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Abstract

The control function approach which employs an instrumental variable excluded from the out-

come equation is a very common solution to deal with the problem of endogeneity in nonseparable

models. Exclusion restrictions, however, are frequently controversial. We first argue that, in a

nonparametric triangular structure typical of the control function literature, one can actually test

this exclusion restriction provided the instrument satisfies a local irrelevance condition. Second, we

investigate identification without such exclusion restrictions, i.e., if the “instrument” that is inde-

pendent of the unobservables in the outcome equation also directly affects the outcome variable.

In particular, we show that identification of average causal effects can be achieved in the two most

common special cases of the general nonseparable model: linear random coefficients models and

single index models.
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1 Introduction

The control function approach is a popular way to use instrumental variables (IV) in nonlinear models

with endogeneity. An important reason is that, as Imbens and Newey (2009) demonstrated in a seminal

paper, it applies to a large class of models, including nonseparable, nonparametric ones with possibly

multi-dimensional unobservables. Like most common IV methods, the control function approach

crucially relies on the exclusion restriction that the IV is not a part of the structural outcome equation.

Exclusion restrictions, however, are frequently controversial. The aim of this paper is to show that,

in certain circumstances, the conditions usually imposed in the control function approach make it

possible to test this exclusion restriction as well as to relax it.

Specifically, suppose that the endogenous variable X is continuous and an additional condition on

the instrument Z, which we term “local irrelevance condition”, holds. In this context, we derive a

testable implication for the validity of the exclusion restriction. Roughly speaking, the local irrelevance

condition, which is itself testable, requires that for a subset of individuals, possibly of measure zero, a

change in Z does not affect their X. This condition does not contradict the usual relevance conditions

on the IV if, basically, Z has an heterogeneous effect on X.1 We develop a bootstrap test for our

testable implication, and show its size control and consistency.

Second, we show that average causal effects of X and Z on Y may be identified without exclusion

restrictions. We do so in what are arguably the two most common specifications of the general

nonseparable model analyzed in Imbens and Newey (2009): random coefficients models and single

index models. Remarkably, in both cases, point identification of some causal effects of interest already

holds with a discrete instrument. A richer support of Z then leads to identification of additional causal

effects.

Though the arguments differ in important aspects from one model to another, the general iden-

tifying strategy is the same in both cases. In a first step, we exploit the local irrelevance condition

1We show in particular that in a (generalized) location-scale model on X, this holds if and only if the model is

heteroskedastic in Z, or the location function is not one-to-one.
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to identify the direct effect of Z on Y . Intuitively, if the instrument is locally irrelevant, there is a

subpopulation for which a change in Z will affect Y only directly, and not indirectly through the effect

of Z on X. In a second step, we consider other subpopulations for which Z has an effect on X. For

such subpopulations, the change in Y is due to the direct effect of Z but also to its indirect effect,

i.e., through X. Because we have already identified the direct effect of Z in step one, we can recover

the indirect effect and thus, at the end, the causal effect of X on Y . While the arguments used to

establish identification in these models share this general strategy, there are also profound differences

between models, entailing separate formal identification results across the models.

Related Literature The control function approach has a long tradition in econometrics since, at

least, the work of Heckman (1979) (see Wooldridge, 2015, for a recent survey). Historically, this ap-

proach has mainly relied on two sets of restrictions: 1) functional-form restrictions and 2) exclusion

restrictions. As Imbens and Newey (2009) made clear, functional-form restrictions are actually super-

fluous for the control function approach to work. Exclusion restrictions, on the other hand, still remain

essential in their framework. The same is true for the rest of the control function literature, with the

exception of Klein and Vella (2010), which we discuss below. The models of Chesher (2003), Vytlacil

and Yildiz (2007), Hoderlein and Sasaki (2013), D’Haultfoeuille and Février (2015) and Torgovitsky

(2015), to cite but a few, all feature exclusion restrictions, and are concerned with other parts of the

model specification.

However, the exclusion restriction is controversial. In their critique of natural experiments, Rosen-

zweig and Wolpin (2000) discuss several important examples where the instrument, while exogenous

in our sense, may have a direct effect on the outcome variable. Also, van den Berg (2007) considers

randomized controlled trials for which some time elapses between the moment the agents realizes she

may be treated and the moment when the treatment takes place. In such common situations, the agent

has an incentive to learn the value of the instrument. Then, van den Berg shows that the exclusion re-

striction can be violated if the interaction between the effort of the agent and the treatment affects the

outcome variable. In the binary treatment case, Jones (2015) presents several examples of economic
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models where the exclusion restriction is likely to be violated, especially among inframarginal agents

such as always- and never-takers. In the very typical analyses of returns to educations where college

subsidy is used as an instrument, for example, the college subsidy can generate an income effect for

always takers and thus may affect labor market outcomes (Jones, 2015, Section 3.1).2

Thus, our paper contributes to the literature by first showing that under some natural and testable

restrictions on the distribution of (X,Z), the exclusion restriction can be tested within the control

function approach. We are not the first, however, to investigate testability without excluding instru-

ments in models with endogenous variables. In the context of linear IV models, Bound and Jaeger

(2000) and Altonji et al. (2005) suggest a test of the exclusion restriction based on a similar idea as

ours. Specifically, if the first-stage effect is zero for subgroups defined by covariates, the effect of Z in

the reduced form equation should be zero as well. The zero first-stage effect is close in spirit to our

local irrelevance condition, but in our context subgroups are constructed with X and Z only. Also,

our test works beyond linear models – actually, it does not rely on any functional form restrictions on

the structural equation, though it does impose conditions (monotonicity) on the first stage.

The related test of Kitagawa (2015) does not impose any functional forms either, and may also

be seen as a test of the exclusion restriction if we maintain exogeneity and a monotonicity condition.

The two procedures have also important differences. First and foremost, the test of Kitagawa (2015)

applies to the framework of Imbens and Angrist (1994) with binary treatment and binary instrument,

whereas we consider the case of continuous treatment, with either discrete or continuous instrument.

Second, the monotoncity restrictions are different in the two settings. Caetano et al. (2016) also

develop a nonparametric test of the exclusion restriction,3 but under a different condition on (X,Z).

Specifically, they assume that X admits a mass point at the boundary of its support, whereas we

leverage on the aforementioned local irrelevance condition.

2It is easy to see that these examples would generalize to situations with continuous X, as analyzed in this paper.
3Caetano et al. (2016) frame their test as a test of the independence and monotonicity conditions behind the con-

trol function approach, while maintaining the exclusion restriction. But if, as we do here, these independence and

monotonicity conditions are maintained, their procedure becomes a test of the exclusion restriction.

4



Turning to identification, several papers have shown how to recover causal effects without exclusion

restrictions in linear models. In particular, van Kippersluis and Rietveld (2018) show that if we assume

homogeneous effects across subgroups and we have a zero first stage effect, we can identify both the

effects of X and Z. Their idea is related to our main identification idea for the random coefficients

models. The main difference is that we allow for heterogeneous treatment effects in this model.4

Still in linear models, Rigobon (2003) and Lewbel (2012) show that second-order moment conditions

have enough identifying power in systems of simultaneous equations, provided the model displays

some heteroskedasticity. Klein and Vella (2010), who rely on a control function specification, exploit

heteroskedasticity as well. However, their approach crucially hinges on the linearity of the structural

and first-stage equations, whereas we establish identification in possibly nonlinear or nonparametric

models. Our paper is also related to recent papers showing identification in nonseparable models

when instruments has limited support. Newey and Stouli (2018, 2019) show that under restrictions

on the structural functions, including random coefficients models similar to that considered below,

identification can be achieved with a discrete instrument (see also Masten and Torgovitsky, 2016, for

a similar result). While we consider less general effects than them, our approach does not require any

exclusion restriction. Finally, our paper is related to Feng (2020) in that both exploit variations in

covariates to identify causal effects. But they are quite different otherwise, as Feng (2020) considers

a discrete X and still relies on exclusion restrictions.

2 The General Model

We introduce in this section the general class of triangular models that we discuss throughout this

paper. The class of models is formally defined through the following system of equations: Y = g(X,Z, ε)

X = h(Z, η)

(2.1)

4 Our identification strategies based on index restrictions are different and exploit heterogeneous responses in the first

stage, which linear models cannot leverage.
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where, for simplicity, we assume that both X and Z are scalar variables. We could allow both

equations to depend in addition on a random vector of exogenous regressors denoted by S. In line

with the treatment effect literature, we omit this dependence, as the analysis can be done conditionally

on S = s, for any values of s in the support of S. In addition to (2.1), we impose a few regularity

conditions on (X,Y, Z) that are summarized in the following assumption. Hereafter, for any random

variable A, we denote by Supp(A) and FA the support and the cumulative distribution function (cdf

for short) of A. Similarly, for any other random variable B, Supp(A|B = b) and FA|B(·|b) denote the

conditional support and conditional cdf of A given B = b.

Assumption 1. The model is defined by (2.1), where the random vector (X,Y, Z) : Ω→ Supp(X,Y, Z) ⊆

R3 is observed, the random variables ε : Ω → E and η : Ω → R are unobserved, and all random vari-

ables are defined on a complete probability space (Ω,F , P ). There exist regular conditional probabilities

Pr(ε ∈ · |η = u) and Pr(Y ∈ · |X = x, Z = z) that are continuous in u and (x, z), respectively. The

distribution of X admits a density with respect to the Lebesgue measure.

Importantly, the support Z of Z can be a strict subset of R. In particular, Z may be binary,

though in some cases considered later, point identification will require Z to be continuous, though not

(necessarily) with a large support. Note also that the outcome Y may be continuous or discrete, and

that ε is allowed to be (countably) infinite dimensional – in fact, it may be an element of an even

more general space, but we desist here from this unnecessary generality.

Additional assumptions are needed to identify meaningful objects. The first is the following exo-

geneity of Z.

Assumption 2 (Exogeneity). Z ⊥⊥ (ε, η).

This assumption states that the instrument is jointly independent from all unobservables in the

system. It is very commonly assumed on instrumental variables in the literature in nonseparable

models – see Chesher (2003), Imbens and Newey (2009), Hoderlein and Sasaki (2013), D’Haultfoeuille

and Février (2015) and Torgovitsky (2015), to cite but a few. Importantly, this assumption is less

restrictive in our scenario as Z may directly affect the outcome.
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Our second assumption – equally typical of the control function literature – specifies the way the

instrument enters the first stage equation.

