet-based panel of about 1,200 household heads, in which respondents participate for up to twelve months. Each month, the panel consists of about 180 entrants, and 1,100 repeated respondents. While entrants are overall fairly similar to the repeated respondents, they are slightly older and also have slightly lower incomes (see Table 1 in Armantier et al., 2017).

Of particular interest for this paper is the supplementary module on labor market expectations. This module is repeated every four months since March 2014. Since March 2015, respondents are asked the following question about labor market earnings expectations (ψ) over the next four months: “What do you believe your annual earnings will be in four months?” In this module, respondents are also asked about current job outcomes, including their current annual earnings (Y), through the following question: “How much do you make before taxes and other deductions at your [main/current] job, on an annual basis?”.

Specifically, we use for our baseline test the elicited earnings expectations (ψ), which are available for two cross-sectional samples of household heads who were working either full-time or part-time at the time of the survey, and responded to the labor market module in March 2015 and July 2015 respectively. We combine this data with current earnings (Y) declared in July 2015 and November 2015 by the respondents who are working full-time or part-time at the time of the survey. This leaves us with a final sample of 2,993 observations, which is composed of

14 Each survey takes on average about fifteen minutes to complete, and respondents are paid $15 per survey completed.

15 Throughout our analysis (with the exception of the number of observations reported in Table 1) we use the monthly survey weights of the SCE in order to obtain an estimation sample that is representative of the population of U.S. household heads. See Armantier et al. (2017) for more details on the construction of these weights. We also Winsorize the top 5 percentile of the distributions of realized earnings and earnings beliefs.
1,565 earnings expectation observations, and 1,428 realized earnings observations (see Table 4 in Appendix E.1 for descriptive statistics).

6.2 Are earnings expectations rational?

In Table 1 below, we report the results from the naive test of RE \((E(Y) = E(\psi))\), and our preferred test (“Full RE”), where we allow for multiplicative aggregate shocks. We implement the tests both on the overall population and on separate subgroups. The latter approach allows us not only to identify which groups fail to rationalize RE, but also, and importantly, to account for the possibility that aggregate shocks may in fact differ across subgroups.

<table>
<thead>
<tr>
<th></th>
<th>(E(Y - \psi)/E(Y))</th>
<th>Naive RE ((p\text{-val}))</th>
<th>Variance RE ((p\text{-val}))</th>
<th>Full RE ((p\text{-val}))</th>
<th>Number of obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\psi)</td>
</tr>
<tr>
<td>All</td>
<td>0.034</td>
<td>0.23</td>
<td>0.71</td>
<td>(< 0.001^{**})</td>
<td>1,565</td>
</tr>
<tr>
<td>Women</td>
<td>0.059</td>
<td>0.13</td>
<td>0.62</td>
<td>(< 0.001^{**})</td>
<td>730</td>
</tr>
<tr>
<td>Men</td>
<td>0.025</td>
<td>0.48</td>
<td>0.58</td>
<td>0.210</td>
<td>835</td>
</tr>
<tr>
<td>White</td>
<td>0.032</td>
<td>0.31</td>
<td>0.67</td>
<td>0.021(^*)</td>
<td>1,200</td>
</tr>
<tr>
<td>Minorities</td>
<td>0.046</td>
<td>0.43</td>
<td>0.60</td>
<td>(< 0.006^{**})</td>
<td>365</td>
</tr>
<tr>
<td>College degree</td>
<td>-0.001</td>
<td>0.96</td>
<td>0.50</td>
<td>0.130</td>
<td>1,106</td>
</tr>
<tr>
<td>No college degree</td>
<td>0.093</td>
<td>0.04(^*)</td>
<td>0.57</td>
<td>0.013(^*)</td>
<td>459</td>
</tr>
<tr>
<td>High numeracy</td>
<td>0.033</td>
<td>0.28</td>
<td>0.62</td>
<td>0.012(^*)</td>
<td>1,158</td>
</tr>
<tr>
<td>Low numeracy</td>
<td>0.055</td>
<td>0.27</td>
<td>0.58</td>
<td>0.022(^*)</td>
<td>407</td>
</tr>
<tr>
<td>Tenure (\leq) 6 months</td>
<td>0.105</td>
<td>0.24</td>
<td>0.63</td>
<td>(< 0.001^{**})</td>
<td>271</td>
</tr>
<tr>
<td>Tenure > 6 months</td>
<td>0.007</td>
<td>0.81</td>
<td>0.65</td>
<td>0.091(^{†})</td>
<td>1,294</td>
</tr>
</tbody>
</table>

Notes: significance levels: \(^{†}\): 10%, \(^*\): 5%, \(^{**}\): 1%. “Naive RE” denotes the naive RE test of equality of means between \(Y\) and \(\psi\). “Variance RE” denotes the variance RE test where the null hypothesis is the variance of \(Y\) being greater or equal than the variance of \(\psi\), once we account for aggregate, multiplicative shocks. “Full RE” denotes the test without covariates, where we test \(H_{0:S}\) with \(q(y,c) = y/c\). We use 5,000 bootstrap simulations to compute the critical values of the Full RE test. Distributions of realized earnings (\(Y\)) and earnings beliefs (\(\psi\)) are both Winsorized at the 95% quantile.

Several remarks are in order. First, using our test, we reject for the whole population, at any standard level, the hypothesis that agents form rational expectations over their future earnings. Second, we also reject RE (at the 5% level) when we apply our test separately for whites (non-

\(^{16}\)51% (1,536) of these observations correspond to the sub-sample of respondents who are reinterviewed at least once.

\(^{17}\)In practice we Winsorize the distribution of realized earnings (\(Y\)) and earnings beliefs (\(\psi\)) at the 95% level. We show in Table 5 in Appendix E.2 that our results are robust to other levels of Winsorization.
Hispanics) and minorities, as well as low vs. high numeracy test scores.\footnote{Respondents’ numeracy is evaluated in the SCE through five questions involving computation of sales, interests on savings, chance of winning lottery, of getting a disease and being affected by a viral infection. Respondents are then partitioned into two categories: “High numeracy” (4 or 5 correct answers), and “low numeracy” (3 or fewer correct answers).} Third, the results from our test point to beliefs formation being heterogeneous across schooling (college degree vs. no college degree) and tenure (more or less than 6 months spent in current job) levels. In particular, we cannot rule out that the beliefs about future earnings of individuals with more schooling experience correspond to rational expectations with respect to some information set. Similarly, while we reject RE at any standard level for the subgroup of workers who have accumulated less than 6 months of experience in their current job, we can only marginally reject at the 10\% level RE for those who have been in their current job for a longer period of time. As such, these findings complement some of the recent evidence from the economics of education and labor economics literatures that individuals have more accurate beliefs about their ability as they progress through their schooling and work careers (see, e.g., Stinebrickner and Stinebrickner, 2012; Arcidiacono, Aucejo, Maurel and Ransom, 2016).

Fourth, using the naive test of equality of means between earnings beliefs and realizations, one would instead generally not reject the null at any standard levels. The one exception is the subgroup of workers without a college degree, for whom the naive test yields rejection of RE at the 5\% level. But, as discussed before, one cannot rule out that such a rejection is due to aggregate shocks.

Even though individuals in the overall sample form expectations over their earnings in the near future that are realistic, in the sense of not being significantly biased, the result from our preferred test shows that earnings expectations are nonetheless not rational. Taken together, these findings highlight the importance of incorporating the additional restrictions of rational expectations that are embedded in our test, using the distributions of subjective beliefs and realized outcomes to detect violations of rational expectations. That the variance test of RE never rejects the null at any standard levels indicates that it is important in practice to go beyond the first moments, and exploit instead the full distributions of beliefs and outcomes to detect departures from rational expectations.

We do not report in this table the results of the direct test of RE.\footnote{The results of the direct test are reported in Table 6 in Appendix E.2.} Beyond the obvious implication that restricting to the subsample of individuals who are followed over four months results in a loss of statistical power, there are a couple of important issues associated with the direct test. First and foremost, as already discussed in Section 2.2.4, the direct test is not robust to measurement errors on the subjective beliefs ψ. To the extent that subjective beliefs are likely measured with some error, this is an important limitation of this test. Second, attrition from
the survey may be endogenous. To explore this possibility, we report in Table 2 the estimation results from a logit model of attrition on earnings beliefs, gender, race/ethnicity, college degree attainment, numeracy test score, tenure and a (linear) time trend.

Table 2: Logit model of attrition

<table>
<thead>
<tr>
<th>Population</th>
<th>Intercept</th>
<th>(\psi)</th>
<th>Male</th>
<th>White</th>
<th>Coll. Degree</th>
<th>Low Num.</th>
<th>Tenure > 6</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>1.327**</td>
<td>-6.206e-06**</td>
<td>0.046</td>
<td>-0.311</td>
<td>-0.137</td>
<td>-0.141</td>
<td>-0.786**</td>
<td>-0.040</td>
</tr>
<tr>
<td></td>
<td>(0.293)</td>
<td>(1.621e-06)</td>
<td>(0.138)</td>
<td>(0.222)</td>
<td>(0.139)</td>
<td>(0.162)</td>
<td>(0.164)</td>
<td>(0.033)</td>
</tr>
</tbody>
</table>

Notes: 1,565 observations. Significance levels: †: 10%, ∗: 5%, ∗∗: 1%.

The main takeaway from this table is that earnings beliefs \(\psi\) are significantly associated with attrition, even after controlling for this extensive set of characteristics. This result suggests that individuals for whom we observe both earnings expectations and realizations are likely to earn more than those who are not followed across the two waves. Along the same lines, a Kolmogorov-Smirnov test rejects at the 1% level the equality of the distributions of realized earnings between the whole sample and the subsample that would be used for the direct test. Similarly, we reject the equality of the distributions of expected earnings between these two samples. These results indicate that, in this context, the direct RE test is likely to be misleading. Conversely, attrition is unlikely to be an issue with our test, since we use in each wave the observations of all respondents.20

Finally, going beyond testing, Figure 3 offers additional insights regarding the deviations from rational expectations on earnings. We focus on the whole population, for which, using our test, we strongly reject (at the 0.1% level) the hypothesis of rational expectations. This figure shows that deviations from rational expectations are in fact primarily due to the coexistence of over-pessimistic (i.e., individuals for whom earnings beliefs are smaller than the RE constructed from minimal deviations) and over-optimistic individuals.21

20 The one assumption we need to make is that respondents in the surveys used to measure \(\psi\) (i.e., those of March and July 2015) are drawn from the same population as those from the surveys used to measure \(Y\) (i.e., those of July and November 2015). That there is no significant time trend in the attrition model (Table 2) suggests that this assumption is reasonable in this context.

21 Recent work by Rozsypal and Schlafmann (2019) documents similar types of deviations from rational expectations, where low-income households tend to be over-pessimistic, while high-income households are over-optimistic. Their analysis, which uses data from the Michigan Survey of Consumers, deals with attrition by imputing realized income growth based on a set of observed household characteristics. Implicit to this approach is the assumption that attrition is ignorable.
Both types of deviations from rational expectations largely offset one another when computing the average across all observations, so that the naive test fails to detect this pattern of violations from rational expectations. In contrast, our test, which exploits the full distributions of earnings beliefs and realizations, is able to detect these deviations. We observe similar patterns within sub-populations for which we reject RE. In particular, we report in Figure 6 in Appendix E the minimal deviations from RE for the subsample of workers without a college degree. This graph points again to a substantial degree of over-pessimism for low values of ψ, and over-optimism for larger values of ψ, with even larger deviations (in relative terms) from rational expectations than in the whole population.

6.3 Deviation from RE in a life-cycle consumption model

In this section, we examine the sensitivity of a standard life-cycle incomplete markets (SIM) model of consumption to the relaxation of the assumption that individuals form rational expectations about their future earnings. In the baseline SIM model, as in the vast majority of life-cycle consumption models, the rational expectations hypothesis is maintained. However, if a substantial fraction of the individuals do not have rational expectations on their future earnings, some of the conclusions that are drawn from this model may be misleading. In the following, we address this issue by conducting a sensitivity analysis along the lines of Section 3. Specifically, we use a benchmark SIM model as a starting point, which we modify to account for the fact that individuals may not have rational expectations about their income process. Using
this framework, we then illustrate how the minimal deviations from rational expectations that are consistent with the SCE data impact partial insurance mechanisms, and in particular the predicted effects of transitory and permanent income shocks on consumption.

6.3.1 Benchmark model and deviation

The SIM model we consider closely resembles that of Kaplan and Violante (2010, KV hereafter), who also focus on the responsiveness of consumption to income shocks. Time is assumed to be discrete, \(t \in \{1, ..., T \} \). The economy is constituted of agents (household heads) who work for \(T^{ret} - 1 \) periods, before retiring. Their unconditional probability of surviving until period \(t \) is denoted by \(\xi_t \), and we assume that \(\xi_t = 1 \) for all \(t < T^{ret} \) (and \(\xi_{T+1} = 0 \)). Agents are assumed not to be altruistic. At each period \(t \), consumption, income and assets of agent \(i \) are denoted respectively by \(C_{i,t}, Y_{i,t} \) and \(A_{i,t} \), with \(A_{i,1} = 0 \). The assets are made of a tradable risk-free one-period bond with a rate of return \(r \). Assuming perfect annuity markets, the budget constraint can be written as follows:

\[
C_{i,t} + \left(\frac{\xi_t}{\xi_{t+1}} \right) A_{i,t+1} = (1 + r) A_{i,t} + Y_{i,t}.
\]

We also assume that agent \(i \) faces at each period a constraint on the level of her assets,

\[
A_{i,t} \geq A.
\]

Agents are forward-looking, and choose at the beginning of period \(t \), if still alive and before observing their income, their sequence of consumption. They do so by sequentially maximizing the present value of subjective expected lifetime utility given their information set, denoted by \(I_{i,t-1} \) for agent \(i \), and given the constraints in (10)-(11). This present value at period \(t \) is equal to

\[
E \left[\sum_{t'=t}^{T} \beta^{t'-t} \frac{\xi_{t'}}{\xi_t} u(C_{i,t'}) \middle| I_{i,t-1} \right],
\]

where \(\beta \) denotes the discount factor and \(u(.) \) is the flow utility of consumption. \(E [\cdot | I_{i,t-1}] \) denotes the (conditional) subjective expectation operator. In order to make the problem tractable, we assume that this operator shares the same properties as the conditional expectation operator \(E [\cdot | I_{i,t-1}] \), the key difference being that it integrates over the subjective - rather than the true - conditional distribution of the data.

During worklife \((t < T^{ret}) \), the log income \(\log(Y_{i,t}) \) is supposed to be the sum of a deterministic experience profile, \(\kappa_{i,t} \), a permanent component, \(z_{i,t-1} \), a permanent shock, \(\eta_{i,t} \), and a transitory shock, \(\epsilon_{i,t} \):
We also assume that \(\epsilon_{i,t} \) and \(\eta_{i,t} \) are normally distributed with mean zero and variances \(\sigma^2_\epsilon \) and \(\sigma^2_\eta \) respectively. They are mutually independent and independent over time and across agents. The initial permanent shock \(z_{i,0} \) is also normally distributed with mean zero and variance \(\sigma^2_z \). As in KV, we assume that the information set at date \(t \), \(I_t \), is composed of the permanent component \(z_{i,t-1} \), as well as past transitory shocks. Finally, when \(t \geq T^{ret} \), the post-retirement social security transfers \(Y_{i,t} \) are computed as a piecewise constant function of the lifetime individual income, following the procedure described pp.64-65 in KV.

We adopt the following specification for the model. As in KV, we suppose that agents start working in the first period \((t = 1) \), at age 25; we then set \(T^{ret} = 35 \) and \(T = 70 \) (years). We fix the interest rate \(r \) at 3% and consider two extreme cases for \(A \): a natural borrowing constraint (NBC) economy, with \(A = -10^8 \), and a zero borrowing constraint (ZBC) economy, with \(A = 0 \). Following, e.g., Hall and Mishkin (1982), we use a quadratic specification for the flow utility of consumption, namely \(u(C) = -(C^* - C)^2/2 \), with \(C^* = 200,000 \). Finally, as in KV and given the model in hand, the discount factor \(\beta \) is set to match an aggregate wealth-income target ratio of 2.5.

Finally, we consider two alternative specifications regarding the subjective expectations. First, in the benchmark model, all individuals form rational expectations on their future income. Second, we consider an alternative specification in which individual beliefs deviate from rational expectations, and replace the rational expectations on \(Y_{it} \) by the pseudo-beliefs, following the approach described in Section 3.22 Key to the computation of the pseudo-beliefs is the availability of elicited earnings beliefs from an auxiliary dataset, in this case the SCE. Using our previous notation, the pseudo-beliefs on income are computed as a function of the rationally expected income as follows:

\[
E[Y_{i,t}|I_{i,t-1}] = h^M\left(E[Y_{i,t}|I_{i,t-1}]\right).
\] (13)

where the function \(h^M \) is estimated using the empirical counterpart of (denoting by \(\psi_t \) the subjective beliefs at period \(t < T^{ret} \)):

\[
h^M(y) = \frac{1}{T^{ret} - 1} \sum_{t=1}^{T^{ret}-1} F_{\psi_t}^{-1} \circ F_{E[Y_{i,t-1}|I_{t-1}]}(y).
\] (14)

We provide additional details regarding the specification of the model, in particular the income process, as well as the estimation of the pseudo-beliefs in Appendix E.3.

6.3.2 Results

A Kolmogorov-Smirnov test rejects at the 1% level the equality of the distributions of rationally expected income and the pseudo income beliefs obtained using (13), with a p-value lower than

22 Given the specification of the model, and in particular the quadratic specification of the utility of consumption, one can show that the optimal consumption path depends on the subjective expectations on \(Y_{it} \) only.
10^{-5}. This indicates that, consistent with the earlier findings discussed in Section 6.2, RE does not hold in this context. Figure 4 displays \hat{h}^M used in equation (13) to compute the pseudo-beliefs from the rational expectations. We return to this graph below when we discuss the sources and consequences of departures from RE in the context of our model.

![Figure 4: Estimate of h^M](image)

Notes: pointwise confidence intervals are obtained by percentile bootstrap, with 200 bootstrap samples.
All results are in 2015 US dollars.

Next, and following KV, we simulate the model both in the zero borrowing constraint case and in the natural borrowing constraint case, for an artificial panel of 10,000 households for 70 periods. Our main object of interest is the partial insurance coefficient, namely the share of the variance of the income shock $x_{i,t}$ (with $x \in \{\eta, \epsilon\}$) that does not translate into consumption growth:

$$
\phi^x = 1 - \frac{\text{Cov}(\Delta \ln(C_{i,t}), x_{i,t})}{\text{V}(x_{i,t})},
$$

where the covariance and variance are computed cross-sectionally over the entire population of agents between ages 25 and 60. We also consider and discuss below ϕ^x_t, which is the same quantity but computed conditionally on being of age $24 + t$.

We report the partial insurance coefficients to permanent income shocks (ϕ^η) and transitory income shocks (ϕ^ϵ) in Table 3 below. We first display the coefficients under rational expectations, and then the estimates obtained under our minimal deviations from RE. The changes in the insurance coefficients across both scenarios reflect the changes in the income expectations (RE vs. pseudo beliefs), combined with the change in the discount factor β which, in both cases,
is set to match an aggregate wealth-income target ratio of 2.5. Specifically, β decreases from around 97% to 94-95%, depending on the borrowing constraints assumption (ZBC or NBC).\(^{23}\)

Table 3: Insurance coefficients under RE or deviations from RE.

<table>
<thead>
<tr>
<th></th>
<th>Zero borrowing constraint</th>
<th>Natural borrowing constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ϕ^0</td>
<td>ϕ^ϵ</td>
</tr>
<tr>
<td>Model with RE</td>
<td>0.223</td>
<td>0.757</td>
</tr>
<tr>
<td>Model with deviations</td>
<td>0.425</td>
<td>0.539</td>
</tr>
<tr>
<td>from RE</td>
<td>(0.019)</td>
<td>(0.019)</td>
</tr>
</tbody>
</table>

Notes: we use $\sigma^2_\eta = 0.02$, $\sigma^2_\zeta = 0.05$, $\sigma^2_{z_0} = 0.15$, and an aggregate wealth-income ratio of 2.5.

Standard errors in parentheses.

Turning to our main parameters of interest, we find that consumption responses to both transitory and permanent income shocks are significantly affected by the minimal deviations from RE. In particular, consumption is found to be significantly less responsive to permanent income shocks when we relax RE, with substantial increases in the partial insurance coefficient ϕ^0 for both ZBC and NBC specifications. In that sense, accounting for deviations from RE with our pseudo-beliefs takes the model predictions further away from those obtained with a canonical permanent income hypothesis model (in which $\phi^0 = 0$). Conversely, accounting for deviations from RE also results in consumption being more responsive to transitory income shocks (i.e., lower insurance coefficient ϕ^ϵ). The age profile of the insurance coefficients is also sensitive to the type of beliefs that are used to simulate the consumption paths. Figure 7 in Appendix E.3 shows that, in particular, household heads between the ages of 35 and 50 tend to smooth permanent (transitory) income shocks significantly more (less) when we allow for deviations from RE.

It is interesting to discuss the findings from Table 3 in light of previous empirical estimates that have been obtained in the consumption literature. In particular, in the presence of borrowing constraints (ZBC), the partial insurance coefficient to permanent shocks implied by the model under RE ($\phi^0 = 0.22$) is lower than the estimated coefficient obtained by Blundell, Pistaferri and Preston (2008, BPP) ($\phi^0 = 0.36$) using US data on income and consumption.\(^{24}\) Accounting for minimal deviations from RE using our method, the insurance coefficient increases substantially,

\(^{23}\)The direction of the change is consistent with prior evidence from lab and field experiments (see, e.g. Andersen, Harrison, Morten and Rutstrom, 2008; Andreoni and Sprenger, 2012; Belzil, Maurel and Sidibé, 2017), which generally points to discount factors lower than 97%.

\(^{24}\)While BPP provide a range of estimates for the insurance coefficient, the estimate 0.36 is obtained when labor income is defined as household earnings after tax and transfers, and, as such, is arguably the relevant benchmark here.
to about $\phi^h = 0.43$. Hence, relaxing the assumption that agents form rational expectations about their future incomes reduces the gap between the partial insurance coefficient to permanent shocks implied by the SIM model, and the empirical estimates obtained by BPP. This suggests that part of the over-insurance phenomenon to permanent income shocks that has been documented in the literature (see, e.g., Blundell et al., 2008) may in fact be attributable to departures from the RE hypothesis that is typically maintained in consumption models. Note that in the natural borrowing constraint (NBC) economy, the model with deviations from RE also results in significantly larger insurance coefficients to permanent shocks than in the baseline RE model (0.57 vs. 0.10). While the estimated coefficient that accounts for deviations from RE is larger than the BPP estimate, the discrepancy remains smaller than in the benchmark RE model.

Turning to the transitory income shocks, we find that relaxing RE results in a significant decrease, of about 20 pp. for both ZBC and NBC cases, in the insurance coefficients ϕ^ϵ. This suggests that departures from RE also play a role in accounting for the excess sensitivity of consumption to transitory shocks that has been documented in some of the literature using standard realized data on income and consumption (see, e.g., Hall and Mishkin, 1982), and, more recently, in Kaufmann and Pistaferri (2009), using subjective expectations data from the Survey of Household Income and Wealth in Italy.

In order to shed light on the underlying mechanisms, it is instructive to examine the lifetime net worth profiles that are implied by the model with RE, versus the model where we relax RE using the pseudo-beliefs. These profiles are plotted in Figure 8 in Appendix E.3. A couple of comments are in order. First, household heads between 25 and 35 are more indebted in the model with deviations from RE. This is due to the fact that their average expected income is between 45,000$ and 100,000$ and thus, from Figure 4, they tend to be over-optimistic (i.e., pseudo-beliefs are greater than RE). It follows that they tend to borrow more than in the RE model, as shown with natural borrowing constraints in Figure 8. Second, later in the life-cycle and before retirement, household heads tend to be over-pessimistic. With quadratic preferences, this translates into more savings compared with the RE environment, which results in a steeper increase of the assets before retirement in Figure 8.\footnote{As a consequence, the model with deviations from RE fits the data substantially better than the benchmark model, comparing the worth profiles for both models to the local linear regression obtained from the 1992 Survey of Consumer Finance (SCF) data (the dotted curves in Figure 8). This is true in particular around and after retirement age. Over the life cycle, the average prediction error decreases by about 16.5\% in both ZBC and NBC cases when we allow for deviations from RE.}

Taken together, the findings from this analysis show that accounting for minimal deviations from rational expectations results in significant and sizable changes in the predicted consumption responses to both transitory and permanent income shocks. As such, they highlight the
importance of collecting subjective expectations data in order to analyze consumption dynamics while allowing for departures from rational expectations.

7 Conclusion

In this paper, we develop a new test of rational expectations that can be used in a broad range of empirical settings. In particular, our test only requires having access to the marginal distributions of realizations and subjective beliefs, and, as such, can be applied in frequent cases where realizations and beliefs are observed in two separate datasets. We establish that whether one can rationalize rational expectations is equivalent to the distribution of realizations being a mean-preserving spread of the distribution of beliefs, a condition which can be tested using recent tools from the moment inequalities literature. We show that our test can easily accommodate covariates and aggregate shocks, and, importantly for practical purpose, is robust to some degree of measurement errors on the elicited beliefs.

Going beyond testing, we also introduce the concept of minimal deviations from rational expectations that can be rationalized by the data. Using recent tools from the optimal transport literature, we show that, under mild regularity conditions, these deviations exist, are unique, and are also easily estimated. In the context of structural models, these deviations offer a novel and tractable way to conduct a sensitivity analysis on the assumed form of expectations.

We apply our method to test and quantify deviations from rational expectations about future earnings. While individuals tend to be right on average about their future earnings, our test strongly rejects rational expectations. Using the deviations from rational expectations within a standard life-cycle incomplete markets, we then provide evidence that the behavioral responses of consumers to income shocks are sensitive to departures from rational expectations. In particular, our results suggest that part of the over-insurance to permanent income shocks that has been documented in the literature is attributable to departures from the rational expectations hypothesis.
References

38

A Statistical tests in the presence of aggregate shocks

In this appendix, we show how to adapt the construction of the test statistic and obtain similar results as in Theorem 4 in the presence of aggregate shocks. As explained in Section 2.2.3, we mostly have to replace \tilde{Y} by $\tilde{Y}_c = Dq \left(\tilde{Y}, c \right) + (1 - D)\psi$. Because we include covariates here, as in Section 4, c is actually a function of X. Also, the true function c_0 has to be estimated.