Assumption 3 (First-Stage Monotonicity). h(z, ·) is strictly increasing for every z ∈ Z, and η ∼

U [0, 1].

Similarly to the exogeneity condition, this assumption is very common in papers relying on control

functions – see, among others, Imbens and Newey (2009), D’Haultfoeuille and Février (2015), Tor-

govitsky (2015) and Caetano et al. (2016). While it allows for general, nonparametric responses to

changes in Z, it rules out more general forms of heterogeneity in the first stage, e.g., vectors of random

coefficients – see Gautier and Hoderlein (2015) and Hoderlein et al. (2017) for example. Given the

monotonicity of h(z, ·), the uniform distribution condition on η is a mere normalization as soon as Fη

is continuous. Together with Assumption 2, it implies that η is identified by η = FX|Z(X|Z).

3 Testing the exclusion restriction

3.1 Testable implications

In many applications, a candidate variable Z that may satisfy the exclusion restriction g(X,Z, ε) =

g(X, ε) is available, but it is uncertain whether it satisfies it or not. In this section, we establish that

the exclusion restriction is actually testable under the local irrelevance condition below.

Assumption 4 (Locally Irrelevant Instrument). There exists (x∗, z, z′) ∈ R × Z2 such that z 6= z′

and FX|Z(x∗|z) = FX|Z(x∗|z′) ∈ (0, 1).

This assumption may hold even if Z is binary. Also, since it only involves observed variables, the

condition is testable. Similar assumptions are imposed by Torgovitsky (2015) and D’Haultfoeuille and

Février (2015) to point identify g under the additional restrictions that g does not depend on Z and

is strictly increasing in ε. This condition holds in the “degenerate” case where Z is independent of X.

Otherwise, Assumption 4 holds if, basically, Z has heterogeneous effects on X. To see this, note that
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under Assumption 3, Assumption 4 is equivalent to assuming the existence of (z, z′, u) ∈ Z2 × (0, 1)

such that h(z, u) = h(z′, u). Hence, while some individuals may be affected by a change in Z with η

kept constant, units with η = FX|Z(x∗|z) are not affected by a shift of Z from z to z′.

The following examples illustrate this idea that Assumption 4 requires heterogeneous effects of Z

on X. In particular, in the first example, heteroskedasticity or some non-monotonicity is necessary

and sufficient for Assumption 4 to hold.

Example 1. Suppose that Assumptions 1-2 hold and assume that

X = µ (ψ(Z) + σ(Z)η) , (3.1)

where µ(·) is strictly increasing, σ(Z) > 0 and Supp(η) = R.5 In this generalized location-scale model,

Assumption 4 holds if and only if

- either σ(·) is constant and there exists (z, z′), z 6= z′, such that ψ(z) = ψ(z′);

- or σ(·) is not constant.

See Appendix C.1 for a proof.

Example 2. Suppose that Assumptions 1-2 hold and assume that there exist P (·) and π(·) taking

values in Rk (k ≥ 1) and a cdf F such that for all (x, z) ∈ Supp(X|Z = z),

FX|Z(x|z) = F
(
P (z)′π(x)

)
.

This corresponds to the distribution regression introduced by Foresi and Peracchi (1995). In this model,

Assumption 4 holds if and only if there exists (x∗, z, z′), z 6= z′, such that

(P (z)− P (z′))′π(x∗) = 0 (3.2)

and F (P (z)′π(x)) ∈ (0, 1). In particular, if Z ∈ {0, 1} (or the effect of Z is linear), so that P (z) =

(1, z)′ and π(x) = (π0(x), π1(x))′, Assumption 4 holds if and only if there exists x∗ such that π1(x
∗) = 0

5In Model (3.1), η is not uniform, but η′ = Fη(η) would in X = µ
(
ψ(Z) + σ(Z)F−1

η (η′)
)
. We consider (3.1) rather

than this latter form to ease the connection with location-scale models.
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and FX|Z(x∗|0) ∈ (0, 1). Thus, if, for some u, z 7→ h(z, u) is not constant, then π1(·) cannot be

constant. If Z is continuous and P (z) includes nonlinear terms, (3.2) may hold as well. For instance,

(3.2) holds with P (z) = (1, z, ..., zk), k ≥ 2, provided that for some x, the polynomial z 7→ P (z)′π(x)

is not one-to-one. This automatically holds if this polynomial has an even degree, for instance.

The following theorem shows that, under Assumptions 1 and 4, we can jointly test the exogeneity

of the instrument (Assumption 2), the monotonicity of the first stage (Assumption 3) and the exclusion

restriction g(X,Z, ε) = g(X, ε).

Theorem 1. Suppose that Assumptions 1-4 hold. Then g(X,Z, ε) = g(X, ε) implies

Y |X = x∗, Z = z ∼ Y |X = x∗, Z = z′, (3.3)

where the tuple (x∗, z, z′) is defined in Assumption 4.

A proof is provided in Appendix A.1. This theorem shows that if the assumptions underlying

the control function approach and the local irrelevance condition hold, then we can test the exclusion

restriction g(X,Z, ε) = g(X, ε) by testing the condition (3.3). Alternatively, Theorem 1 may be seen

as a way of testing jointly the control function approach (namely, Assumptions 2-3) and the exclusion

restriction g(X,Z, ε) = g(X, ε).

Note that (3.3) only tests an implication of the exclusion restriction, namely that g(x∗, z, ε) =

g(x∗, z′, ε) for (x∗, z, z′) as in Assumption 4. Hence, (3.3) may hold even if z 7→ g(x, z, ε) is not

constant for some x 6= x∗, if the effect of Z on Y is heterogeneous. An example of such a model is Y = Xα0 +XZβ0 + ε,

X = Zη,

with β0 6= 0 and where Supp(Z) ⊂ (0,∞) and [−a, a] ⊂ Supp(η) for some a > 0. For any (z, z′) ∈

Supp(Z)2, z 6= z′, FX|Z(·|z) and FX|Z(·|z′) cross at x∗ = 0 and at this point, FY |X=x∗,Z=z = Fε|η=0.

Thus, (3.3) holds even though the exclusion restriction fails. More generally, it seems however unlikely

that Z has no direct effect on Y precisely for the subpopulation X = x∗.
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3.2 A statistical test

Consider for simplicity that Y is continuous and Z is binary with support Z = {0, 1}.6 Suppose that

there is a unique x∗ such that FX|Z(x∗|0) = FX|Z(x∗|1) ∈ (0, 1), as in Assumption 4 adapted the

current setting. Our null hypothesis, based on the testable implication (3.3), is then

H0 : FY |X,Z( · |x∗, 0) = FY |X,Z( · |x∗, 1).

Suppose that we have a random sample {(Yi, Xi, Zi)}ni=1 of size n. Our proposed testing procedure

is based on an estimator for FY |X,Z(y|x∗, z), i.e.,

F̂Y |X,Z(y|x̂∗, z) =

∑n
i=1 1{Yi ≤ y} ·Khn(Xi − x̂∗) · 1{Zi = z}∑n

i=1Khn(Xi − x̂∗) · 1{Zi = z}
,

where Khn = K( · /hn) for a kernel function K and a bandwidth parameter hn. The estimator x̂∗ of

x∗ is defined by

x̂∗ ∈ arg min
x∈

[
F̂−1
X|Z(p|0),F̂

−1
X|Z(p|0)

] ∣∣∣F̂X|Z(x|0)− F̂X|Z(x|1)
∣∣∣ , (3.4)

where 0 < p < p < 1 are two constants used to avoid that x̂ tends to x such that FX|Z(x|0) =

FX|Z(x|1) ∈ {0, 1} and the estimator F̂X|Z(·|z) is defined by

F̂X|Z(x|z) =

∑n
i=1 1{Xi ≤ x} · 1{Zi = z}∑n

i=1 1{Zi = z}
.

Let SXY Z = Supp(X,Y, Z), SXZ = Supp(X,Z) and SY Z = Supp(Y,Z). Our asymptotic result below

relies on the following assumption.

Assumption 5. (i) There exists a unique x∗ satisfying FX|Z(x∗|0) = FX|Z(x∗|1) ∈ (0, 1). Moreover,

FX|Z(x∗|0) ∈ (p, p), with (p, p) introduced above.

(ii) The conditional density function fX|Z exists and for all z ∈ Z = {0, 1}, fX|Z(·|z) is Lipschitz

continuous. Moreover, fX|Z(x∗|0) 6= fX|Z(x∗|1) and fX|Z(x∗|0) ∧ fX|Z(x∗|1) > 0.

(iii) For all (x, z) ∈ SXZ , y 7→ FY |X,Z(y|x, z) is Lipschitz. For all (y, z) ∈ SY Z , x 7→ FY |X,Z(y|x, z) is

6Our procedure directly extends to a finitely supported Z, with just one additional complication from which we

abstract here: there may be pairs (z, z′) for which FX|Z(·|z) and FX|Z(·|z′) do not cross.
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continuously differentiable, with (x, y, z) 7→ ∂xFY |X,Z(y|x, z) bounded on SXY Z and x 7→ ∂xFY |X,Z(y|x, z)

Lipschitz continuous, with uniform Lipschitz constant LF over SY Z .

(iv) nh2n →∞ and nh3n → 0 as n→∞.

(v) K : [−1, 1]→ R is Lipschitz continuous with constant LK .

Apart from (i), which is specific to our context, Assumption 5 imposes a set of conditions that

are standard in nonparametric settings. In part (iv), we require a certain range of undersmoothing

rates of bandwidths. There is in general no data-driven rule to choose an undersmoothing sequence

of tuning parameters. We therefore propose the following rule of thumb. Suppose that ĥ∗n is some

data-driven optimal bandwidth, which can be obtained by either a plug-in AMISE optimal or cross

validation. To adjust this optimal bandwidth into the admissible rate of n−5/12 for instance while

keeping the constant, we use ĥ∗n · n1/5−5/12 as a rule of thumb.

Using in particular Lemma 3 in Appendix B, we establish that under Assumption 5,

√
nhn(F̂Y |X,Z(y|x̂∗, z)− FY |X,Z(y|x∗, z)) = νn(y, x∗, z) + oP (1)

uniformly over (y, z), where the uniform influence function representation takes the form of

νn(y, x∗, z) =
n∑
i=1

(1{Yi ≤ y} − FY |X,Z(y|Xi, z)) ·Khn(Xi − x∗) · 1{Zi = z}
√
nhnfX|Z(x∗|z) · Pr(Z = z)

.