We let \hat{c} denote such a nonparametric estimator, which is based on $E[q(Y, c_0(X))|X] = E[\psi|X]$. When $q(y, c) = y - c$ or $q(y, c) = y/c$, we get respectively $c_0(X) = E(Y|X) - E(\psi|X)$ and $c_0(X) = E(Y|X)/E(\psi|X)$, and \hat{c} is easy to compute using nonparametric estimators of $E(Y|X)$ and $E(\psi|X)$.

Because in Proposition 3 (ii) we do not test for a moment equality anymore, $m \left(D_i, \tilde{Y}_i, X_i, h, y \right)$ reduces to $m_1 \left(D_i, \tilde{Y}_{c,i}, X_i, h, y \right)$. We let hereafter $\hat{m}_n(h, y) = \sum_{i=1}^n m_1 \left(D_i, \tilde{Y}_{c,i}, X_i, h, y \right) / n$.

In the test statistic T, we replace, for $(y, h) \in \mathcal{Y} \times \bigcup_{\tau \geq 1} \mathcal{H}_\tau$, $\Sigma_n(h, y)$ by $\hat{\Sigma}_n(h, y) = \sum_n(h, y) + \epsilon \text{Diag} \left(\hat{\Sigma} \left(\tilde{Y}_c \right), \hat{\Sigma} \left(\tilde{Y}_c \right) \right)$, where $\hat{\Sigma}_n(h, y)$ and $\hat{\Sigma} \left(\tilde{Y}_c \right)$ are respectively the sample covariance matrix of $\sqrt{n} \hat{m}_n(h, y)$ and the empirical variance of \tilde{Y}_c. The last difference with the test considered in Section 4 is that when using the bootstrap to compute the critical value, we also have to re-estimate c_0 in the bootstrap sample.

We obtain in this context a result similar to Theorem 4 above, under the regularity conditions stated in Assumption 5. We let hereafter $\mathcal{C}_s \left([0,1]^d_X \right)$ denote the space of continuously differentiable functions of order s on $[0,1]^d_X$ that have a finite norm $\|c\|_{s,\infty} = \max_{|k| \leq s} \sup_{x \in [0,1]^d_X} |c^{(k)}(x)|$.

We also let, for any function f on a set \mathcal{H}, $\|f\|_{\mathcal{H}} = \sup_{x \in \mathcal{H}} |f(x)|$. Finally, when the distribution of $\left(D, \tilde{Y}, X \right)$ is F, K_F denotes the asymptotic covariance kernel of $n^{-1/2} \text{Diag} \left(\hat{\psi} \left(\tilde{Y}_{c_0} \right) \right)^{-1/2} m$.

Assumption 5
(i) \hat{c} and c_0 belong to $\mathcal{C}_s \left([0,1]^d_X \right)$, with $s \geq d_X$. Moreover, $\|\hat{c} - c_0\|_{[0,1]^d_X} = \text{op}(1)$.

(ii) For all $y \in \mathcal{Y}$, q is Lipschitz on $\mathcal{Y} \times [-C, C]$ for some $C > \|c_0\|_{[0,1]^d_X}$. Moreover, $\sup_{(y,c) \in \mathcal{Y} \times [-C,C]} |q(y,c)| \leq M_0$;

(iii) For all $c \in \mathbb{R}$, the function $q(\cdot,c) : \mathcal{Y} \to \mathcal{Y}$ is bijective and its inverse $q^I(\cdot,c)$ is Lipschitz on \mathcal{Y};

(iv) $F_{\psi|X}(\cdot|x)$, $F_{Y|X}(\cdot|x)$ are Lipschitz on \mathcal{Y} uniformly in $x \in [0,1]^d_X$ with constants $Q_{F,1}$ satisfying $\sup_{F \in \mathcal{F}_0} Q_{F,1} \leq Q_1 < +\infty$. Also, $F_{q(\psi,c(X))}$, $F_{q(Y,c(X))}$ are Lipschitz on $[-M_0, M_0]$ with constants $Q_{F,2}$ satisfying $\sup_{F \in \mathcal{F}_0} Q_{F,2} \leq Q_2 < +\infty$;

(iv) $\inf_{F \in \mathcal{F}} V_F \left[\hat{Y}^2_c \right] > 0$ and $\epsilon_0 \leq \inf_{F \in \mathcal{F}} E_F \left[D \right] \leq \sup_{F \in \mathcal{F}} E_F \left[D \right] \leq 1 - \epsilon_0$ for some $\epsilon_0 \in (0,1/2)$. Also, $\hat{\psi}_F \left[\hat{Y}^2_c \right]$ is a consistent estimator of $\forall_F \left[\hat{Y}^2_c \right]$.

43
Part (i) imposes some regularity conditions on \(c_0 \) and its nonparametric estimator \(\hat{c} \). It is possible to check such regularity conditions on \(\hat{c} \) with kernel or series estimators of \(\mathbb{E}(Y|X) \) and \(\mathbb{E}(\psi|X) \). Parts (ii) and (iii) also hold when \(q(y, c) = y - c \) and \(q(y, c) = q(y)/c \), by imposing in the second case that \(c \) belongs to a compact subset of \((0, \infty)\). Proposition 5 shows that under these conditions, the test has asymptotically correct size.

Proposition 5 Suppose that \(r_n \to \infty \) and that Assumptions 4 and 5 hold. Then (i) in Proposition 4 holds, replacing \(\phi_{n, \alpha} \) by \(\phi_{n, \alpha}, \hat{c} \).

Results like (ii) and (iii) in Proposition 4 could also be obtained under the conditions of Proposition 5, modifying directly the proof of Proposition 4.

B Tests with rounding practices

We have considered in Section 2.2.4 the possibility of measurement errors on \(\psi \). Another source of uncertainty on \(\psi \) is rounding. Rounding practices by interviewees are common. A way to interpret these practices is that in situations of ambiguity, individuals may only be able to bound the distribution of their future outcome \(Y \) (Manski, 2004). If individuals round at 5% levels, for instance, an answer \(\psi = 0.05 \) for the beliefs about percent increase of income should then only be interpreted as \(\psi \in [0.025, 0.075] \). Another case where only bounds on \(\psi \) are observed is when questions to elicit subjective expectations take the following form: “What do you think is the percent chance that your own \([Y]\) will be below \([y]\)?”, for a certain grid of \(y \). If 0 and 100 are always observed, or if we assume that the support of subjective distributions is included in \([y, \bar{y}]\), we can still compute bounds on \(\psi \).\(^{26}\) In such cases, we only observe \((\psi_L, \psi_U)\), with \(\psi_L \leq \psi \leq \psi_U \). For a thorough discussion of this issue, and especially of how to infer rounding practices, see Manski and Molinari (2010).

In this setting, rationalizing rational expectations is less stringent than in our baseline set-up since the constraints on the distribution of \(\psi \) are weaker. Formally, the null hypothesis takes the following form:

\[
H_{0B} : \exists (Y', \psi', I') : \sigma(\psi') \subset I', Y' \sim Y, F_{\psi U} \leq F_{\psi'} \leq F_{\psi L} \text{ and } \mathbb{E}(Y'|I') = \psi'.
\]

To obtain an equivalent formulation to \(H_{0B} \), a natural idea would be to fix a candidate cdf \(F \in [F_{\psi U}, F_{\psi L}] \) for \(F_{\psi} \) and apply Theorem 1 with this \(F \). Then, letting \(\Delta_F(y) = \int_{-\infty}^{y} F_Y(t) - F(t) dt \) and \(\delta_F = \mathbb{E}(Y) - \int udF(u) \), \(H_{0B} \) would hold as long as for some \(F \in [F_{\psi U}, F_{\psi L}] \), \(\Delta_F(y) \geq 0 \) for all \(y \in \mathbb{R} \) and \(\delta_F = 0 \). In practice though, directly checking whether such a distribution exists would be very difficult. Fortunately, we show in the following proposition that it is in fact

\(^{26}\)Note however that in this case, our approach does not take into account all the information on the subjective distribution.
sufficient to check that these conditions hold for a specific candidate distribution. To define the cdf of this distribution, we introduce, for all $b \in \mathbb{R}$, the random variables

$$
\psi^b = \psi_U \mathbb{1}\{\psi_U < b\} + \max(b, \psi_L) \mathbb{1}\{\psi_U \geq b\}.
$$

We also let $\psi^{-\infty} = \psi_L$ and $\psi^{+\infty} = \psi_U$. The cdf of ψ^b is then $F^b(t) = F_{\psi_U}(t) \mathbb{1}\{t < b\} + F_{\psi_L}(t) \mathbb{1}\{t \geq b\}$, for all $b \in \mathbb{R}$. We let $\mathcal{F}_B = \{F^b, b \in \mathbb{R}\}$ denote the set of all such cdfs.

Assumption 6 $\mathbb{E}(|Y|) < +\infty, \mathbb{E}(|\psi_L|) < +\infty$ and $\mathbb{E}(|\psi_U|) < +\infty$.

Proposition 6 Suppose that Assumption 6 holds. First, if $\mathbb{E}[\psi_L] \leq \mathbb{E}[Y] \leq \mathbb{E}[\psi_U]$, there exists a unique $F^* \in \mathcal{F}_B$ such that $\delta_{F^*} = 0$. Second, the following statements are equivalent:

(i) H_{0B} holds.

(ii) $\mathbb{E}[\psi_L] \leq \mathbb{E}[Y] \leq \mathbb{E}[\psi_U]$ and $\Delta_{F^*}(y) \geq 0$ for all $y \in \mathbb{R}$.

This test shares some similarities with the test in the presence of aggregate shocks. Specifically, if $\mathbb{E}[\psi_L] \leq \mathbb{E}[Y] \leq \mathbb{E}[\psi_U]$, we first identify $b_0 \in \mathbb{R}$ such that the candidate belief ψ^{b_0}, which plays a similar role as the modified outcome $q(Y, c_0)$ in the test with aggregate shocks, satisfies the equality constraint $\mathbb{E}[\psi^{b_0}] = \mathbb{E}[Y]$. Noting that the inequality $\Delta_{F^*}(y) \geq 0$ can be rewritten as $\mathbb{E}\left[(y - Y)^+ - (y - \psi^{b_0})^+\right] \geq 0$, it follows from (ii) that rationalizing RE in this context (i.e., H_{0B}) is then equivalent to a set of many moment inequality constraints involving the distributions of realizations Y and candidate belief ψ^{b_0}.

C Tests with sample selection in the datasets

We consider here cases where the two samples are not representative of the same population, or formally, D is not independent of (Y, ψ). This may arise for instance because of oversampling of some subpopulations or differences in nonresponse between the two surveys that are used. We assume instead that selection is conditionally exogenous, that is to say:

$$
D \perp (Y, \psi)|X.
$$

We show how to use a propensity score weighting to handle such a selection. Denote by $p(x) = P(D = 1|X = x) = \mathbb{E}[D|X = x]$ the propensity score and by

$$
W(X) = \frac{D}{p(X)} - \frac{1 - D}{1 - p(X)}.
$$

The law of iterated expectations combined with Proposition 2 directly yields the following proposition:
Proposition 7 Suppose that (15) and Assumption 1 hold. Then H_{0X} is equivalent to

$$
E \left[W(X) (y - \tilde{Y})^+ \bigg| X \right] \geq 0
$$

for all $y \in \mathbb{R}$ and $E \left[W(X) \tilde{Y} \bigg| X \right] = 0$.

This proposition shows that under sample selection, we can build a statistical test of H_{0X} akin to that developed in Section 4, by merely estimating nonparametrically $p(X)$. We could consider for that purpose a series logit estimator, for instance. Validity of such a test would follow using very similar arguments as for the test with aggregate shocks considered above.

D Simulations with covariates

We consider here simulations including covariates. The DGP is similar to that considered in Section 4. Specifically, we assume that

$$
Y = \rho \psi + \sqrt{X} \varepsilon,
$$

with $\rho \in [0, 1]$, $\psi \sim \mathcal{N}(0, 1)$, $X \sim \text{Beta}(0.1, 10)$ and

$$
\varepsilon = \zeta \left(-\mathbb{1}\{U \leq 0.1\} + \mathbb{1}\{U \geq 0.9\} \right),
$$

where $\zeta \sim \mathcal{N}(2, 0.1)$ and $U \sim \mathcal{U}[0, 1]$. (ψ, ζ, U, X) are supposed to be mutually independent.

Like in the test without covariates, we can show that the test with covariates is able to reject RE if and only if $\rho < 0.616$. On the other hand, by construction $E[Y|X] = E[\psi|X]$, so the naive conditional test has no power. The test based on conditional variances rejects only if $\rho < 0.445$. Finally, we can show that without using X, our test has power only for $\rho < 0.52$. Hence, relying on covariates allows us to gain power for $\rho \in [0.521, 0.616)$.

Again, we consider hereafter $n_\psi = n_Y = n \in \{400; 800; 1,200; 1,600; 3,200\}$, use 500 bootstrap simulations to compute the critical value, and rely on 800 Monte-Carlo replications for each value of ρ and n. We use the same parameters $p = 0.05$ and $b_0 = 0.3$ as above. Figure 5 shows that the RE test with covariates asymptotically outperforms the RE test without covariates. The test exhibits a similar behavior as that without covariates, though, as we could expect, the power converges less quickly to one as n tends to infinity.
Notes: the dotted vertical lines correspond to the theoretical limit for the rejection of the null hypothesis for test based on variance ($\rho \simeq 0.445$), our test without covariates ($\rho \simeq 0.521$) and our tests with covariates ($\rho = 0.616$). The dotted horizontal line corresponds to the 5% level.

Figure 5: Power curves for the test with covariates.

E Additional material on the application

E.1 Descriptive statistics and minimal deviations for non-college graduates

Table 4: Descriptive statistics of the SCE sample

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>0.53</td>
<td>0.50</td>
</tr>
<tr>
<td>White</td>
<td>0.74</td>
<td>0.43</td>
</tr>
<tr>
<td>College degree</td>
<td>0.49</td>
<td>0.46</td>
</tr>
<tr>
<td>Low numeracy</td>
<td>0.33</td>
<td>0.47</td>
</tr>
<tr>
<td>Tenure ≤ 6 months</td>
<td>0.17</td>
<td>0.38</td>
</tr>
<tr>
<td>Age</td>
<td>45.8</td>
<td>13.0</td>
</tr>
<tr>
<td>ψ (Earnings beliefs)</td>
<td>$50,592$</td>
<td>$40,889$</td>
</tr>
<tr>
<td>Y (Realized earnings)</td>
<td>$52,354$</td>
<td>$38,634$</td>
</tr>
</tbody>
</table>
Notes: the pointwise confidence intervals are obtained by percentile bootstrap. All results are in 2015 US dollars.

Figure 6: Minimal deviations for individuals without a college degree

E.2 Additional results on the tests of RE

Table 5: Full test of RE with different levels of Winsorization

<table>
<thead>
<tr>
<th>Winsorization level</th>
<th>0.95 (p-val)</th>
<th>0.97 (p-val)</th>
<th>0.99 (p-val)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>< 0.001**</td>
<td>0.001**</td>
<td>0.002**</td>
</tr>
<tr>
<td>Women</td>
<td>< 0.001**</td>
<td>< 0.001**</td>
<td>0.001**</td>
</tr>
<tr>
<td>Men</td>
<td>0.210</td>
<td>0.254</td>
<td>0.342</td>
</tr>
<tr>
<td>White</td>
<td>0.021*</td>
<td>0.030*</td>
<td>0.049*</td>
</tr>
<tr>
<td>Minorities</td>
<td>0.006**</td>
<td>0.007**</td>
<td>0.018*</td>
</tr>
<tr>
<td>College degree</td>
<td>0.130</td>
<td>0.146</td>
<td>0.196</td>
</tr>
<tr>
<td>No college degree</td>
<td>0.013*</td>
<td>0.012*</td>
<td>0.009**</td>
</tr>
<tr>
<td>High numeracy</td>
<td>0.012*</td>
<td>0.017*</td>
<td>0.034*</td>
</tr>
<tr>
<td>Low numeracy</td>
<td>0.022*</td>
<td>0.026*</td>
<td>0.029*</td>
</tr>
<tr>
<td>Tenure ≤ 6 months</td>
<td>0.001**</td>
<td>0.005**</td>
<td>0.009**</td>
</tr>
<tr>
<td>Tenure > 6 months</td>
<td>0.091†</td>
<td>0.118</td>
<td>0.304</td>
</tr>
</tbody>
</table>

Notes: significance levels: †: 10%, *: 5%, **: 1%. “Full RE” denotes the test without covariates, where we test $H_0: q(y, c) = y/c$. We use 5,000 bootstrap simulations to compute the critical values of the Full RE test. Distributions of realized earnings (Y) and earnings beliefs (ψ) are both Winsorized either at the 0.95, 0.97, or 0.99 quantile.
Table 6: Test of RE on annual earnings

<table>
<thead>
<tr>
<th></th>
<th>(\rho)</th>
<th>Direct test (p-val)</th>
<th>Full RE (p-val)</th>
<th>(\psi)</th>
<th>(Y)</th>
<th>Number of obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>0.954</td>
<td>0.001**</td>
<td>< 0.001**</td>
<td>1,565</td>
<td>1,428</td>
<td>768</td>
</tr>
<tr>
<td>Women</td>
<td>0.956</td>
<td>0.002**</td>
<td>< 0.001**</td>
<td>730</td>
<td>649</td>
<td>356</td>
</tr>
<tr>
<td>Men</td>
<td>0.960</td>
<td>0.021*</td>
<td>0.210</td>
<td>835</td>
<td>779</td>
<td>412</td>
</tr>
<tr>
<td>White</td>
<td>0.963</td>
<td>0.004**</td>
<td>0.021*</td>
<td>1,200</td>
<td>1,097</td>
<td>596</td>
</tr>
<tr>
<td>Minorities</td>
<td>0.928</td>
<td>0.010*</td>
<td>0.006**</td>
<td>365</td>
<td>331</td>
<td>172</td>
</tr>
<tr>
<td>College degree</td>
<td>0.974</td>
<td>0.060†</td>
<td>0.130</td>
<td>1,106</td>
<td>1,053</td>
<td>560</td>
</tr>
<tr>
<td>No college degree</td>
<td>0.954</td>
<td>0.044*</td>
<td>0.013*</td>
<td>459</td>
<td>375</td>
<td>208</td>
</tr>
<tr>
<td>High numeracy</td>
<td>0.959</td>
<td>0.001**</td>
<td>0.012*</td>
<td>1,158</td>
<td>1,070</td>
<td>573</td>
</tr>
<tr>
<td>Low numeracy</td>
<td>0.954</td>
<td>0.094†</td>
<td>0.022*</td>
<td>407</td>
<td>358</td>
<td>195</td>
</tr>
<tr>
<td>Tenure ≤ 6 months</td>
<td>0.942</td>
<td>0.015*</td>
<td>0.001**</td>
<td>271</td>
<td>180</td>
<td>98</td>
</tr>
<tr>
<td>Tenure > 6 months</td>
<td>0.956</td>
<td>0.001**</td>
<td>0.091†</td>
<td>1,294</td>
<td>1,248</td>
<td>670</td>
</tr>
</tbody>
</table>

Notes: significance levels: †: 10%, *: 5%, **: 1%. “Direct test” denotes the direct test of RE when \((\psi, Y)\) is observed. \(\rho \) is the coefficient of the regression of \(Y \) on \(\psi \) in that case. “Full RE” denotes the test without covariates, where we test \(H_0 \) with \(q(y,c) = y/c \). We use 5,000 bootstrap simulations to compute the critical values of the Full RE test. Distributions of realized earnings \((Y)\) and earnings beliefs \((\psi)\) are both Winsorized at the 95% quantile.

E.3 Additional details and results on the life-cycle consumption model

The income process is specified as follows. First, we estimate the deterministic trend \(\kappa_{i,t} \) as a smooth function of age (second-order polynomial) using the dataset of Blundell et al. (2008) built from the PSID.\(^{27}\) We use the same value as in the baseline specification of KV for \(\sigma^2_\epsilon \) and \(\sigma^2_\zeta_0 \), namely \(\sigma^2_\epsilon = 0.05 \) and \(\sigma^2_\zeta_0 = 0.15 \). We choose \(\sigma^2_\eta = 0.02 \) as it is in the range of Blundell et al. (2008) and appears to fit the 1989 and 1992 Survey of Consumer Finances data better than the baseline value used by KV. Our main results remain qualitatively unchanged when we use the same values as in Blundell et al. (2008) for both variances \(\sigma^2_\epsilon \) (0.037) and \(\sigma^2_\eta \) (0.019).

To estimate \(h^M \), we rely on (14). Given the specification of our model, \(\mathbb{E}[Y_{i,t}|I_{i,t-1}] \), when \(t < T_{ret} \), is lognormally distributed with parameters \(\kappa_{i,t} + (\sigma^2_\eta + \sigma^2_\zeta)/2 \) and \(\sigma^2_\zeta_0 + (t - 1)\sigma^2_\eta \). To estimate \(F_{\psi_i}^{-1} \), we use the subjective beliefs of individuals between 25 and 60 measured in the SCE survey. Since in KV, \(Y_{i,t} \) is interpreted as household income after taxes and transfers, whereas we only observe subjective expectations on individual labor earnings, we use an equipercentile mapping based on the two distributions of realized (expected) individual labor earnings and realized (expected) household income. We estimate this equipercentile mapping using the dataset from Blundell et al. (2008), built from the PSID, where both realized individual labor earnings and household income are observed from 1989 to 1992. Finally, we assume that the quantile of

\(^{27}\)Results are robust to the use of a more flexible fourth-order polynomial for \(\kappa_{i,t} \).
income expectations is linear in age, and thus estimate $F_{\psi_t}^{-1}$ by a quantile regression of subjective expectations on age. We finally estimate h^M using (14), replacing $F_{\psi_t}^{-1}$ by the quantile regression estimator.

Figure 7: Age profiles of insurance coefficients.

![Figure 7](image)

Notes: the curves in gray (resp. in black) correspond to insurance coefficients under RE (resp. minimal deviations from RE). The dotted black curves are the 2.5 and 97.5 quantiles of bootstrap simulations, taking into account the randomness of \hat{h}^M. They are obtained using 200 bootstrap samples.
Figure 8: Average lifetime net worth (in $00,000) profiles.

(a) Zero borrowing constraint
(b) Natural borrowing constraint

Notes: SCF stands for the 1992 Survey of Consumer Finance. The dotted black curve is the estimated non-parametric regression function of net worth of households in this dataset on age using local polynomials and a bandwidth selected via cross-validation. The confidence intervals on \hat{h}^M are obtained with 200 bootstrap samples.

F Proofs

F.1 Notation and preliminaries

For any set \mathcal{H}, let us denote by $l^\infty(\mathcal{H})$ the collection of all uniformly bounded real functions on \mathcal{H} equipped with the supremum norm $\|f\|_{\mathcal{H}} = \sup_{x \in \mathcal{H}} |f(x)|$. Denote by $L^2(F)$ the square integrable space with respect to the measure associated with F, and let $\|\cdot\|_{F,2}$ be the corresponding norm. We let $N(\epsilon, \mathcal{T}, L^2(F))$ denote the minimal number of ϵ-balls with respect to $\|\cdot\|_{F,2}$ needed to cover \mathcal{T}. An ϵ-bracket (with respect to F) is a pair of real functions (l, u) such that $l \leq u$ and $\|u - l\|_{F,2} \leq \epsilon$. Then, for any set of real functions \mathcal{M}, we let $N(\epsilon, \mathcal{M}, L^2(F))$ denote the minimum number of ϵ-brackets needed to cover \mathcal{M}. We denote by $\mathcal{H} = (\bigcup_{r \geq 1} \mathcal{H}_r)$. For $x \in \mathbb{R}^d, d > 1$, we denote by $\|x\|_\infty = \max_{j=1,...,d} |x_j|$.

For a sequence of random variable $(U_n)_{n \in \mathbb{N}}$ and a set \mathcal{F}_0, we say that $U_n = O_P(1)$ uniformly in $F \in \mathcal{F}_0$ if for any $\epsilon > 0$ there exist $M > 0$ and $n_0 > 0$ such that $\sup_{F \in \mathcal{F}_0} \mathbb{P}_F (|U_n| > M) < \epsilon$ for all $n > n_0$. Similarly we say that $U_n = o_P(1)$ uniformly in $F \in \mathcal{F}_0$ if for any $\epsilon > 0$, $\sup_{F \in \mathcal{F}_0} \mathbb{P}_F (|U_n| > \epsilon) \to 0$.

51
Finally, we add stars to random variables whenever we consider their bootstrap versions, as with T^* versus T. We define o_{P^*} and O_{P^*} as above, but conditional on $(\tilde{Y}_i, D_i, X_i)_{i=1\ldots n}$. Convergence in distribution conditional on $(\tilde{Y}_i, D_i, X_i)_{i=1\ldots n}$ is denoted by \rightarrow_{d^*}.

F.2 Proof of Lemma 1

Under H_0, there exist Y', ψ' and \mathcal{I}' such that $Y' \sim Y$, $\psi' \sim \psi$, $\sigma(\psi') \subset \mathcal{I}'$ and $E(Y'|\mathcal{I}') = \psi'$. Then, by the law of iterated expectations,

$$E[Y'|\psi'] = E\left[E\left[Y'|\mathcal{I}'\right]|\psi'\right] = E\left[\psi'|\psi'\right] = \psi'.$$

Conversely, if there exists (Y', ψ') such that $Y' \sim Y$, $\psi' \sim \psi$ and $E[Y'|\psi'] = \psi'$, let $\mathcal{I}' = \sigma(\psi')$. Then $\psi' = E[Y'|\psi'] = E[Y'|\mathcal{I}']$ and H_0 holds.

F.3 Proof of Theorem 1.

(i) \Leftrightarrow (iii). By Strassen’s theorem (Strassen, 1965, Theorem 8), the existence of (Y, ψ) with margins equal to F_Y and F_ψ and such that $E[Y|\psi] = \psi$ is equivalent to $\int f dF_\psi \leq \int f dF_Y$ for every convex function f. By, e.g., Proposition 2.3 in Gozlan et al. (2018), this is, in turn, equivalent to (iii).