Furthermore, its limit Gaussian process G can be approximated by the multiplier process

νζ,n(y, x∗, z) =
n∑
i=1

ζi
(1{Yi ≤ y} − FY |X,Z(y|Xi, z)) ·Khn(Xi − x∗) · 1{Zi = z}

√
nhnfX|Z(x∗|z) · Pr(Z = z)

,

where {ζi}ni=1 are independent standard normal variables, independent of the data {(Yi, Xi, Zi)}ni=1.

This multiplier process is infeasible to simulate, though, because we do not know FY |X,Z , x∗, fX|Z or

Pr(Z = ·). Therefore, we approximate this multiplier process by the estimated multiplier process

ν̂ζ,n(y, x̂∗, z) =

n∑
i=1

ζi
(1{Yi ≤ y} − F̂Y |X,Z(y|Xi, z)) ·Khn(Xi − x̂∗) · 1{Zi = z}

√
nhnf̂X|Z(x̂∗|z) · P̂r(Z = z)

,

where P̂r(Z = z) = 1
n

∑n
i=1 1{Zi = z}, f̂X|Z(x∗|z) =

1
nhn

∑n
i=1Khn (Xi−x̂∗)·1{Zi=z}

P̂r(Z=z)
and x̂∗ is given in

(3.4).
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Based on the multiplier bootstrap with this estimated multiplier process, we propose the following

procedure to test the exclusion restriction. First, form the Kolmogorov-Smirnov-type statistic

T̂n =
√
nhn

∥∥∥F̂Y |X,Z( · |x̂∗, 0)− F̂Y |X,Z( · |x̂∗, 1)
∥∥∥
∞
,

where ‖ · ‖∞ denotes the uniform norm. Second, let ĉn(1 − α) denote the (1 − α)-quantile of the

conditional distribution of ‖ν̂ζ,n( · , x̂∗, 0)− ν̂ζ,n( · , x̂∗, 1)‖∞ given the data. Our proposed test rejects

the null hypothesis H0 if T̂n > ĉn(1 − α). The following theorem presents the asymptotic level and

power properties of this testing procedure.

Theorem 2. Suppose that Assumption 5 holds and fix α ∈ (0, 1):

1. If H0 holds, Pr
(
T̂n > ĉn(1− α)

)
→ α as n→∞;

2. If H0 does not hold, Pr
(
T̂n > ĉn(1− τ)

)
→ 1 as n→∞.

A proof is provided in Appendix A.2. The use of a Kolmogorov-Smirnov-type statistic ensures that

the test has power against fixed alternatives of the form FY |X,Z(y|x∗, 0) 6= FY |X,Z(y|x∗, 1) for some y.

Although we focus on this type of statistic for the sake of conciseness, we remark that similar results

follow immediately from the proof for tests based on other (e.g., Cramer-von-Mises-type) statistics.

We do not impose support restrictions on Y to obtain Theorem 2. As for the usual empirical cdf,

the properly normalized kernel estimator of the conditional cdf converges uniformly towards a Gaussian

process without any such restriction. This is also the case of the multiplier process y 7→ νζ,n(y, x∗, z)

and its feasible version y 7→ ν̂ζ,n(y, x̂∗, z). We refer to the proof of Theorem 2 and Lemmas 3–5 in

Appendix B for more details, and to Horvath and Yandell (1988) for an early result of this kind.

3.3 A Monte Carlo Simulation Study

In this section, we present a Monte Carlo simulation study to examine the finite sample performance

of the proposed statistical test of the exclusion restriction.
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Consider the nonseparable model with a possibly included instrument:

DGP 1: Y = ε0 + ε1X + βZ

X = η · (1 + Z).

The binary instrument Z ∼ Bernoulli(0.5) is generated independently of the trivariate unobservables

(η, ε0, ε1) ∼ N (0, E3/4 + 3I3/4), where Ep (resp. Ip) is the matrix of ones (resp. the identity matrix)

of size p. The exclusion restriction holds if β = 0 and is violated otherwise. The outcome equation is

a particular case of the linear random coefficient model considered in Section 4.1 below.

We also consider the following binary choice model:

DGP 2: Y = 1 {X + βZ + ε ≥ 0} ,

X = η · (1 + Z),

where Z is as above and the bivariate unobservables are generated according to (η, ε) ∼ N (0, E2/4 +

3I2/4). The outcome equation is thus a probit model with an endogenous covariate (X) and the

exclusion restriction holds if β = 0 and is violated otherwise. The model satisfies the index restriction

considered in Section 4.2.

We consider tests with a nominal size of 5%. For both DGPs, we vary the sample size and the

value of β across sets of Monte Carlo simulations. In each set, we use 2,500 samples to compute

the frequencies of acceptance/rejection by our test. For each such sample, we use 2,500 multiplier

bootstrap iterations to compute the critical value of the test. Following the guidance presented in

Section 3.2, we use ĥ∗n · n1/5−5/12 as the bandwidth parameter, where ĥ∗n is the leave-one-out cross-

validation optimal choice with squared error loss.

Figure 1 depicts the power curves for DGP 1 (left) and DGP 2 (right). At β = 0, the rejection

frequencies are approximately the same as the nominal size, 0.05, even with n = 250, for both DGPs.

This suggests two conclusions. First, our bandwidth choice implies a small bias, as needed for our

theory. Second, the multiplier bootstrap appears to approximate well the distribution of the test

statistic under the null, even if n is relatively small. Figure 1 also shows that as one could expect, the
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rejection frequencies increase with the sample size and the value of β. To give a sense of the power,

note that for DGP1 and when β = 1, βZ contributes no more than 6.2% of the total variance of Y .

Still, for such a β, the power is already equal to 26.4% with n = 500, and 47.6% with n = 2, 000. A

similar conclusion holds for DGP2, though the power appears to be lower in this case.

DGP 1 DGP 2

Notes: β indexes the extent of instrument inclusion. The nominal size of the test is 0.05.

Figure 1: Power curves of the test.

4 Identification without exclusion restriction

Theorem 1 suggests that, under Assumptions 1-4, the exclusion restriction g(X,Z, ε) = g(X, ε) may

not be necessary for the identification of causal effects. We provide results in this direction in this

section, under other restrictions on g. Such results may be useful in particular if we reject the previous

test, but still Assumptions 1-3 appear credible.7 For simplicity, we refer to Z as the instrument

hereafter. One must keep in mind, however, that it may not satisfy the exclusion restriction, which

7If, instead, the exclusion restriction is credible (as in, e.g., randomized experiments), one can rather relax the

first-stage monotonicity by following the approach of Masten (2017) or Hoderlein et al. (2017).

14



means that it may have a direct effect on Y .

4.1 Linear random coefficients models

The first leading case we consider is linear random coefficients models, which have been extensively

studied in the literature, see, e.g., Beran et al. (1992); Hoderlein et al. (2010). The specification in

our notation is given by the following assumption.

Assumption 6 (Linear Random Coefficient Model). g(X,Z, ε) = ε0 + ε1X + ε2Z.

In a control function setup, Florens et al. (2008) and Masten and Torgovitsky (2016) study a similar

model to the random coefficients model in Assumption 6, but under the key exclusion restriction that

ε2 = 0. Thus, our model allows not only for heterogeneous treatment effects potentially correlated

with the treatment itself, but also for a direct, possibly heterogeneous, effect of the instrument Z.

The following example, adapted from Florens et al. (2008), shows that Assumptions 1-4 and 6 may

be derived from a structural choice model on X.

Example 3. Assume that X is the level of schooling, Y denotes observed wage (discounted annualized

earning flows) and Z corresponds to, e.g., college subsidies. As Florens et al. (2008), assume that the

potential wages (discounted annualized earning flows) Y (x) satisfy Y (x) = ε0 +ε1x+ε2Z. We assume

that the cost of schooling satisfies

C(x) = C0(Z) + (C1(Z) + ν1)x+
C2(Z)

2
x2 + ν0.

We thus make two differences compared to Florens et al. (2008). First, we rule out nonlinear effects of

schooling, while they include an additional term ϕ2x
2/2 (with ϕ2 constant). Second, following Jones

(2015), we allow for a direct effect of Z on earnings. If individuals choose their education level to

maximize wages minus cost, we obtain X = (−C1(Z)+ε1−ν1)/C2(Z). If (ε, ν0, ν1) are independent of

Z, Assumptions 2 and 3 hold, with η = Fε1−ν1(ε1− ν1). Since the first stage is a location-scale model,

Assumption 4 holds if either C2(·) is not constant or there exist z0 6= z1 such that C1(z0) = C1(z1).
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We first consider the identification of E(ε1|η = u) and E(ε2|η = u), the average marginal effect (or

discrete change if Z is binary) of X and Z for the subpopulation for which η = u. Assumptions 1-4

and 6 are sufficient to achieve identification of E(ε1|η = u) and E(ε2|η = u) for suitable u. Specifically,

we show in the proof of Theorem 3 below that E(ε2|η = u) is identified for all u ∈ C , with

C =
{
u ∈ (0, 1) : ∃(x, z, z′), (z, z′) ∈ Supp(Z)2, z′ 6= z : FX|Z(x|z) = FX|Z(x|z′) = u

}
.

To see this, let (x∗, z, z′) be as in Assumption 4. The set C is not empty since it includes u∗ =

FX|Z(x∗|z). Now, focusing here on these elements (x∗, z, z′), when Z moves from z to z′ while X is

kept constant and equal to x∗, η also remains constant and equal to u∗. Thus, any change in Y must

come from the direct effect of Z, meaning that we identify E(ε2|η = u∗).

Theorem 3 below also shows that E(ε1|η = u) is identified for all u ∈ C ′, with

C ′ =
{
u ∈ C ′ : ∃(x, z, z′) : u = FX|Z(x|z) 6= FX|Z(x|z′)

}
.

To see this, let Ỹ = Y − E(ε2|η)Z. Then a move of Z that affects X, while keeping η constant, will

impact the average of Ỹ only through X. This allows us to recover E(ε1|η = u) for u ∈ C ′. However,

when Z ∈ {0, 1}, we have C ′ = ∅: if u ∈ C , FX|Z(x|0) = FX|Z(x|1), which implies that u 6∈ C ′.