(ii) \Leftrightarrow (iii). By Fubini-Tonelli’s theorem, $\int_{-\infty}^{y} F_Y(t) dt = E\left[\int_{-\infty}^{y} 1_{\{t \geq Y\}} dt\right] = E[(y - Y)^+]$. The same holds for ψ. Hence, $\Delta(y) \geq 0$ for all $y \in \mathbb{R}$ is equivalent to $E[(y - Y)^+] \geq E[(y - \psi)^+]$ for all $y \in \mathbb{R}$. The result follows.

F.4 Proof of Proposition 1.

First, by Jensen’s inequality,

$$E[(y_0 - Y)^+|\psi] \geq (y_0 - E(Y|\psi))^+ = (y_0 - \psi)^+.$$

Moreover, $\Delta(y_0) = 0$ implies that $E((y_0 - Y)^+) = E((y_0 - \psi)^+)$. Hence, almost surely,

$$E[(y_0 - Y)^+|\psi] = (y_0 - \psi)^+.$$

Equality in the Jensen’s inequality implies that the function is affine on the support of the random variable. Therefore, for almost all u, we either have $S(Y|\psi = u) \subset [y_0, +\infty)$ or $S(Y|\psi = u) \subset (-\infty, y_0]$. Because $E[Y|\psi] = \psi$, $S(Y|\psi = u) \subset [y_0, +\infty)$ for almost all $u > y_0$ and $S(Y|\psi = u) \subset (-\infty, y_0]$ for almost all $u < y_0$. Then, for all $\tau \in (0, 1)$, $F_Y^{-1}(\tau|\psi = u) \geq y_0$ for almost all $u \geq y_0$ and $F_Y^{-1}(\tau|\psi = u) \leq y_0$ for almost all $u \leq y_0$. Thus, for all $\tau \in (0, 1)$, by continuity of $F_Y^{-1}(\tau|\cdot)$, $F_Y^{-1}(\tau|y_0) = y_0$. This implies that $Y|\psi = y_0$ is degenerate.
F.5 Proof of Proposition 2.

We first prove that H_0X is equivalent to the existence of (Y', ψ') such that $DY' + (1 - D)\psi' = \tilde{Y}$, $D \perp (Y', \psi')|X$ and $E(Y'|\psi', X) = \psi'$. First, under H_0X, there exists (Y', ψ', I') such that $DY' + (1 - D)\psi' = \tilde{Y}$, $D \perp (Y', \psi')|X$, $\sigma(\psi', X) \subset I'$ and $E(Y'|I') = \psi'$. Then

$$E[Y'|\psi', X] = E[E[Y'|I']|\psi', X] = E[\psi'|\psi', X] = \psi'.$$

Conversely, if there exists (Y', ψ') such that $DY' + (1 - D)\psi' = \tilde{Y}$, $D \perp (Y', \psi')|X$ and $E(Y'|\psi', X) = \psi'$, let $I' = \sigma(X', \psi')$. Then $\psi' = E(Y'|\psi', X) = E(Y'|I')$ and H_0X holds. The proposition then follows as Theorem 1.

F.6 Proof of Proposition 4

For all $y, \xi \mapsto E[(y - \psi - \xi)^+]$ is decreasing and convex. Then, because $F_{\xi \psi}$ dominates at the second order $F_{\xi Y + \epsilon}$,

$$\int E[(y - \psi - \xi)^+] dF_{\xi Y + \epsilon}(\xi) \geq \int E[(y - \psi - \xi)^+] dF_{\xi \psi}(\xi).$$

As a result, for all y,

$$E\left[(y - \tilde{Y})^+\right] = \int E[(y - \psi - \epsilon - \xi_Y)^+ | \epsilon + \xi_Y = \hat{\xi}] dF_{\epsilon + \xi_Y}(\xi) = \int E[(y - \psi - \xi)^+] dF_{\epsilon + \xi_Y}(\xi) \geq \int E[(y - \psi - \xi)^+] dF_{\xi \psi}(\xi) = E\left[(y - \hat{\psi})^+\right].$$

Moreover, $E(\tilde{Y}) = E(\hat{\psi})$. By Theorem 1, \tilde{Y} and $\hat{\psi}$ satisfy H_0.

F.7 Proof of Theorem 4.

(i) This is a particular case of Proposition 5 below, with $q(Y, c_0) = Y$. The proof is therefore omitted.

(ii) We show that equality holds for $F_0 \in \mathcal{F}_0$ satisfying the conditions stated in (ii). The proof is divided in three steps. We first prove convergence in distribution of T to S defined below, and conditional convergence of T^* towards the same limit. Then we show that the cdf H of S is continuous and strictly increasing in the neighborhood of its quantile of order $1 - \alpha$, for any $\alpha \in (0, 1/2)$. The third step concludes.

1. Convergence in distribution of T and T^*.
Let us introduce some notation. Let $K_{j,j}$ $(j \in \{1, 2\})$ be the j-th diagonal element of the covariance kernel K, $S : (\nu, K) \mapsto (1-p) \left(-\nu_1/K_{1,1}^{1/2}\right)^2 + p \left(\nu_2/K_{2,2}^{1/2}\right)^2$, $q(r) = (r^2 + 100)^{-1}(2r)^{-d}x$, and

$$
\nu_{n,F_0}(y, h) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \text{Diag} \left(\nabla_{F_0} \left(\tilde{y} \right) \right)^{-1/2} \left(m \left(D_i, \tilde{y}, X_i, h, y \right) - \mathbb{E}_{F_0} \left[m \left(D_i, \tilde{y}, X_i, h, y \right) \right] \right).
$$

Finally, we define $k_{n,F_0}(y, h) = \sqrt{n} \text{Diag} \left(\nabla_{F_0} \left(\tilde{y} \right) \right)^{-1/2} \mathbb{E}_{F_0} \left[m \left(D_i, \tilde{y}, X_i, h, y \right) \right]$.

$$
K_{n,F_0}(y, h, y', h') = \text{Diag} \left(\nabla_{F_0} \left(\tilde{y} \right) \right)^{-1/2} \text{Cov} \left(\sqrt{n} \tilde{m}_n(y, h), \sqrt{n} \tilde{m}_n(y', h') \right) \text{Diag} \left(\nabla_{F_0} \left(\tilde{y} \right) \right)^{-1/2}
$$

and use the notations $K_{n,F_0}(y, h) = K_{n,F_0}(y, h, y, h)$ and $\widebar{K}_{n,F_0}(y, h) = \widebar{K}_{n,F_0}(y, h, y, h)$.

With this notation, we have, by definition of T,

$$
T = \sup_{y \in \mathcal{Y}, (a,r) : r \in \{1, \ldots, r_n\}, a \in A_r} q(r) S(\nu_{n,F_0}(y, h, a, r) + k_{n,F_0}(y, h, a, r), \widebar{K}_{n,F_0}(y, h, a, r)).
$$

To characterize the distribution of T (resp. T^*), we first prove the convergence of ν_{n,F_0} and $K_{n,F_0}(y, h, a, r)$ (resp. ν_{n,F_0}^* and $K_{n,F_0}^*(y, h, a, r)$). For those purposes, we use a class of functions which is a general form taken by m_1 defined in (5), namely for any $0 < N_1 < M_1$, the class of functions

$$
\mathcal{M}_0 = \{ f_{y, \phi_1, \phi_2, h} (\tilde{y}, x, d) = (d \phi_1 (y - \tilde{y})^+ - (1-d) \phi_2 (y - \tilde{y})^+) h(x), \}
$$

Remark first that this class is a particular case of classes \mathcal{M} defined in (25) below. Then, by the proof of Proposition 5 below, Assumptions PS1 and PS2 in AS are satisfied. Thus the assumptions of Lemma D.2 in AS hold as well. This entails that Assumptions PS4 and PS5 in AS hold. Namely, there exists a Gaussian process ν_{F_0} such that

- $\nu_{n,F_0} \rightarrow_d \nu_{F_0}$ and $\nu_{n,F_0}^* \rightarrow_d \nu_{F_0}$;

- For all $r \in \mathbb{N}$ and $(y, h) \in \mathcal{Y} \times \mathcal{H}_r$, $K_{n,F_0}(y, h) \rightarrow_p K_{F_0}(y, h) + \epsilon I_2$ and $K_{n,F_0}^*(y, h) \rightarrow_p K_{F_0}(y, h) + \epsilon I_2$, where I_2 is the 2×2 identity matrix.

Moreover, letting $k_{F_0}(y, h)$ denote the limit in probability of $k_{n,F_0}(y, h)$, we have $k_{F_0}(y, h) = 0$ if $(y, h) \in \mathcal{L}_{F_0}$ and $+\infty$ otherwise. Note that by assumption, the set \mathcal{L}_{F_0} is nonempty.
Thus, using (D.11) in the proof of Theorem D.3. in AS, which is based on the uniform continuity of the function S in the sense of Assumption S2 therein, we have, under F_0,

$$ T \to_d \sup_{y \in Y} \sum_{(a,r) \in A, x \in N} S(\nu_{F_0}(y, h_{a,r}) + k_{F_0}(y, h), K_{F_0}(y, h_{a,r}) + \epsilon_2) $$

$$ = S := \sup_{y \in Y} \sum_{(a,r) \in \mathcal{L}_{F_0}} q(r) S(\nu_{F_0}(y, h_{a,r}), K_{F_0}(y, h_{a,r}) + \epsilon_2), $$

where the equality follows by definition of S and $k_{F_0}(y, h)$. Similarly, using Assumption PS5 and (D.11) in AS, replacing T by T^* and quantities $\nu_{n,F_0}(y, h_{a,r})$ and $K_{n,F_0}(y, h_{a,r})$ by their bootstrap counterparts (see the proof of Lemma D.4 in AS) we have $T^* \to_d S$.

2. The cdf H of S is continuous and strictly increasing in the neighborhood of any of its quantile of order $1 - \alpha > 1/2$.

First, the cdf H of S is a convex functional of the Gaussian process ν_{F_0}. Then, as in the proof of Lemma B3 in Andrews and Shi (2013), we can use Theorem 11.1 of Davydov et al. (1998) p.75 to show that H is continuous and strictly increasing at every point of its support except $r = \inf\{r \in \mathbb{R} : H(r) > 0\}$. Moreover, for any $r > 0$,

$$ H(r) \geq \mathbb{P} \left(\sup_{y \in Y} \sum_{(a,r) \in \mathcal{L}_{F_0}} q(r) S(\nu_{F_0}(y, h_{a,r}), K_{F_0}(y, h_{a,r}) + \epsilon_2) < r \right) $$

$$ \geq \mathbb{P} \left(\sup_{j \in \{1,2\}, (y,a,r) \in \mathcal{L}_{F_0}} \left| (K_{2,F_0,j}(y, h_{a,r}) + \epsilon)^{-1/2} \nu_{F_0,j}(y, h_{a,r}) \right| < \frac{\sqrt{r/2}}{Q} \right), $$

$$ > 0, $$

where $Q = \sum_{(a,r) \in \mathcal{L}_{F_0}} q(r) < \infty$ and we use Problem 11.3 of Davydov et al. (1998) p.79 for the last inequality. This yields $r > r$ and H is continuous and strictly increasing on $(0, \infty)$.

Then, we show that for any $\alpha \in (0, 1/2)$, the quantile of order $1 - \alpha$ of the distribution of S is positive. By assumption, there exists $(y_0, h_0) \in \mathcal{L}_{F_0}$ such that either $K_{F_0,11}(y_0, h_0) > 0$ or $K_{F_0,2}(y_0, h_0) > 0$. Then

$$ \mathbb{P}(S > 0) = 1 - \mathbb{P} \left(\sup_{y \in Y} \sum_{(a,r) \in \mathcal{L}_{F_0}} q(r) S(\nu_{F_0}(y, h_{a,r}), K_{F_0}(y, h_{a,r}) + \epsilon_2) = 0 \right) $$

$$ \geq 1 - \mathbb{P}(\nu_{F_0,1}(y_0, h_0) \leq 0, \nu_{F_0,2}(y, h_0) = 0) $$

$$ \geq 1 - \min \{ \mathbb{P}(\nu_{F_0,1}(y_0, h_0) \leq 0), \mathbb{P}(\nu_{F_0,2}(y_0, h_0) = 0) \} $$

$$ \geq 1/2. \tag{16} $$

The first inequality holds by definition of the supremum and because S is nonnegative. To obtain the last inequality, note that either $\nu_{F_0,1}(y_0, h_0)$ is non-degenerate, in which case the
first probability is \(1/2\) (since \(\nu_{F,1}(y_0, h_0)\) is normal with zero mean), or \(\nu_{F,2}(y_0, h_0)\) is non-degenerate, in which case the second probability is 0.

Finally, using that \(H\) is strictly increasing on \((0, \infty)\), (16) ensures that any quantile of \(S\) of order \(1 - \alpha\) with \(\alpha \in [0, 1/2)\) is positive. Hence, \(H\) is continuous and strictly increasing in the neighborhood of any such quantiles.

3. Conclusion.

Using \(T^* \to^d S\) in distribution, Step 2 and Lemma 21.2 in Van der Vaart (2000), we have that for \(\eta > 0\),

\[
\lim_{\eta \to 0} \limsup_{n \to \infty} \mathbb{P}_{F_0} (T > c^*_n, \alpha) = \alpha.
\]

Combined with the inequality of Part (i) above, this yields the result.

(iii) This results Theorem E.1 in AS. First, Assumption SIG2 in AS holds for \(\sigma^2_{F} = \mathbb{V}_{F}(\tilde{Y})\), following the proof of Lemma 7.2 (b) under Assumption 4-(ii). Second, Assumptions PS4 and PS5 are satisfied using the point (ii) above. Third, Assumptions CI, MQ, S1, S3, S4 in AS are also satisfied by construction of the statistic \(T\). Thus, we can apply Theorem E.1 in AS and the result follows.

\[\square\]

F.8 Proof of Theorem 2.

For any positive convex function \(\rho\), we let

\[
W_\rho(F, G) = \inf_{F_U, V \sim F, V \sim G} \mathbb{E} [\rho (|U - V|)].
\]

We also define

\[
\mathcal{G} = \left\{ G \text{ cdf} : \int_{-\infty}^{y} G(t) dt \leq \int_{-\infty}^{y} F_Y(t) dt \forall y \in \mathbb{R}, \int ydG(y) = \int ydF_Y(y) \right\}.
\]

The proof is divided in three steps. First, we prove that the initial infimum is equal to \(\inf_{G \in \mathcal{G}} W_\rho(F_\psi, G)\). Second, we prove that there is a unique \(G^*\) that reaches this infimum for all convex function \(\rho : \mathbb{R}^+ \to \mathbb{R}^+\) such that \(\rho(0) = 0\). Third, we prove that there is a unique function \(g^*\) such that (3) holds, and that this function is increasing.

1. \(\inf_{(Y', \psi', \psi'') \in \Psi} \mathbb{E}[\rho (|\psi' - \psi''|)] = \inf_{G \in \mathcal{G}} W_\rho(F_\psi, G)\).

First, by definition of \(W_\rho\) and because, for all \((Y', \psi', \psi'') \in \Psi, F_{\psi'} = F_\psi\), we have

\[
\inf_{(Y', \psi', \psi'') \in \Psi} \mathbb{E}[\rho (|\psi' - \psi''|)] = \inf_{G: \exists (Y', \psi', \psi'') \in \Psi: F_{\psi'} = G} W_\rho(F_\psi, G).
\]
Thus, it remains to prove that $G' = G$, with G' defined by
\[
G' = \{ G : \exists (Y', \psi', \psi'') \in \Psi : F_{\psi''} = G \}.
\] (17)

First, let $G \in G'$. Let $(Y', \psi', \psi'') \in \Psi$ be such that $F_{\psi''} = G$. By definition of Ψ, we have $\mathbb{E}(Y'|\psi'') = \psi''$ and $F_{Y'} = F_Y$. Therefore, by implication (i)\Rightarrow(ii) of Theorem 1 applied to Y' and ψ'', $G = F_{\psi''} \in G$. Hence, $G' \subset G$. Conversely, let $G \in G$. Then, by implication (ii)\Rightarrow(i) of Theorem 1, there exists (Y', ψ'') such that $Y' \sim Y$, $F_{\psi''} = G$ and $\mathbb{E}(Y'|\psi'') = \psi''$. Define $\psi' = \psi$. Then $(Y', \psi', \psi'') \in \Psi$ and $G \in G'$. Thus, $G \subset G'$ and the first step follows.

2. There exists a unique G^* such that for all ρ, $W_\rho(F_\psi, G^*) = \inf_{G \in G} W_\rho(F_\psi, G)$.

Because F_ψ has no atom, the distribution of $H^{-1} \circ F_\psi(\psi)$ is H, for any cdf H. Hence, the set $\{F_g(\psi) : g$ measurable$\}$ is actually the set of all cdf’s. Then, by Proposition 3.1 and Remark 3.2 in Gozlan et al. (2018), we have, for any convex function $\rho : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ such that $\rho(0) = 0$,
\[
\inf_{G \in G} W_\rho(F_\psi, G) = \inf_{F_{Y'} : F_{Y'} = F_Y, F_{\psi'} = F_\psi} \mathbb{E}\left[\rho\left(\left|\psi' - \mathbb{E}[Y'|\psi']\right|\right)\right].
\] (18)

Third, by Theorem 1.5 in Gozlan et al. (2018), there exists a distribution G^* such that

1. For all f convex, $\int f dG^* \leq \int f dF_Y$;
2. for any convex function $\rho : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ such that $\rho(0) = 0$,
\[
\inf_{F_{Y'} : F_{Y'} = F_Y, F_{\psi'} = F_\psi} \mathbb{E}\left[\rho\left(\left|\psi' - \mathbb{E}[Y'|\psi']\right|\right)\right] = W_\rho(F_\psi, G^*).
\] (19)

By, e.g., Proposition 2.3 in Gozlan et al. (2018), Point (1) is equivalent to G^* satisfying (iii) in Theorem 1. Therefore, in view of Theorem 1, we have $G^* \in G$. Combining (18) and (19), we obtain:
\[G^* \in \arg\min_{G \in G} W_\rho(F_\psi, G).\]

Now, G is convex. Moreover, by Lemma 3.2.1 of Pass (2013) and because F_ψ has no atom, $G \mapsto W_\rho(F_\psi, G)$ is strictly convex for $\rho(x) = x^2$. Therefore, G^* is the unique minimizer of $G \mapsto W_\rho(F_\psi, G)$ for this ρ. It is therefore the unique $G \in G$ minimizing $W_\rho(F_\psi, G)$ for all convex function $\rho : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ such that $\rho(0) = 0$.

3. There exists a unique g^* such that $\mathbb{E}[\rho(|\psi - g^*(\psi)|)] = \inf_{(Y', \psi', \psi'') \in \Psi} \mathbb{E}[\rho(|\psi' - \psi''|)]$ and g^* is increasing.

Let $g^* = G^{*-1} \circ F_\psi$. g^* is increasing. We now prove that it satisfies the equality above. First, by construction, $F_{g^*(\psi)} = G^*$. Moreover, by e.g., Theorem 5.26 of Villani (2008), g^* is the unique function satisfying
\[
\mathbb{E}[\rho(|\psi - g^*(\psi)|)] = W_\rho(F_\psi, G^*).
\] (20)
This equation, together with the first and second steps, imply that

\[
\mathbb{E}[\rho(|\psi - g^*(\psi)|)] = \inf_{(Y', \psi', \psi'')} \mathbb{E}[\rho(|\psi' - \psi''|)]. \quad (21)
\]

Now, consider \(g \neq g^* \) such that \(F_{g(\psi)} = G^* \). By unicity of \(g^* \) satisfying (20), we have \(\mathbb{E}[\rho(|\psi - g(\psi)|)] > W_\rho(F_\psi, G^*) \). Finally, if \(g \neq g^* \) is such that \(F_{g(\psi)} = G \neq G^* \) for some \(G \in \mathcal{G} \), we have, taking \(\rho(x) = x^2 \),

\[
\mathbb{E}[\rho(|\psi - g(\psi)|)] \geq W_\rho(F_\psi, G) > W_\rho(F_\psi, G^*).
\]

Therefore, \(g^* \) is the unique function satisfying (21) for all convex function \(\rho : \mathbb{R}^+ \mapsto \mathbb{R}^+ \) such that \(\rho(0) = 0 \).

F.9 Proof of Theorem 5.

First, in Step 1 of the proof of their Theorem 1.5, Gozlan et al. (2018) show that \(\hat{G}^*_n \), defined as the empirical distribution of \((\tilde{\psi}_1, ..., \tilde{\psi}_n) \) satisfies

\[
\hat{G}^*_n = \arg\min_{G \in \mathcal{G}} W_2(\hat{F}_\psi, G),
\]

where \(\hat{F}_\psi \) denotes the empirical cdf of \(\psi \) and for any \(q \geq 1, W_\rho(F, G) = W_{\rho_q}(F, G)^{1/q} \) with \(\rho_q(x) = |x|^q \). Given the definition of \(g^* \), we also have \(g^* = \hat{G}^*_n \circ \hat{F}_\psi \). Moreover, \(\hat{F}_\psi(x) \) converges almost surely to \(F_\psi(x) \).

Let us focus hereafter on the event of probability one for which \(\hat{F}_\psi \) and \(\hat{F}_Y \) converges to \(F_\psi \) and \(F_Y \), respectively, for the \(W_2 \) distance. On this event, consider any subsequence of \((\hat{G}^*_n)_{n \in \mathbb{N}} \).

Following Step 2 of the proof of Theorem 1.5 in Gozlan et al. (2018), but replacing \(|x| \) by \(x^2 \) and using the fact that \(\mathbb{E}(\psi^2) < +\infty \) and \(\mathbb{E}(Y^2) < +\infty \), there exists a further subsequence converging for the \(W_2 \) distance. Moreover, the corresponding limit \(\bar{G} \) satisfies, for all convex function \(\rho : \mathbb{R}^+ \mapsto \mathbb{R}^+ \) such that \(\rho(0) = 0 \),

\[
W_\rho(F_\psi, \bar{G}) = \inf_{F_{Y'}, \psi'; Y'=F_Y, F_{\psi'}=F_\psi} \mathbb{E}[\rho(|\psi' - \mathbb{E}[Y'|\psi']|)].
\]

Hence, by the proof of Theorem 2, \(W_\rho(F_\psi, \bar{G}) = W_\rho(F_\psi, G^*) \). Because

\[
G^* = \arg\min_{G \in \mathcal{G}} W_2(F_\psi, G),
\]

we have \(\bar{G} = G^* \). Hence, any subsequence of \((\hat{G}^*_n)_{n \in \mathbb{N}} \) admits a converging further subsequence converging to \(G^* \). This implies that almost surely, \((\hat{G}^*_n)_{n \in \mathbb{N}} \) converges to \(G^* \) for the \(W_2 \) distance.
Finally, let us prove the almost sure convergence of $\hat{g}^*(t)$ to $g^*(t)$ for all t that is a continuity point of g^* and such that $F_\psi(t) \in (0, 1)$. Fix $\varepsilon > 0$ and let us prove that for all n large enough, $|\hat{g}^*(t) - g^*(t)| < \varepsilon$ with probability one. Because $F_\psi(t)$ is a continuity point of G^{*-1}, there exists $\delta > 0$ such that for all u satisfying $|u - F_\psi(t)| < \delta$, $|G^{*-1}(u) - G^{*-1}(F_\psi(t))| < \varepsilon/2$. It is easy to see that the set of points of discontinuity of G^{*-1} is at most countable. Thus, there exists $\eta \in (0, \delta)$ such that $F_\psi(t) + \eta$ and $F_\psi(t) - \eta$ are continuity points of G^{*-1}. Moreover, with probability one and for all n large enough, $|\hat{F}_\psi(t) - F_\psi(t)| \leq \eta$. Then, for all n large enough and with probability one,

$$\hat{G}^{*-1}_n \circ \hat{F}_\psi(t) \leq \hat{G}^{*-1}_n \circ [F_\psi(t) + \eta].$$

Because $F_\psi(t) + \eta$ is a continuity points of G^{*-1}, we have by what precedes that for all n large enough and with probability one,

$$\hat{G}^{*-1}_n \circ \hat{F}_\psi(t) \leq \hat{G}^{*-1}_n \circ [F_\psi(t) + \eta] \leq G^{*-1} \circ [F_\psi(t) + \eta] + \varepsilon/2 \leq G^{*-1} \circ F_\psi(t) + \varepsilon.$$

Similarly, for all n large enough and with probability one, $\hat{G}^{*-1}_n \circ \hat{F}_\psi(t) \geq G^{*-1} \circ F_\psi(t) - \varepsilon$. The result follows by definition of $\hat{g}^*(t)$.

F.10 Proof of Theorem 3.

Note first that because $F_{E[Y|Z]}$ is continuous, $F_{E[Y|Z]}(E(Y|Z))$ is uniformly distributed (see, e.g. Van der Vaart, 2000, p.305). In turn, this implies that the cdf of $h^M(E(Y|Z))$ is F_ψ. Hence, $(h^M(E(Y|Z)), E(Y|Z)) \in \Psi^M$. If for all (ψ', ψ''), $E(\rho(|\psi' - \psi''|)) = +\infty$, Equality (4) holds. If not, let $(\psi', \psi'') \in \Psi^M$ be such that $E(\rho(|\psi' - \psi''|)) < +\infty$. Because ρ is convex, we have, for all $x' \geq x$ and $y' \geq y$,

$$\rho(|x' - y'|) - \rho(|x - y'|) - \rho(|x' - y|) + \rho(|x - y|) \leq 0.$$

Then, by Theorem 3.1.2 in Rachev and Rüschendorf (1998),

$$E[\rho(|\psi' - \psi''|)] \geq \int_0^1 \rho \left(|F^{-1}_{\psi'}(u) - F^{-1}_{E(Y|Z)}(u)| \right) du.
= \int \rho \left(\left| F^{-1}_{\psi'} \circ F_{E[Y|Z]}(v) - F^{-1}_{E[Y|Z]} \circ F_{E[Y|Z]}(v) \right| \right) dF_{E[Y|Z]}(v)
= E \left[\rho \left(h^M(E(Y|Z)) \right) \right]. \quad (22)$$
Finally, note that $F_{E[Y|Z]}^{-1}(v) < v$ only if v is in the interior or at the right end of a “flat” of $F_{E[Y|Z]}$ (see, e.g., lemma 21.1 in Van der Vaart, 2000). Because the set of such right end points is countable and $F_{E[Y|Z]}$ has no atom, $F_{E[Y|Z]}^{-1} F_{E[Y|Z]}(E [Y|Z]) = E [Y|Z]$ almost surely. Combined with Equation (22), this implies (4).