Hence, under Assumptions 1-4 and 6 alone, marginal effects are identified for some subpopulations.

We can then identify the average effect on the whole population E(ε2) = E(E(ε2|η)) if C = (0, 1).

Similarly, we identify E(ε1) if C ′ = (0, 1). These two conditions hold, for instance, if there exist

z 6= z′ and z(·) such that FX|Z(·|z) = FX|Z(·|z′) and for all x, FX|Z(x|z) 6= FX|Z(x|z(x)). In cases

where C 6= (0, 1) or C ′ 6= (0, 1), we can still identify E(ε1) and E(ε2) under the following additional

restrictions.

Assumption 7 (Exogenous random effect of Z). E(ε2|η) = E(ε2).

Assumption 8 (Global Relevance of the Instrument). There exists (z1, z2) ∈ Z2 such that FX|Z(X|z1) 6=

FX|Z(X|z2) almost surely.

Assumption 7, when combined with Assumption 2, implies that E(ε2|X) = E(ε2). In this sense, ε2

is exogenous, contrary to (ε0, ε1). A particular case where this holds is when ε2 is actually constant,
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as in standard linear models. But it may also hold if common factors affect both ε2 and (ε0, ε1),

provided that these factors are independent of (Z, η). In Assumption 8, (z1, z2) may actually be

equal to the pair (z, z′) appearing in Assumption 4. If FX|Z(·|z) and FX|Z(·|z′) cross once, or even a

countable number of times, then Assumption 8 holds with (z1, z2) = (z, z′). Thus, Assumptions 4 and

8 can simultaneously hold, even if the instrument is binary. This occurs typically in a large class of

generalized location-scale models.

Example 1 (Continued). Assumption 8 holds if and only if either ψ(·) or σ(·) (or both) is non-

constant – see Appendix C.2 for a proof. Thus, if either ψ(·) is not constant and not one-to-one, or

σ(·) is not constant, then both Assumptions 4 and 8 are satisfied.

As a result, in the random coefficients model above, E(ε1) and E(ε2) can be identified even with

a binary instrument. We can actually identify the entire model under additional, more stringent

conditions on the instrument. To state those, we need the notation ΨA|B to denote the conditional

characteristic function of a random variable A given a random variable B.

Assumption 9 (Independent random effect of Z). ε2 is independent of (ε0, ε1, η).

Assumption 10. (i) For all u ∈ (0, 1), there exists a point xu and a sequence (xn,u)n≥1, both in

Supp(h(Z, u)), such that xn,u → xu and for all n, xn,u 6= xu.

(ii) Ψε2 and Ψε0+ε1x∗|η=FX|Z(x∗|z), with (x∗, z) defined in Assumption 4, do not vanish on the real line.

(iii) E(exp(c|ε1|)) < +∞ for some c > 0.

Assumption 9 reinforces Assumption 7, in particular, by ruling out any dependence between ε2

and (ε0, ε1). Assumption 10 (i) implies that Z takes an infinite number of values and has an effect

on X, which may be interpreted as a relevance condition on Z. Note, on the other hand, that

Condition (i) does not require a large support of Z. It holds, for instance, if Z is continuous and

z 7→ h(z, u) is continuous and non-constant. Condition (ii) is a non-vanishing condition that is

standard in deconvolution problems. Condition (iii) requires that the tails of the marginal effect ε1
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are thin enough. This condition could be avoided, but at the expense of a large support requirement

on h(Z, u), which is rarely satisfied in practice.

The following theorem shows the identification of the local parameters E(ε1|η = u), E(ε1|η = u),

the global parameters E(ε1) and E(ε2), and the entire model under combinations of the previous

assumptions.

Theorem 3. Suppose that Assumptions 1–4 and 6 hold. Then:

1. E(ε1|η = u) (resp. E(ε2|η = u)) is identified for all u ∈ C ′ (resp. u ∈ C ). E(ε1) (resp. E(ε2))

is then identified if C ′ = (0, 1) (resp. C = (0, 1)).

2. If Assumptions 7-8 also hold, then E(ε1), E(ε2), E(ε1|η = u) and E(ε2|η = u) are identified for

all u ∈ (0, 1).

3. If Assumptions 9-10 also hold, the distribution of (ε0, ε1, ε2, η) is identified.

The third part implies in particular that all the average treatment effects E(ε1|η = u) and E(ε2|η =

u) are identified, as in the second part. But it also implies that any quantile treatment effects of X

and Z, and the distribution of the individual causal effects (i.e., the distribution of ε1) are identified.

4.2 Index on X and Z

Consider the following index restriction on the structural function.

Assumption 11 (Index Restriction on (X,Z)). (i) g(X,Z, ε) = g1(xα0 + zβ0, ε) with β0 ∈ {−1, 0, 1}

and α0 ∈ {−1, 0, 1} if β0 = 0;

(ii) For all u ∈ (0, 1), the map w 7→ E(g1(w, ε)|η = u) is strictly increasing on Supp(Xα0+Zβ0|η = u).

Whereas Assumption 11 is compatible with non-additive errors, contrary to the random coefficients

model above, the index restriction imposes restrictions on the heterogeneity of effects. In particular,

it implies that the relative effect ∂xg(x, z, e)/∂zg(x, z, e), assuming here that the derivatives exist,

is a constant function of (x, z, e). We shall see below that there are testable implications of this
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restriction. The condition β0 ∈ {−1, 0, 1} is a mere normalization: if β0 6= 0 and |β0| 6= 1, we can

always divide xα0 + zβ0 by |β0| and change g1 accordingly. When β0 = 0, this normalization has to

be done on α0 instead. Condition (ii) can be interpreted as an average monotonicity restriction on

g, where we take the average over ε, conditional on η.8 Assumption 11 applies to the linear model

g(x, z, ε) = xα0 + zβ0 + ε in particular, but also to a wide range of limited dependent variable models.

It holds for instance in the binary choice model

Y = 1{Xα0 + Zβ0 − ε ≥ 0}, (4.1)

provided that Fε|η is strictly increasing. A classical example of such a model is female participation

to the labor market (see in particular Blundell and Powell, 2004), where the endogenous variable X

corresponds to other income (e.g., husband’s earnings) and Z could be (following, again Blundell and

Powell, 2004) the husband’s education. This latter variable could have a direct effect on participation

through, e.g. the husband’s acquaintances.

We first investigate the identification of (α0, β0), before turning to average marginal effects. For our

results, we also invoke Assumption 12 below. For any (u, z, z′) ∈ (0, 1) × Z2, let F−1X|Z(u|z) = inf{x :

FX|Z(x|z) ≥ u} and qzz′(x) = F−1X|Z
[
FX|Z(x|z)|z′

]
. qzz′(·) is thus the quantile-quantile transform

between the two distributions FX|Z(.|z) and FX|Z(.|z′).

Assumption 12. There exists (z1, z
′
1) ∈ Z2 and x1 ∈ Supp(X|Z = z1) such that qz1z′1(x1) 6= x1.

Moreover, we either have:

(i) E (Y |X = x∗, Z = z) = E (Y |X = x∗, Z = z′), with (x∗, z, z′) defined in Assumption 4;

or (ii) E(Y |X = x1, Z = z1) = E(Y |X = qz1z′1(x1), Z = z′1).

Assumption 12 only involves observed variables and is therefore testable. The first condition is

a relevance condition on the instrument, which is weaker than Assumption 8 above. Then we either

impose (i) or (ii). Condition (i) corresponds to the case where, when restricting to the values (x∗, z, z′)

such that Z has no effect on X, a shift on Z has no effect on E(Y |X = x∗, Z = z). As shown in the

proof of Theorem 4 below, this occurs when Z has no direct effect on Y , namely when β0 = 0.

8 Condition (ii) holds automatically when α0 = β0 = 0, since then Supp(Xα0 + Zβ0|η) = {0}.
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Alternatively, Condition (ii) states that it is possible to produce compensating variations. To un-

derstand that, remark that a shift in Z moves Y directly but also indirectly, through the corresponding

change in X, i.e., the shift from x1 to qz1z′1(x1).
9 Condition (ii) requires that both effects offset each

other for some (x1, z1, z
′
1). Roughly speaking, this implies that the direct and indirect effects do not

always add up. If β0 > 0, say, so that the direct effect of Z is positive, Condition (ii) implies that

there are values z1 < z′1 such that a shift from z1 to z′1 has a negative indirect effect. This means that

either α0 > 0 (positive effect of X on Y ) and qz1z′1(x1) < x1, or α0 < 0 and qz1z′1(x1) > x1. In all

cases, α0 6= 0, namely X has an effect on Y . In the example of female labor participation, Assumption

12 (ii) may be satisfied since husband’s education has a negative indirect effect, through the increase

of other income, but plausibly a positive, direct effect.

Finally, as in Assumption 8 above, we may actually have (z, z′) = (z1, z
′
1), with (z, z′) defined in

Assumption 4. Hence, Assumptions 4 and 12 may both hold with a binary instrument. Similarly to

the combination of Assumptions 4 and 8, these two assumptions are satisfied in a location-scale specifi-

cation of the first-stage equation, as long as X has an effect on Y and there is some heteroskedasticity.

Example 1 (Continued). Suppose that Assumption 11 holds, α0 6= 0, µ(x) = x and σ(·) is not

constant. Then both Assumptions 4 and 12 hold – see Appendix C.3 for a proof.

The following theorem shows that under the previous assumptions, (α0, β0) is identified.

Theorem 4. Suppose that Assumptions 1-4 and 11-12 hold. Then, (α0, β0) is identified.

The proof can be summarized as follows. First, letting (x∗, z, z′) be as in Assumption 4, we

establish that the sign of E(Y |X = x∗, Z = z′)− E(Y |X = x∗, Z = z) identifies β0. Second, focusing

here on the case β0 6= 0, we show that α0 is identifed by the compensating variation condition in

Assumption 12(ii). Specifically, letting (x1, z1, z
′
1) be as in Assumption 12, we show that

α0 =
(z1 − z′1)β0
qz1z′1(x1)− x1

.

9 Since the change in X results from an exogenous change in Z, there is no other effect due to a change in the

distribution of ε.
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This equation also implies that, if we observe other points (x2, z2, z
′
2) satisfying Assumption 12, then

we can actually test the index restriction, as it implies

(z1 − z′1)(qz2z′2(x2)− x2) = (z2 − z′2)(qz1z′1(x1)− x1).