Now, let us suppose that ρ is strictly convex and let $(\psi', E[Y|Z]) \in \Psi^m$ satisfy (4). We can apply the first part of the proof of Theorem 2.2.1 in Santambrogio (2015), remarking that it does not rely on the assumption of compact supports. This implies that the distribution of $(\psi', E[Y|Z])$ is equal to that of $(h^m(E[Y|Z]), E[Y|Z])$. Hence, conditional on $E[Y|Z]$, ψ' is degenerate and equal to $h^m(E[Y|Z])$. The result follows.

F.11 Proof of Proposition 5

We introduce $E_{F,c} = E_F \left[m(D_i, Y_{c,i}, X_i, h, y) \right]$ and

$$
\nu_{n,F}(y,h) = \frac{1}{\sqrt{n}} \sum_{i=1}^n \text{Diag} \left(\widehat{\mathbb{V}}_F \left(\widehat{Y}_{c,i} \right) \right)^{-1/2} \left(m(D_i, Y_{c,i}, X_i, h, y) - E_{F,c} \right),
$$

$$
\tau_{n,F}(y,h) = \frac{1}{\sqrt{n}} \sum_{i=1}^n \text{Diag} \left(\mathbb{V}_F \left(\widehat{Y}_{0,i} \right) \right)^{-1/2} \left(m(D_i, Y_{0,i}, X_i, h, y) - E_{F,0} \right).
$$

The proof is based on Theorem 5.1 in AS, hence we have to check that the corresponding assumptions PS1, PS2, and SIG1 hold. Namely, we have to ensure that

- **PS1**: for all sequence $F \in F$ and all $(d, y', x, h, y, c) \in \{0, 1\} \times \mathcal{Y} \times [0,1]^{d_x} \times \mathcal{H}_r \times \mathcal{Y} \times C_s ([0,1]^{d_x})$

 $$
 \left| m(d, y', x, h, y) \right| \leq M(d, y', x, h, y) \text{ and } E_F \left[M \left(D_i, Y_{c,i}, X_i, h, y \right)^{2+\delta} \right] \leq C < \infty,
 $$

 where $\delta > 0$ and for some function M;

- **PS2**: for all sequence $F_n \in F$, the i.i.d triangular array of processes

 $$
 \mathcal{T}_n = \left\{ \frac{m(D_i, Y_{n,c(X_{n,i})}, X_{n,i}, h, y)}{\mathbb{V}_{F_n} \left(\widehat{Y}_{n,c(X_{n,i})} \right)}, \ (c, y, h) \in C_s ([0,1]^{d_x}) \times \mathcal{Y} \times \mathcal{H}, \ i \leq n, \ n \geq 1 \right\}
 $$

 is manageable with respect to some envelope function U_1 (see Pollard, 1990, p.38 for the definition of a manageable class);

- **SIG1**: for all $\zeta > 0$, $\sup_{F \in F, c \in C_s([0,1]^{d_x})} \mathbb{P} \left(\left| \mathbb{V}_{F} \left(\widehat{Y}_{i,c} \right) / \mathbb{V}_{F} \left(\widehat{Y}_{i,c} \right) - 1 \right| > \zeta \right) \rightarrow 0$.

We proceed in two steps, to handle the fact that c_0 and $\text{Diag} \left(\mathbb{V}_{F} \left(\widehat{Y}_{c_0} \right) \right)^{-1/2}$ are estimated:
1. We first show that
\[
\sup_{F \in \mathcal{F}_0} \sup_{h \in \cup_{r \geq 1} \mathcal{R}, y \in \mathcal{Y}} \| \nu_n,F(y, h) - \nu_{n,F}(y, h) \|_\infty = o_P(1), \tag{23}
\]
\[
\sup_{F \in \mathcal{F}_0} \sup_{h \in \cup_{r \geq 1} \mathcal{R}, y \in \mathcal{Y}} \| \nu_{n,F}(y, h) - \nu_{n,F}(y, h) \|_\infty = o_P(1). \tag{24}
\]

2. Next, we show that \(m \) satisfies assumptions PS1, PS2, and that SIG1 in AS also holds for \(\hat{\sigma}_F^2 = \forall F \left(\hat{Y}_{c0} \right) \), where \(F \in \mathcal{F} \) and \(\hat{\sigma}_n^2 = n^{-1} \sum_{i=1}^n \left(\hat{Y}_{ci} - n^{-1} \sum_{j=1}^n \hat{Y}_{cj} \right)^2 \).

1. **Proof of (23)-(24).**

We apply the uniform version over \(F \in \mathcal{F}_0 \) of Theorem 3 in Chen et al. (2003) to a general class of functions to which pertain the moment condition \(m \) (see (5), with \(\tilde{Y} \) replaced here by \(\hat{Y}_c = Dq \left(\tilde{Y}, c \right) + (1-D)\psi \)) and without the moment equality \(m_2 \). Hence, it suffices to verify that Assumptions (3.2) and (3.3) of Theorem 3 in Chen et al. (2003) are satisfied. Let us introduce, for any \(0 < N_1 < M_1 \), the classes of functions
\[
\mathcal{M}_1 = \left\{ f_{c,y,\phi,h} (\tilde{y}, x) = \phi (y - q (\tilde{y}, c(x)))^+ h(x), (c, y, \phi, h) \in \mathcal{C}_s \left([0,1]^{d_x} \right) \times \mathcal{Y} \times [N_1, M_1] \times \mathcal{H} \right\},
\]
\[
\mathcal{M}_2 = \left\{ f_{c,y,\phi,h} (\tilde{y}, x) = \phi (y - \tilde{y})^+ h(x), (c, y, \phi, h) \in \mathcal{C}_s \left([0,1]^{d_x} \right) \times \mathcal{Y} \times [N_1, M_1] \times \mathcal{H} \right\},
\]
\[
\mathcal{M} = \left\{ f_{c,y,\phi_1,\phi_2,h} (\tilde{y}, x, d) = (d g_{c,y,\phi_1,h} - (1-d) q_{c,y,\phi_2,h})(\tilde{y}, x), g \in \mathcal{M}_1, q \in \mathcal{M}_2, (c, y, \phi_1, \phi_2, h) \in \mathcal{C}_s \left([0,1]^{d_x} \right) \times \mathcal{Y} \times [N_1, M_1]^2 \times \mathcal{H} \right\}.
\]

Note that \(\phi_1, \phi_2, \) and \(c \) in the class \(\mathcal{M} \) denote components of \(m \) that are estimated.

Consider the space \(\mathcal{C}_s \left([0,1]^{d_x} \right) \times \mathcal{Y} \times [N_1, M_1]^2 \times \mathcal{H} \) equipped with the norm
\[
\| (c, y, \phi_1, \phi_2, h) \| = \max \left\{ \|c\|_{[0,1]^{d_x}}, \|y\|, \|\phi_1\|, \|\phi_2\|, \|h\|_{[0,1]^{d_x}} \right\}.
\]

For \(v = (c, y, \phi_1, \phi_2, h), v' = (c', y', \phi_1', \phi_2', h') \in \mathcal{C}_s \left([0,1]^{d_x} \right) \times \mathcal{Y} \times [N_1, M_1]^2 \times \mathcal{H} \) and \((\tilde{y}, x, d) \in \mathcal{Y} \times [0,1]^{d_x} \times \{0,1\} \), we have, by the triangular inequality and Assumptions 5-(i) and 5-(v),
\[
|f_v(\tilde{y}, x, d) - f_{v'}(\tilde{y}, x, d)| \leq \left| g_{c,y,\phi_1,h}(\tilde{y}, x) - g_{c',y',\phi_1',h'}(\tilde{y}, x) \right|
+ \left| q_{c,y,\phi_2,h}(\tilde{y}, x) - q_{c',y',\phi_2',h'}(\tilde{y}, x) \right|
\leq (M + M_0) \left(\|\phi_1 - \phi_2\| + \|\phi_2 - \phi_2\| \right)
+ 2M_1 \left(\|y - y'\| + \|q(\tilde{y}, c(x)) - q(\tilde{y}, c'(x))\| \right)
+ 2M_0 M_1 \left(\|q(\tilde{y}, c(x)) - q(\tilde{y}, c(x))\| \leq y \right) - \left(\|q(\tilde{y}, c(x))\| \leq y' \right)
+ \left(\|q(\tilde{y}, c(x)) - y' \| + \|h(x) - h'(x)\| \right).
\]
Denote by $K_q > 0$ the Lipschitz constant of $q(\tilde{y}, \cdot)$. Then, by convexity of $x \mapsto x^2$, we obtain

$$
\frac{1}{7} |f_v(\tilde{y}, x, d) - f_{v'}(\tilde{y}, x, d)|^2 \leq (M + M_0)^2 \left(\|\phi_1 - \phi'_1\|^2 + \|\phi_2 - \phi'_2\|^2\right) \\
+ 4M^2 I_1 \left\|y - y'\right\|^2 + K_q \|c - c'\|^2_{[0,1]^d_x} \\
+ 4(M_0M_1)^2 \left[\mathbb{I} \{q(\tilde{y}, c(x)) \leq y\} - \mathbb{I} \{q(\tilde{y}, c(x)) \leq y'\}\right] \\
+ \mathbb{I} \{q(\tilde{y}, c(x)) \leq y'\} - \mathbb{I} \{q(\tilde{y}, c'(x)) \leq y'\} \\
+ \|h - h'\|^2_{[0,1]^d_x}.
$$

Fix $\delta > 0$. If $\|v - v'\| \leq \delta$, this yields

$$
\frac{1}{7} |f_v(\tilde{y}, x, d) - f_{v'}(\tilde{y}, x, d)|^2 \leq \delta^2 \left(2(M + M_0)^2 + 4M^2 I_1 (1 + K_q) + 4(M_0M_1)^2\right) \\
+ 4(M_0M_1)^2 \left[\mathbb{I} \{q(\tilde{y}, c(x)) \leq y + \delta\} - \mathbb{I} \{q(\tilde{y}, c(x)) \leq y - \delta\}\right] \\
+ \mathbb{I} \{y \leq q' (y', c(x))\} - \mathbb{I} \{q \leq q' (y', c(x))\}.
$$

Next, by Assumption 5-(iv), we obtain

$$
\mathbb{E} \left[\mathbb{I} \{q(\tilde{Y}, c(X)) \leq y + \delta\} - \mathbb{I} \{q(\tilde{Y}, c(X)) \leq y - \delta\}\right] = F_q(\tilde{Y}, c(X)) (y + \delta) - F_q(\tilde{Y}, c(X)) (y - \delta) \\
\leq 2Q_2 \delta.
$$

Finally, we have

$$
\mathbb{E} \left[\mathbb{I} \{Y \leq q' (y', c(X))\} - \mathbb{I} \{\tilde{y} \leq q' (y', c(X))\}\right] \\
\leq \mathbb{E} \left[\mathbb{I} \{Y \leq q' (y', c(X)) - Q_{F,2}\delta\} - \mathbb{I} \{\tilde{y} \leq q' (y', c(X)) + Q_{F,2}\delta\}\right] \\
\leq \mathbb{E} \left[F_{Y|X} (q' (y', c(X)) - Q_{q'} \delta|X) - F_{Y|X} (q' (y', c(X)) + Q_{q'} \delta|X)\right] \\
\leq 2Q_{F,1} Q_{q'} \delta,
$$

where $Q_{q'}$ is the Lipschitz constant of q'. Thus, by Assumption 5, there exists $Q > 0$ such that

$$
\sup_{F \in \mathcal{F}_0} \mathbb{E} \left[\sup_{\|v - v'\| \leq \delta} \left|f_v(\tilde{Y}, X, D) - f_{v'}(\tilde{Y}, X, D)\right|^2\right] \leq Q \delta. \quad (26)
$$

Therefore the class \mathcal{M} satisfies Condition (3.2) of Theorem 3 in Chen et al. (2003) uniformly in $F \in \mathcal{F}_0$. Moreover, the class \mathcal{H} is manageable and thus Donsker (see Lemma 3 in Andrews and Shi, 2013). Finally, by Remark 3 (ii) in Chen et al. (2003), $\mathcal{C}_s ([0,1]^{d_x})$ is also Donsker. Then, $\mathcal{C}_s ([0,1]^{d_x})$, \mathcal{Y}, $[N_1, M_1]$, and \mathcal{H} satisfy Condition (3.3) of Theorem 3 in Chen et al. (2003). The result follows by Theorem 3 in Chen et al. (2003).

2. m satisfies PS1 and PS2 of AS and SIG1 of AS also holds for σ_F^2 and σ_h^2.

From Assumption 5 (iii) and the proof of Lemma 7.2 (a) in AS, PS1 is satisfied replacing B by $\max(M, M_0)$ in the proof of Lemma 7.2-(a) in AS.
We now show that PS2 in AS also holds. As the result is uniform over \mathcal{F}_0, we have to consider sequences for the cdfs F_n of $(D_{n,i}, Y_{n,i}, X_{n,i})_{i=1 \ldots n}$ (with $F_n \in \mathcal{F}_0$). We also define
\[
\tilde{Y}_{n,c(X_{n,i})} = D_{n,i} q(Y_{n,i}, c(X_{n,i})) + (1 - D_{n,i}) \psi_{n,i},
\]
\[
W_{n,i} = D_{n,i} E_{F_n}[D_{n,i}] - (1 - D_{n,i}) / E_{F_n}[1 - D_{n,i}],
\]
\[
\sigma^2_{F_n} = \mathbb{V}_{F_n} \left(\tilde{Y}_{n,c(X_{n,i})} \right).
\]
Note that by Assumption 4 (iii), $\sigma^2_{F_n} \geq \bar{\sigma} > 0$ for all $F_n \in \mathcal{F}$. Let $(\Omega, \mathcal{F}, F_n)$ be a probability space and let ω denote a generic element in Ω. Showing Assumption PS2 in AS then boils down to prove that for any $0 < N_1 < M_1 := 1 / \inf_F \sigma^2_{F_n}$, the i.i.d triangular array of processes
\[
\mathcal{T}_{1,n,\omega} = \left\{ W_{n,i} \phi \left(y - \tilde{Y}_{n,c(X_{n,i})} \right)^+ h(X_{n,i}), \ (c, y, \phi, h) \in \mathcal{C}_s \left([0, 1]^d x \right) \times \mathcal{Y} \times [N_1, M_1] \times \mathcal{H}, \ i \leq n, n \geq 1 \right\}
\]
is manageable with respect to some envelope function U_1. Lemma 3 in Andrews and Shi (2013) shows that the processes $\{h(X_{n,i}), \ h \in \mathcal{H}, \ i \leq n, n \geq 1\}$ are manageable with respect to the constant function 1. Then, using Lemma D.5 in AS, it remains to show that
\[
\mathcal{T}'_{1,n,\omega} = \left\{ W_{n,i} \phi \left(y - \tilde{Y}_{n,c(X_{n,i})} \right)^+ h(X_{n,i}), \ (c, y, \phi, h) \in \mathcal{C}_s \left([0, 1]^d x \right) \times \mathcal{Y} \times [N_1, M_1], \ i \leq n, n \geq 1 \right\},
\]
is manageable with respect to some envelope. For such an envelope, we can consider $U'_1(\omega) = (M_0 + M)/(\sigma \epsilon_0)$. We now prove the manageability of $\mathcal{T}'_{1,n,\omega}$. Let us define
\[
\mathcal{M}' = \left\{ f_{c,y,\phi_1,\phi_2}(\bar{y}, x, d) = d \phi_1 (y - q(\bar{y}, c(x)))^+ - (1 - d) \phi_2 (y - \bar{y})^+, \ (c, y, \phi_1, \phi_2) \in \mathcal{C}_s \left([0, 1]^d x \right) \times \mathcal{Y} \times [N_1, M_1]^2 \right\}.
\]
Reasoning as for the class \mathcal{M} defined in (25), and using the last equation of the proof of Theorem 3 in Chen et al. (2003), p.1607, we have that for $\epsilon > 0$,
\[
N_{[\epsilon]} (\epsilon, \mathcal{M}', \| \cdot \|_2) \leq N (\epsilon', [N_1, M_1]^2, |\cdot|) \times N (\epsilon', \mathcal{Y}, |\cdot|) \times N' (\epsilon', \mathcal{C}_s \left([0, 1]^d x \right), \| \cdot \|_{[0,1]^d x}),
\]
with $\epsilon' = (\epsilon/(2Q))^2$ and Q defined in (26). Using Theorem 2.7.1 page 155 in Van der Vaart and Wellner (1996), there exists a constant Q_2 depending only on s, d_X, and $[0,1]^d x$ such that
\[
\ln \left(N \left(\epsilon', \mathcal{C}_s ([0,1]^d x), \| \cdot \|_{[0,1]^d x} \right) \right) \leq Q_2 \epsilon'^{-d_X/s}.
\]
Moreover, because \mathcal{Y} and $[N_1, M_1]$ are compact subsets of two Euclidean spaces, there exist Q_3, Q_4 such that
\[
N \left(\epsilon', [N_1, M_1]^2, |\cdot| \right) \leq Q_3 \epsilon'^{-4} \text{ and } N \left(\epsilon', \mathcal{Y}, |\cdot| \right) \leq Q_4 \epsilon'^{-2}.
\]
This yields
\[
\ln \left(N[1] (\epsilon, \mathcal{M}', \| \cdot \|_2) \right) \leq (6 + Q_2) \max \left(-\ln(\epsilon'), \epsilon'^{-d_\lambda/s} \right) + \ln(Q_3 Q_4). \tag{28}
\]

Let \(\odot \) denote element-by-element product and \(\mathcal{D} (\epsilon | \alpha \odot U'_1(\omega), \alpha \odot \mathcal{T}'_{1,n,\omega}) \) denote random packing numbers. By (A.1) in Andrews (1994, p.2284), we have
\[
\sup_{\omega \in \Omega, n \geq 1, \alpha \in \mathbb{R}^n_+} \mathcal{D} (\epsilon | \alpha \odot U'_1(\omega), \alpha \odot \mathcal{T}'_{1,n,\omega}) \leq \sup_{F \in \mathcal{F}_0} N \left(\frac{\epsilon}{2}, \mathcal{M}', \| \cdot \|_2 \right)
\]
\[
\leq \sup_{F \in \mathcal{F}_0} N[1] (\epsilon, \mathcal{M}', \| \cdot \|_2), \tag{29}
\]
where the second inequality follows as in e.g., Van der Vaart and Wellner (1996, p.84). Then, (28) ensures (see Definition 7.9 in Pollard (1990), p.38) that
\[
\sup_{\omega \in \Omega, n \geq 1, \alpha \in \mathbb{R}^n_+} \mathcal{D} (\epsilon | \alpha \odot U'_1(\omega), \alpha \odot \mathcal{T}'_{1,n,\omega}) \leq \lambda(\epsilon),
\]
where \(\lambda(\epsilon) = \exp \left((6 + Q_2) \max \left(-2 \ln \left(\epsilon/(2Q) \right), \left(\epsilon/(2Q) \right)^{-2d_\lambda/s} \right) + \ln(Q_3 Q_4) \right). \) Moreover, by using \(\sqrt{a + b} \leq \sqrt{a} + \sqrt{b} \) for all \(a, b \geq 0, \)
\[
\int_0^1 \sqrt{\ln(\lambda(e))} de \leq \sqrt{6 + Q_2} \int_0^1 \left[\max \left(-2 \ln \left(\epsilon/(2Q) \right), \left(\epsilon/(2Q) \right)^{-2d_\lambda/s} \right) \right]^{1/2} de + \sqrt{\ln(Q_3 Q_4)} < \infty.
\]
Thus, \(\mathcal{T}'_{1,n,\omega} \) hence \(\mathcal{T}_{1,n,\omega} \) are manageable. Therefore, \(m \) satisfies PS2 in AS.

Finally, in order to show that SIG1 in AS is satisfied, we use Assumption 5 (iii) and follow the proof of Lemma 7.2 (b) in AS where we replace \(Y \) by \(q(Y, c(X)) \) and \(B \) by \(\max(M, M_0) \). The result follows.

F.12 Proof of Proposition 6

We first prove that if \(\mathbb{E}[\psi_L] \leq \mathbb{E}[Y] \leq \mathbb{E}[\psi_U] \), there exists a unique \(F^* \in \mathcal{F}_B \) such that \(\delta_{F^*} = 0 \). First, suppose that \(F^b \neq F^{b'} \) and, without loss of generality, \(b > b' \). Then \(\psi^b \leq \psi^{b'} \), implying that \(F^b(y) \leq F^{b'}(y) \) for all \(y \). Moreover, the inequality is strict for at least one \(y \). As a result, \(\mathbb{E}(\psi^b) > \mathbb{E}(\psi^{b'}) \). In other words, there is at most one \(F^* \in \mathcal{F}_B \) such that \(\delta_{F^*} = 0 \). If \(\mathbb{E}[\psi_L] = \mathbb{E}[Y] \) or \(\mathbb{E}[\psi_U] = \mathbb{E}[Y] \), such a solution also exists by taking \(b = -\infty \) and \(b = +\infty \), respectively. Now, suppose that \(\mathbb{E}[\psi_L] < \mathbb{E}[Y] < \mathbb{E}[\psi_U] \). For all \(+\infty > b > b' > -\infty, \)
\[
\psi^b - \psi^{b'} = (\psi_U - \max(\psi_L, b')) \mathbb{1}\{\psi_U \in [b', b)\} + (b - b') \mathbb{1}\{\psi_L < b', \psi_U \geq b\}
\]
\[
+ (b - \psi_L) \mathbb{1}\{\psi_L \in [b', b), \psi_U \geq b\}.
\]
As a result, \(|\psi^b - \psi^{b'}| \leq |b - b'|. \) This implies that \(\tilde{\delta} : b \mapsto \mathbb{E}[\psi^b] \) is continuous. Moreover, \(\lim_{b \to -\infty} \tilde{\delta}(b) = \mathbb{E}[\psi_L] < \mathbb{E}(Y) \) and \(\lim_{b \to +\infty} \tilde{\delta}(b) = \mathbb{E}[\psi_U] > \mathbb{E}(Y). \) By the intermediate value
Therefore, the result also follows in this case. The first part of Proposition 6 follows.

Let us turn to the second part of the proposition. First, if (ii) holds, there exists \(b_0 \in \mathbb{R} \) such that \(F^* = F^{b_0} \). Then, by construction and Theorem 1, \(Y \) and \(\psi^{b_0} \) satisfy \(H_0 \). Moreover, \(F^{b_0} \in [F_{\psi^L}, F_{\psi^U}] \). Therefore, \(H_{0B} \) holds as well.

Now, let us prove that (i) implies (ii). Let us denote by \(D \) the set of all the cdfs for \(\psi \) such that \(H_{0B} \) holds. By Theorem 1, these are cdfs \(F \) satisfying \(F_{\psi^U} \leq F \leq F_{\psi^L} \), \(\delta_F = 0 \) and dominating at the second order \(F_Y \). We show below that all \(F \in D \) are dominated at the second order by \(F^* \). Then, because \(F_{\psi^U} \leq F^* \leq F_{\psi^L} \) and \(\int ydF^*(y) = \int ydF_Y(y) \), \(D \) is not empty only if \(F^* \) dominates at the second order \(F_Y \). The result then follows by Theorem 1.

Thus, we have to show that for all \(t \in \mathbb{R} \),

\[
F^* = \arg\min_{F \in D} \int_{-\infty}^{t} F(y) dy.
\] (30)

First, if \(F^* = F^{+\infty} \), we have for all \(F \neq F^* \), \(F(y) \leq F_{\psi^L}(y) = F^*(y) \) for all \(y \), with strict inequality for some \(y \). Then \(\delta_F > \delta_{F^*} = 0 \) and \(D = \{F^*\} \), implying that (30) holds. Similarly, (30) holds if \(F^* = F^{-\infty} \).

Suppose now that \(F^* = F^{b_0} \) for some \(b_0 \in \mathbb{R} \). Because \(F_{\psi^U}(y) \leq F_{\psi}(y) \) for all \(y < b_0 \) and all \(F_{\psi} \in D \), (30) holds for all \(t < b_0 \). We now prove that (30) holds also for \(t \geq b_0 \). First suppose that \(t \geq \max(b_0, 0) \). For all \(F_{\psi} \in D \), \(\int ydF_Y(y) = \int ydF_{\psi}(y)dy \). As a result, by Fubini’s theorem,

\[
- \int_{-\infty}^{0} F^*(y)dy + \int_{0}^{t} (1 - F^*(y)) dy + \int_{t}^{\infty} (1 - F^*(y)) dy = - \int_{-\infty}^{0} F_{\psi}(y)dy + \int_{0}^{t} (1 - F_{\psi}(y)) dy + \int_{t}^{\infty} (1 - F_{\psi}(y)) dy.
\]

Because \(F_{\psi} \leq F_{\psi^L} = F^* \) on \([b_0, +\infty)\), this implies that

\[
- \int_{-\infty}^{0} F^*(y)dy + \int_{0}^{t} (1 - F^*(y)) dy \geq - \int_{-\infty}^{0} F_{\psi}(y)dy + \int_{0}^{t} (1 - F_{\psi}(y)) dy
\]

and thus (30) holds for \(t \geq \max(b_0, 0) \). Now, if \(b_0 < 0 \) and \(t \in (b_0, 0) \), we have

\[
- \left(\int_{-\infty}^{t} F^*(y)dy + \int_{t}^{0} F^*(y)dy \right) + \int_{0}^{\infty} (1 - F^*(y)) dy = - \left(\int_{-\infty}^{t} F_{\psi}(y)dy + \int_{t}^{0} F_{\psi}(y)dy \right) + \int_{0}^{\infty} (1 - F_{\psi}(y)) dy.
\]

Using again \(F_{\psi} \leq F_{\psi^L} = F^* \) on \([t, +\infty)\) yields

\[
- \int_{t}^{0} F^*(y)dy + \int_{0}^{\infty} (1 - F^*(y)) dy \leq - \int_{t}^{0} F_{\psi}(y)dy + \int_{0}^{\infty} (1 - F_{\psi}(y)) dy.
\]

Therefore, the result also follows in this case.