We now turn to the identification of average marginal effects, supposing here that Z is continuous.

Specifically, we impose the following condition, which involves the index W = Xα0 + Zβ0.

Assumption 13. (i) For almost all u ∈ (0, 1), Supp(W |η = u) is a non-trivial interval.

(ii) for almost all u ∈ (0, 1), w 7→ E[g1(w, ε)|η = u] is differentiable.

Under Assumptions 2-3, Supp(W |η = u) = Supp(h(Z, u)α0 + Zβ0). Thus, Condition (i) holds if

h(·, u) is continuous, Z is a non-degenerate interval and either β0 6= 0 or α0 6= 0 and h(·, u) is not

constant. As is the case with the monotonicity condition in Assumption 11, Condition (ii) may hold

even if Y is a limited dependent variable. If Y is binary and (4.1) holds, for instance, then Condition

(ii) is satisfied as long as Fε|η(·|u) is differentiable for almost all u.

To define the average marginal effects we consider, let us introduce

m(x1, x2, z1, z2) = E [g(x1, z1, ε)|X = x2, Z = z2] , (4.2)

the average counterfactual outcome for units such that (X,Z) = (x2, z2), if their (X,Z) was set to

(x1, z1). Then we consider the local average marginal effects

∆X(x, z) = ∂x1m(x, x, z, z),

∆Z(x, z) = ∂z1m(x, x, z, z).

Note that the derivatives are well-defined under Assumption 13-(ii). We also consider the global

average marginal effects ∆X = E [∆X(X,Z)] and ∆Z = E [∆Z(X,Z)].

Theorem 5. Suppose that Assumptions 1-4 and 11-13 hold. Then, for all (x, z) ∈ Supp(X,Z),

∆X(x, z), ∆Z(x, z), ∆X and ∆Z are identified.
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The results for ∆X and ∆Z simply follow from ∆X = α0E [∂we(W, η)] and ∆Z = β0E [∂we(W, η)],

with e(w, u) = E(Y |W = w, η = u). As with the random coefficients model, we are thus able to

identify more parameters when moving from a discrete to a continuous instrument. In particular,

discrete, exogenous change in X induced by a discrete Z are not sufficient in general to point identify

∆X .

4.3 Index on X and ε

We now consider another index restriction, this time on X and ε. The advantage of this approach is

that the index can remain nonparametric. On the other hand, this approach is limited to continuous

outcome variables. Specifically, we make the following two assumptions.

Assumption 14 (Continuity and Regularity of Y ). For all (x, z) ∈ Supp(X,Z), Supp(Y |X = x, Z =

z) is an interval, which does not depend on x.

Assumption 15 (Index Restriction on (X, ε)). (i) g(X,Z, ε) = g1(Z,ϕ(X, ε)), where ϕ(X, ε) ∈ R

and g1(z, ·) is strictly increasing for all z ∈ Z.

(ii) There exists z1 ∈ Z such that g1(z1, u) = u for all u ∈ Supp(Y |Z = z1).

(iii) Supp(ϕ(X, ε)|Z = z) does not depend on z and g1(z, ·) is continuous at the boundary of Supp(ϕ(X, ε)).

Assumption 14 rules out discrete dependent variables. Assumption 15 (i) imposes an index restric-

tion between X and ε in g. Contrary to the index on X and Z imposed above, we do not restrict this

index to be linear. Condition (ii) is a mere normalization, since we can always replace ϕ(X, ε) and

g1(z1, ·) by g1(z1, ϕ(X, ε)) and the identity function, respectively. Condition (iii) is a mild regularity

condition.

In order to identify causal effects in this model, we have to strengthen the local irrelevance condition

on the instrument. Hereafter, we say that z and z′ are connected if there exists n ∈ N and z0, ..., zn

with z0 = z and zn = z′ such that for all k ∈ {0, ..., n − 1}, there exists xk such that FX|Z(xk|zk) =

FX|Z(xk|zk+1) ∈ (0, 1). The local irrelevance condition above ensures that there exist z 6= z′ in Z that

are connected. We strengthen this condition by imposing the following assumption.
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Assumption 16 (Locally Irrelevant Instrument – Strong Version). There exists z0 ∈ Z such that any

z ∈ Z is connected to z0.

Assumption 16 is actually equivalent to Assumption 4 when Z is binary, but stronger otherwise.

We show below that it holds in the generalized location-scale model (3.1) if, again, there is some

heterosckedasticity.

Assumptions 14-16 are compatible with a discrete, even binary, instrument. Theorem 6 below

states that these assumptions, together with Assumptions 1-3, are sufficient to identify some discrete

treatment effects. More precisely, we recover, for some (x, x′, z, z′), ∆X(x, x′, z) and ∆Z(x, z, z′)

defined by

∆X(x, x′, z) = m(x′, x, z, z)−m(x, x, z, z),

∆Z(x, z, z′) = m(x, x, z′, z)−m(x, x, z, z).

where m is given in (4.2). Assumptions 14-16, however, are not sufficient to identify marginal effects.

We impose for that purpose the following additional condition, which is similar to Assumption 13.

Assumption 17 (Continuous Z and Strong Global Relevance of the Instrument). Z is a non-

degenerate interval and for almost all (z, u) ∈ Z × (0, 1) and all neighborhoods V ⊂ Z of z, h(·, u) is

not constant on V.

Importantly, Assumption 17 is compatible with the strong local irrelevance condition, as we illus-

trate in our example of generalized location-scale models.

Example 1 (Continued). Suppose that σ(·) is not constant. Then Assumption 16 holds. Moreover,

if Z is a non-degenerate interval and 1 (the constant function), ψ(·) and σ(·) are linearly independent

on any interval, Assumption 17 holds as well – see Appendix C.4 for proofs.

Theorem 6. Suppose that Assumptions 1-3 and 14-16 hold. Then,

1. for all (x, z, z′) such that (x, z) ∈ Supp(X,Z) and z′ ∈ Z, ∆X(x, qzz′(x), z) and ∆Z(x, z, z′) are

identified;
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2. if Assumptions 17 and 18 (displayed in Appendix A.6) also hold, ∆X(x, z),∆Z(x, z),∆X and

∆Z are identified as well, for all (x, z) ∈ Supp(X,Z).

A proof is provided in Appendix A.6. The result on ∆X(x, z, z′) is similar to the identification of

the ATT in Theorem 1 of D’Haultfoeuille et al. (2015). In that paper, a similar model is considered but

in the context of repeated cross sections, where time plays the role of the instrument Z here. Because

time is discrete in that setting, no point identification result on ∆X or on other marginal effect is

given in D’Haultfoeuille et al. (2015), so the second part of Theorem 6 is new. As with the random

coefficients model or with index on X and Z, it showcases the benefit of moving from a discrete to a

continuous instrument. While in the former case, we can identify some discrete effects of X and Z, in

the latter case, we can also identify their average marginal effects on the whole population.

5 Conclusion

In this paper, we first show that under the control function approach, we can test the exclusion

restriction in nonseparable triangular models as soon as a local irrelevance condition on the instrument

holds, and we devise and analyze such a test. We also show that causal effects can be identified

without exclusion restrictions in the linear random coefficients models or under index restrictions.

Identification of some effects can be achieved even if the instrument is binary, but other effects require

the instrument to have a richer support. We hope that these encouraging theoretical results spurn

interest in applications, which we leave for future research.
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A Proofs of the main results

A.1 Theorem 1

We show that if Assumptions 1-4 hold and g(X,Z, ε) = g(X, ε), (3.3) is satisfied. By the independence

between Z and (ε, η), and because the σ(·)-algebras generated by (X,Z) and by (Z, η) are the same,

we have, for any measurable set A and any (x, z) ∈ Supp(X,Z),

Pr(ε ∈ A|X = x, Z = z) = Pr(ε ∈ A|Z = z, η = h−1(z, x))

= Pr(ε ∈ A|η = h−1(z, x)), (A.1)

where h−1(z, ·) denotes the inverse of h(z, ·). Moreover, using again Assumptions 2-3, we have

Pr(X ≤ x|Z = z) = Pr(h(z, η) ≤ x) = h−1(z, x). (A.2)

Therefore, FX|Z(x∗|z1) = FX|Z(x∗|z2) implies that h−1(z1, x
∗) = h−1(z2, x

∗). In view of (A.1), this

implies ε|X = x∗, Z = z1 ∼ ε|X = x∗, Z = z2. Hence,

g(x∗, ε)|X = x∗, Z = z1 ∼ g(x∗, ε)|X = x∗, Z = z2.

The result follows.

A.2 Proof of Theorem 2

Let us define σ(y, y′∗, z) by

σ(y, y′|x, z) = E
[(
1{Y ≤ y} − FY |X,Z(y|X, z)

)
·
(
1{Y ≤ y′} − FY |X,Z(y′|X, z)

)
|X = x, Z = z

]
.

By Lemmas 3 and 4 in Appendix B.1 and Theorem 1 of Kosorok (2003), we have, under Assumption

5 and for z ∈ {0, 1}, √
nhn(F̂Y |X,Z( · |x̂∗, z)− FY |X,Z( · |x∗, z)) Gz.

Here, “ ” denotes weak convergence in the space of bounded functions taking values in R and Gz is

a zero mean Gaussian process with covariance function

(y, y′) 7→ σ(y, y′|x∗, z)/
(
fX|Z(x∗|z) · Pr(Z = z)

)
.
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Next, by Theorem 2 of Kosorok (2003) and under Assumption 5, we have, conditional on the data

and for each z ∈ {0, 1},

νζ,n( · , x∗, z) Gz.

Define the intermediate processes

ν̃ζ,n(y, x̂∗, x∗, z) =
n∑
i=1

ζi
(1{Yi ≤ y} − FY |X,Z(y|Xi, z)) ·Khn(Xi − x̂∗) · 1{Zi = z}

√
nhnfX|Z(x∗|z) · Pr(Z = z)

.

It follows by Lemma 4 in Appendix B.1 that under Assumption 5,

ν̃ζ,n(y, x̂∗, x∗, z)− νζ,n(y, x∗, z) = oP (1)

uniformly over (y, z). Finally, it follows by Lemma 5 in Appendix B.1 that

ν̂ζ,n(y, x̂∗, z)− ν̃ζ,n(y, x̂∗, x∗, z) = oP (1)

uniformly over (y, z) under Assumption 5.

Combining the above results imply that ν̂ζ,n(y, x̂∗, z) Gz. The result follows by the continuous

mapping theorem as well as the property that ‖Gz‖∞ is continuously distributed (Kato, 2019, Theorem

22).

A.3 Theorem 3

First part For any u ∈ C , there exists (x, z, z′), z 6= z′, such that FX|Z(x|z) = FX|Z(x|z′) = u.

Then,

E(Y |X = x, Z = z′)− E(Y |X = x, Z = z) =E(ε0|η = u) + E(ε1|η = u)x+ E(ε2|η = u)z′

− (E(ε0|η = u) + E(ε1|η = u)x+ E(ε2|η = u)z)

=E(ε2|η = u)(z′ − z).

Therefore, E(ε2|η = u) is identified. Next, for any u ∈ C ′, let (x, z, z′) be such that FX|Z(x|z′) 6=

FX|Z(x|z) = u. Then, because FX|Z(·|z′) is strictly increasing and continuous on Supp(X|Z = z′),
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there exists x′ 6= x such that FX|Z(x′|z′) = u. Moreover,

E(Y |X = x′, Z = z′)− E(Y |X = x, Z = z) =E(ε0|η = u) + E(ε1|η = u)x′ + E(ε2|η = u)z′

− (E(ε0|η = u) + E(ε1|η = u)x+ E(ε2|η = u)z)

=E(ε1|η = u)(x′ − x) + E(ε2|η = u)(z′ − z).

Hence, by what precedes, E(ε1|η = u) is identified.

Second part Let (x∗, z) be as in Assumption 4 and u∗ = FX|Z(x∗|z). By the first part of the proof,

we identify E(ε2|η = u∗). By Assumption 7, E(ε2) = E(ε2|η = u) = E(ε2|η = u∗) for all u ∈ (0, 1), so

we identify all these objects.

Next, let (z1, z2) be as in Assumption 8 and define qz1z2(·) as in Section 4.2 above. Because

FX|Z(·|z2) is continuous, FX|Z(F−1X|Z(u|z2)|z2) = u for all u ∈ (0, 1). Hence, FX|Z(qz1z2(x)|z2) =

FX|Z(x|z1) for all x such that FX|Z(x|z1) ∈ (0, 1). Since for almost all x, FX|Z(x|z1) 6= FX|Z(x|z2),

this implies that for such x’s, qz1z2(x) 6= x. Moreover, by Assumption 7 again,

E(Y − E(ε2)Z|X = x, Z = z1) =E(ε0|η = FX|Z(x|z1)) + E(ε1|η = FX|Z(x|z1))x,

E(Y − E(ε2)Z|X = qz1z2(x), Z = z2) =E(ε0|η = FX|Z(x|z1)) + E(ε1|η = FX|Z(x|z1))qz1z2(x).

Therefore, we identify, for almost all x ∈ Supp(X|Z = z1), E(ε1|η = FX|Z(x|z1)) by

E(ε1|η = FX|Z(x|z1)) =
E(Y − E(ε2)Z|X = qz1z2(x), Z = z2)− E(Y − E(ε2)Z|X = x, Z = z1)

qz1z2(x)− x
.

This implies that E(ε1|η = u) is identified for almost all u ∈ (0, 1), and then for all u by continuity of

u 7→ E(ε1|η = u) (in view of Assumption 1). Finally, E(ε1) is identified by E(ε1) = E(E(ε1|η)).

Third part Hereafter, (x∗, z, z′) are defined in Assumption 4 and we assume without loss of gener-

ality that |z′| > |z|. We also let u∗ = FX|Z(x∗|z). By Assumption 9, we have, for any t ∈ R,

ΨY |η=u∗,Z=z′(t) = Ψε0+ε1x∗|η=u∗(t)Ψε2(z′t), (A.3)
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which is different from 0 by Assumption 10 (ii). Then

ΨY |X=x∗,Z=z′(t/z
′)

ΨY |X=x∗,Z=z(t/z′)
=

Ψε2(t)

Ψε2(st)
,

with s = z/z′. In other words, we identify the function R(t) = Ψε2(t)/Ψε2(st). Hence, for any integer

K, we also identify
∏K
k=0R(skt) = Ψε2(t)/Ψε2(sK+1t), with |s| < 1. By the continuity of Ψε2 at 0, we

in turn identify Ψε2(t) by
∏∞
k=0R(skt).

Next, for all (t, u, z) ∈ R∗ × (0, 1) × Z, using again the fact that Ψε2 does not vanish on the real

line, we have

Ψε0,ε1|η(t, th(z, u)|u) =
ΨY |η=u,Z=z(t)

Ψε2(zt)
.

Therefore, Ψε0,ε1|η(t, th(z, u)|u) is identified for all (t, u, z) ∈ R∗ × (0, 1) × Z. In other words, for

all (t, u) ∈ R∗ × (0, 1), the function St,u : t′ 7→ Ψε0,ε1|η(t, t
′|u) is identified on Supp(th(Z, u)). By

Assumption 10 (i), this set admits a limit point. Moreover, by the dominated convergence theorem

and Assumption 10 (iii), St,u is analytic on the stripA = {z ∈ C : |Im(z)| < c1} for all (t, u) ∈ R×(0, 1).

This implies that the function St,u admits a unique analytic continuation from Supp(th(Z, u)) to A.

As a result, St,u is identified on R. Hence, we identify Ψε0,ε1|η(t, t
′|u) for all (t, t′, u) ∈ R∗×R× (0, 1).

Finally, by the continuity of t 7→ Ψε0,ε1|η(t, t
′|u), Ψε0,ε1|η(0, ·|·) is also identified on R × (0, 1). The

result follows.

A.4 Theorem 4

Suppose without loss of generality that z′ > z. Hereafter, we let sgn(x) = x/|x| if x 6= 0, 0 otherwise.

By Assumption 11 (ii), the map w 7→ E(g(w, ε)|X = x, Z = z) is strictly increasing. Therefore, using

Assumption 11 (i),

sgn
(
E
[
g(x∗α0 + z′β0, ε)− g(x∗α0 + zβ0, ε)|X = x∗, Z = z′

])
= sgn(β0) = β0. (A.4)
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Moreover, we have that

E(Y |X = x∗, Z = z) = E [g(x∗α0 + zβ0, ε)|X = x∗, Z = z]

= E
[
g(x∗α0 + zβ0, ε)|η = FX|Z(x∗|z), Z = z

]
= E

[
g(x∗α0 + zβ0, ε)|η = FX|Z(x∗|z), Z = z′

]
= E

[
g(x∗α0,+zβ0ε)|X = qzz′(x

∗), Z = z′
]

= E
[
g(x∗α0 + zβ0, ε)|X = x∗, Z = z′

]
. (A.5)

The first equality stems from Assumption 11. The second is due to monotonicity of the first stage

(Assumption 3). The third follows from exogeneity of the instrument (Assumption 2). The fourth

is due to monotonicity of the first stage again. The last follows by noting that, by Assumption 4,

qzz′(x
∗) = x∗.

By combining (A.4) and (A.5), we obtain that β0 is identified through

β0 = sgn
[
E
(
Y |X = x∗, Z = z′

)
− E (Y |X = x∗, Z = z)

]
. (A.6)

Next, let us turn to α0. Suppose first that E [Y |X = x∗, Z = z] = E [Y |X = x∗, Z = z′], or equiv-

alently, β0 = 0. In this case, α0 ∈ {−1, 0, 1}. We can use the same reasoning as above to show

that

α0 =
sgn

[
E
(
Y |X = qz1z′1(x1), Z = z′1

)
− E (Y |X = x1, Z = z1)

]
sgn

[
qz1z′1(x1)− x1

] .

Hence, α0 is identified as well in this case.

Consider the second case where E [Y |X = x∗, Z = z] 6= E [Y |X = x∗, Z = z′], or, equivalently,

β0 6= 0. We have, with the same reasoning as that used to obtain (A.5),

E(Y |X = x1, Z = z1) = E
[
g(x1α0 + z′1β0, ε)|X = x1, Z = z1

]
= E

[
g(x1α0 + z1β0, ε)|η = h−1(z′1, x1), Z = z′1

]
= E

[
g(x1α0 + z1β0, ε)|X = qz1z′1(x1), Z = z′1

]
.
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The same holds for E(Y |X = qz1z′1(x1), Z = z′1). Because E(Y |X = x1, Z = z1) = E(Y |X =

qz1z′1(x1), Z = z′1), by Assumption 12 (ii), we have

E
[
g(x1α0 + z1β0, ε)|X = qz1z′1(x1), Z = z′1

]
= E

[
g(qz1z′1(x1)α0 + z′1β0, ε)|X = qz1z′1(x1), Z = z′1

]
.

Finally, by Assumption 11 (ii),

x1α0 + z1β0 = qz1z′1(x1)α0 + z′1β0.

Because qz1z′1(x1) 6= x1, α0 is identified by α0 = (z1 − z′1)β0/(qz1z′1(x1)− x1).

A.5 Theorem 5

Let e(w, u) = E(Y |W = w, η = u). Because W is identified under Assumptions 1-4 and 11-12, by

Theorem 4, e(·, ·) is identified on Supp(W, η). Moreover, under Assumption 13, we can identify, for

almost all u ∈ (0, 1) and all w ∈ Supp(W |η = u), e(wn, u) on a sequence (wn)n∈N tending to w. As a

result, we can identify ∂we(w, u). Now, note that

∆X(X,Z) = α0∂we(W, η),

∆Z(X,Z) = β0∂we(W, η).

As a result, we identify ∆X(X,Z) and ∆Z(X,Z). Moreover, ∆X = α0E [∂we(W, η)] and ∆Z =

β0E [∂we(W, η)]. Hence, ∆X and ∆Z are also identified.

A.6 Theorem 6

First part. Hereafter, we denote by Int(A) the interior of any set A in a topological space. We first

show that, for all z ∈ Z, g1(z, ·) is identified on Supp(Y |Z = z1), where z1 is defined in Assumption 15

(ii). For that purpose, we first prove that g1(z0, ·) is identified on Int(Supp(Y |Z = z1)). By Assumption

16, z1 is connected with z0. Therefore, there exist n ∈ N and (xk, zk)k=0,...,n, with z0 = z0 and zn = z1,

such that FX|Z(xk|zk) = FX|Z(xk|zk+1) for all k = 0, ..., n − 1. Let us show by the reverse induction

on k that, for all k = 0, ..., n and all u ∈ Int(Supp(Y |Z = z1), g1(z
k, u) is identified and g1(z

k, u) ∈
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Int(Supp(Y |Z = zk)). By Assumption 15 (ii), g1(z
n, u) = u for all u ∈ Int(Supp(Y |Z = z1)), so the

result holds for k = n. Let us show that, if it holds for k + 1 ∈ {1, ..., n}, then it also holds for k.

By Equation (A.2) and strict monotonicity of Fη on Supp(η), we have h−1(zk, xk) = h−1(zk+1, xk).

Moreover, for all u ∈ R,

FY |X,Z

(
g1(z

k, u)|xk, zk
)

= Pr
(
g1(z

k, ϕ(xk, ε)) ≤ g1(zk, u)|Z = zk, η = h−1(zk, xk)
)

= Pr
(
ϕ(xk, ε) ≤ u|η = h−1(zk+1, xk)

)
= Pr

(
g1(z

k+1, ϕ(xk, ε)) ≤ g1(zk+1, u)|Z = zk+1, η = h−1(zk+1, xk)
)

= FY |X,Z

(
g1(z

k+1, u)|xk, zk+1
)
. (A.7)

The first equality follows by Assumptions 3 and 15. The second is due to Assumptions 2 and 15 again.

The third follows by the same reasoning, and using h−1(zk, xk) = h−1(zk+1, xk). The fourth equality

is obtained as the first one. Now, by the induction hypothesis and because Supp(Y |X = xk, Z =

zk+1) = Supp(Y |Z = zk+1), we have, for all u ∈ int(Supp(Y |Z = z1)),

FY |X,Z

(
g1(z

k, u)|xk, zk
)

= FY |X,Z

(
g1(z

k+1, u)|xk, zk+1
)
∈ (0, 1).

By Assumption 14, Supp(Y |Z = zk) = Supp(Y |X = xk, Z = zk) is an interval. Thus, g1(z
k, u) ∈

Int(Supp(Y |Z = zk)), on which FY |X,Z is strictly increasing. Therefore, by (A.7),

g1(z
k, u) = F−1Y |X,Z

[
FY |X,Z

(
g1(z

k+1, u)|xk, zk+1
)
|xk, zk

]
.

Hence, g1(z
k, u) is identified, and the property holds for k. As a result, it holds for all k = 0, ..., n.

Thus, g1(z0, ·) is identified on Int(Supp(Y |Z = z1)). Next, consider z ∈ Z. z is connected with z0 by

Assumption 16. The same reasoning as above implies that g1(z, ·) is identified on Int(Supp(Y |Z =

z1)). Finally, by continuity of g1(z, ·) on the boundary of Supp(Y |Z = z1), g1(z, ·) is identified on

Supp(Y |Z = z1).

We now prove that average effects are identified. For that purpose, let g−11 (z, ·) denote the inverse

of g1(z, ·) and let us define Yz = g1(z, g
−1
1 (Z, Y )) for any z ∈ Z. We have g−11 (Z, Y ) = ϕ(X, ε) and by
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Assumption 15 (ii)–(iii),

Supp(ϕ(X, ε)|Z = z) = Supp(ϕ(X, ε)|Z = z1) = Supp(Y |Z = z1).

Thus, by what precedes, Yz is identified for all z ∈ Z. Then, for all (x, z, z′) such that (x, z) ∈

Supp(X,Z) and z′ ∈ Z,

E(Yz′ − Y |X = x, Z = z) = E(g1(z
′, ϕ(x, ε))− g1(z, ϕ(x, ε))|X = x, Z = z) = ∆Z(x, z, z′),

which shows that ∆Z(x, z, z′) is identified. Next,

E(Yz|X = qzz′(x), Z = z′)− E(Y |X = x, Z = z)

=E
[
g1(z, ϕ(qzz′(x), ε))|η = h−1(z′, qzz′(x))

]
− E(Y |X = x, Z = z)

=E
[
g1(z, ϕ(qzz′(x), ε))|η = h−1(z, x)

]
− E(Y |X = x, Z = z)

=E [g1(z, ϕ(qzz′(x), ε))− g1(z, ϕ(x, ε))|X = x, Z = z]

=∆X(x, qzz′(x), z),

which implies that ∆X(x, qzz′(x), z) is identified.

Second part. As indicated in the statement of the theorem, we also rely on the following regularity

conditions. Condition (iii) is imposed to ensure that expectations and derivative can be interchanged.

It could be weakened but at the price of complicating the condition.

Assumption 18 (Regularity conditions). (i) h(·, u) is continuous for almost all u ∈ (0, 1).

(ii) g1 and ϕ(·, e) are differentiable; for almost all e ∈ Supp(ε).

(iii) there exist positive functions s(·), t(·) and u(·) such that for almost every (z, u, e), |∂zg1(z, u)| ≤

s(u), |∂ug1(z, u)| ≤ t(z) and |∂xϕ(x, e)| ≤ u(e) with E[s(ϕ(X, ε))] < +∞ and E[t(Z)] < +∞ and

E[u(ε)] < +∞.

Now, by Assumption 17, there exists, for all (x, z, n) ∈ Supp(X,Z)×N, an identified function bn(·)

such that bn(z) ∈ Z and 0 < |bn(z)− z| < 1/(n+ 1). Then

E

[
Ybn(z) − Y
bn(z)− z

∣∣∣∣X = x, Z = z

]
= E

[
g1(bn(z), ϕ(x, ε))− g1(z, ϕ(x, ε))

bn(z)− z

∣∣∣∣X = x, Z = z

]
.
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Moreover, by Assumption 18 (iii),∣∣∣∣g1(bn(z), ϕ(x, ε))− g1(z, ϕ(x, ε))

bn(z)− z

∣∣∣∣ ≤ s(ϕ(x, ε))

with E(s(ϕ(x, ε))|X = x, Z = z) < +∞ for almost all (x, z). Thus, by the dominated convergence

theorem, as n→∞,

E

[
Ybn(z) − Y
bn(z)− z

∣∣∣∣X = x, Z = z

]
→ E

[
∂zg1(z, ϕ(x, ε))

∣∣∣∣X = x, Z = z

]
= ∆Z(x, z).

Because this holds for almost all (x, z) ∈ Supp(X,Z), ∆Z = E[∆Z(X,Z)] is also identified.

We now show that ∆X(x, z) is identified for almost every (x, z). By Assumption 18 (i), for all

n ∈ N and almost all (x, z) ∈ Supp(X,Z) with z ∈ Int(Z), there exists δn > 0 such that any z′ ∈ Z

satisfying |z′ − z| < δn will be such that |h(z′, h−1(z, x))− h(z, h−1(z, x))| < 1/(n+ 1). Moreover, by

Assumption 17 applied to the neighborhood V = (z − δn, z + δn) ∩ Int(Z), there exists an identified

function rn(·) such that rn(z) ∈ Z and h(rn(z), h−1(z, x)) 6= h(z, h−1(z, x)) = x. By definition,

h(z′, h−1(z, x)) = qzz′(x). Therefore,

0 < |qzrn(z)(x)− z| < 1

n+ 1
.

Now, let us define, for all n ∈ N and (x, z) ∈ Supp(X,Z) with z ∈ Int(Z),

λn(x, z) =
E[Yz|X = qzrn(z)(x), Z = rn(z)]− E[Yz|X = x, Z = z]

qzrn(z)(x)− x
.

Reasoning as above, we obtain

λn(x, z) = E

[
g1(z, ϕ(qzrn(z)(x), ε))− g1(z, ϕ(x, ε))

qzrn(z)(x)− x
∣∣X = x, Z = z

]
.

Moreover, by Assumption 18 (iii),∣∣∣∣g(qzrn(z)(x), z, ε))− g(x, z, ε)

qzrn(z)(x)− x

∣∣∣∣ ≤ t(z)r(ε),
with E[r(ε)|X = x, Z = z] < +∞. Hence, by the dominated convergence theorem, as n→∞,

∆X(x, z) = lim
n→∞

λn(x, z).

and ∆X(x, z) is identified. Since this holds for almost all (x, z) ∈ Supp(X,Z), ∆X is also identified.
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B Auxiliary Lemmas

B.1 Auxiliary Lemmas used in the proof of Theorem 2

This section lists a number of auxiliary lemmas to prove Theorem 2.

Lemma 1. Suppose that Assumption 5 (i)–(ii) holds. Then, x̂∗ − x∗ = oP (1).

Lemma 2. Suppose that Assumption 5 (i)–(ii) holds. Then, x̂∗ − x∗ = OP (n−1/2).

Lemma 3. Suppose that Assumption 5 holds. Then,

√
nhn(F̂Y |X,Z(y|x∗, z)− FY |X,Z(y|x∗, z)) = νn(y, x∗, z) + oP (1)

uniformly over (y, z).

Lemma 4. Suppose that Assumption 5 holds. Then

√
nhn(F̂Y |X,Z(y|x̂∗, z)− F̂Y |X,Z(y|x∗, z)) = oP (1) (B.1)

uniformly over (y, z), and

ν̃ζ,n(y, x̂∗, x∗, z)− νζ,n(y, x∗, z) = oP (1) (B.2)

uniformly over (y, z), where

ν̃ζ,n(y, x̂∗, x∗, z) =
n∑
i=1

ζi
(1{Yi ≤ y} − FY |X,Z(y|Xi, z)) ·Khn(Xi − x̂∗) · 1{Zi = z}

√
nhnfX|Z(x∗|z) · Pr(Z = z)

.

Lemma 5. Suppose that Assumption 5 holds. Then,

ν̂ζ,n(y, x̂∗, z)− ν̃ζ,n(y, x̂∗, x∗, z) = oP (1)

uniformly over (y, z).
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B.2 Proof of Lemma 1

Proof. Let Mn(x) = −|F̂X|Z(·|0)− F̂X|Z(·|1)|, M(x) = −|FX|Z(·|0)− FX|Z(·|1)| and

Î = [F̂−1X|Z(p|0), F̂−1X|Z(p|0)].

By Assumption 5 (i)–(ii), there exists ξ > 0 such that x∗ ∈ Iξ = (F−1X|Z(p|0) + ξ, F−1X|Z(p|0) − ξ). Fix

κ > 0 and let B = {x ∈ Iξ : |x− x∗| > κ}. Since the data are i.i.d., by Glivenko-Cantelli Theorem,

‖Mn −M‖∞ ≤ ‖F̂X|Z=0 − FX|Z=0‖∞ + ‖F̂X|Z=1 − FX|Z=1‖∞

= oP (1). (B.3)

Now, B is included in a compact set B̃ that does not include x∗. Moreover, M is continuous on B̃ by

Assumption 5 (ii). Then, by Assumption 5 (i), supx∈BM(x) ≤ max
x∈B̃M(x) < M(x∗) = 0. Thus,

sup
x∈B

Mn(x) ≤‖Mn −M‖∞ + sup
x∈B

M(x)

<‖Mn −M‖∞. (B.4)

Note that if x̂∗ ∈ B and Iξ ⊂ Î, then Mn(x∗) ≤Mn(x̂∗) = supx∈BMn(x). Therefore,

Pr
(
x̂∗ ∈ B and Iξ ⊂ Î

)
≤Pr

(
sup
x∈B

Mn(x)−Mn(x∗) ≥ 0

)
→0,

where the last line follows from (B.3)–(B.4). By the law of large numbers, Pr(Iξ ⊂ Î) → 1. Hence,

Pr (x̂∗ ∈ B)→ 0. For κ small enough, x̂∗ 6∈ Iξ implies that |x̂∗−x∗| > κ and then Pr (|x̂∗ − x∗| > κ)→

0. The result follows.

B.3 Proof of Lemma 2

Proof. For short-hand notations, let p∗ = (p∗0, p
∗
1) = (Pr(Z = 0),Pr(Z = 1)) and p̂∗ = (p̂∗0, p̂

∗
1) =

(P̂r(Z = 0), P̂r(Z = 1)), where P̂r(Z = 0) = En[1{Z = 0}] and P̂r(Z = 1) = En[1{Z = 1}]. For a
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generic notation, let p ∈ (0, 1)2. Also let

Ψ̂(x, p) = p−10 · En[1{u ≤ x} · 1{v = 0}]− p−11 · En[1{u ≤ x} · 1{v = 1}],

ϕx,p(u, v) = p−10 · 1{u ≤ x} · 1{v = 0} − p−11 · 1{u ≤ x} · 1{v = 1},

and Ψ(x, p) = E[ϕx,p(X,Z)]. Then, Fδ = {ϕx,p : |x − x∗| ∨ |p0 − p∗0| ∨ |p1 − p∗1| < δ} is Donsker for

any δ > 0, and it holds that Ψ(x∗, p∗) = 0. Since 0 6= 1, we have

E
[
(ϕx,p∗(X,Z)− ϕx∗,p∗(X,Z))2

]
=(p∗0)

−1FX|Z(x|0) + (p∗1)
−1FX|Z(x|1)

+ (p∗0)
−1FX|Z(x∗|0) + (p∗1)

−1FX|Z(x∗|1)

− 2(p∗0)
−1FX|Z(x ∧ x∗|0)− 2(p∗1)

−1FX|Z(x ∧ x∗|1).

Therefore, by Assumption 5 (ii),

E
[
(ϕx,p∗(X,Z)− ϕx∗,p∗(X,Z))2

]
→ 0 as x→ x∗.

This result, together with Lemma 1 and Lemma 19.24 of van der Vaart (1998), implies that

√
n
(

Ψ̂(x̂∗, p∗)−Ψ(x̂∗, p∗)− Ψ̂(x∗, p∗) + Ψ(x∗, p∗)
)

= oP (1).

Note that Ψ(x∗, p∗) = 0 holds. Therefore, the central limit theorem yields Ψ̂(x∗, p∗) = OP (n−1/2),

p̂∗0 − p∗0 = OP (n−1/2) and p̂∗1 − p∗1 = OP (n−1/2), and hence Ψ̂(x∗, p̂∗) = OP (n−1/2). As |Ψ̂(x̂∗, p̂∗)| ≤

|Ψ̂(x∗, p̂∗)|, these rates also imply Ψ̂(x̂∗, p̂∗) = OP (n−1/2). Furthermore, p̂∗0 − p∗0 = OP (n−1/2) and

p̂∗1 − p∗1 = OP (n−1/2) imply that ‖Ψ̂( · , p̂∗)− Ψ̂( · , p∗)‖∞ = OP (n−1/2), which in turn implies

√
nΨ̂(x̂∗, p∗) =

√
nΨ̂(x̂∗, p̂∗) +

√
n(Ψ̂(x̂∗, p∗)− Ψ̂(x̂∗, p̂∗))

= OP (1).

Using all these auxiliary rate results together, we have

√
n (Ψ(x̂∗, p∗)−Ψ(x∗, p∗)) =

√
nΨ̂(x̂∗, p∗)−

√
nΨ̂(x∗, p∗)

−
√
n
(

Ψ̂(x̂∗, p∗)−Ψ(x̂∗, p∗)− Ψ̂(x∗, p∗) + Ψ(x∗, p∗)
)

=OP (1). (B.5)
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Finally, by Assumption 5 (ii), Ψ(·, p∗) = FX|Z(·|1) − FX|Z(·|0) is differentiable. Thus, by the mean

value theorem, there exists x̃∗ ∈ (x∗ ∧ x̂∗, x∗ ∨ x̂∗) such that

Ψ(x̂∗, p∗)−Ψ(x∗, p∗) =
(
fX|Z(x̃∗|1)− fX|Z(x̃∗|0)

)
(x̂∗ − x∗).

By Assumption 5 (ii), there exists a neighborhood V of x∗ and C > 0 such that

inf
x∈V

∣∣fX|Z(x|1)− fX|Z(x|0)
∣∣ > C.

Moreover, by Lemma 1, x̂∗ ∈ V with probability tending to one. Then, under this event,

|Ψ(x̂∗, p∗)−Ψ(x∗, p∗)| =
∣∣fX|Z(x̃∗|1)− fX|Z(x̃∗|0)

∣∣ |x̂∗ − x∗|
≥C|x̂∗ − x∗|.

Combined with (B.5), this implies that x̂∗ − x∗ = OP (n−1/2).

B.4 Proof of Lemma 3

Proof. The mean value expansion under Assumption 5 (iii) yields

1{Yi ≤ y} =FY |X,Z(y|Xi, z) + 1{Yi ≤ y} − FY |X,Z(y|Xi, z)

=FY |X,Z(y|x∗, z) + ∂xFY |X,Z(y|ι(Xi, x
∗), z) · (Xi − x∗) + 1{Yi ≤ y} − FY |X,Z(y|Xi, z),

where ι(Xi, x
∗) is some point between Xi and x∗. Substituting this equation in the closed-form

expression of F̂Y |X,Z(y|x∗, z) yields

√
nhnF̂Y |X,Z(y|x∗, z) =

√
nhnFY |X,Z(y|x∗, z) +

A1(y, z) +A2(y, z)

A3(z)
, (B.6)

where

A1(y, z) =
1√
nhn

n∑
i=1

∂xFY |X,Z(y|ι(Xi, x
∗), z) · (Xi − x∗) ·Khn(Xi − x∗) · 1{Zi = z},

A2(y, z) =
1√
nhn

n∑
i=1

[1{Yi ≤ y} − FY |X,Z(y|Xi, z)] ·Khn(Xi − x∗) · 1{Zi = z}, and

A3(z) =
1

nhn

n∑
i=1

Khn(Xi − x∗) · 1{Zi = z}.
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For convenience of presentation, we also introduce the following notation.

A∗1(y, z) =
1√
nhn

n∑
i=1

∂xFY |X,Z(y|x∗, z) · (Xi − x∗) ·Khn(Xi − x∗) · 1{Zi = z}.

First, under Assumption 5, we obtain the deterministic order

E[A∗1(y, z)] =
√
nh3n Pr(Z = z) · ∂xFY |X,Z(y|x∗, z) ·

∫
t ·K(t) · fX|Z(x∗ + thn|z)dt

= O
(√

nh3n

)
uniformly over (y, z). Letting ∆i = ∂xFY |X,Z(y|ι(X∗i , x∗), z)− ∂xFY |X,Z(y|x∗, z), we also have

E[(A1(y, z)−A∗1(y, z))2] =
n

nhn
E
[
∆2
i (Xi − x∗)2K2

h(Xi − x∗)1{Zi = z}
]

+
n(n− 1)

nhn
E [∆i(Xi − x∗)Kh(Xi − x∗)1{Zi = z}]2

.
1

hn
E
[
(Xi − x∗)4K2

h(Xi − x∗)
]

+
n

hn
E
[
(Xi − x∗)2|Kh(Xi − x∗)|

]2
. h4n + nh5n . nh

5
n

uniformly over (y, z) under Assumption 5 (iii)–(v). Also,

V (A∗1(y, z)) ≤ h2n∂xFY |X,Z(y|x∗, z) ·
∫
t2 ·K(t) · fX|Z(x∗ + thn|z)dt

= O(h2n)

uniformly over (y, z) under Assumption 5 (ii)–(v). It thus follows that

E[A1(y, z)
2] = E

[
((A1(y, z)−A∗1(y, z)) + (A∗1(y, z)− E[A∗1(y, z)]) + E[A∗1(y, z)])

2
]

. E
[
(A1(y, z)−A∗1(y, z))2

]
+ V (A∗1(y, z)) + E[A∗1(y, z)]

2

. nh5n + h2n + nh3n = o(1)

uniformly over (y, z) under Assumption 5, and this implies A1(y, z) = oP (1) uniformly over (y, z).

Second, similarly to the calculations above, we have

V (A2(y, z)) ≤
∫
K(t) · fX|Z(x∗ + thn|z)dt

= O(1)
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uniformly over (y, z) under Assumption 5 (ii), (iv) and (v), and this implies A2(y, z) = OP (1) uniformly

over (y, z).

Third, E[A3(z)]− fX|Z(x∗|z) ·Pr(Z = z) = O(hn) uniformly over z under Assumption 5 (ii), (iv),

and (v). Also, A3(z)−E[A3(z)] = OP

(
1√
nhn

)
uniformly over z under Assumption 5 (iv)–(v). It thus

follows that

A3(z)− fX|Z(x∗|z) · Pr(Z = z) = O(hn) +OP

( 1√
nhn

)
= oP (1)

uniformly over z under Assumption 5 (iv). By Assumption 5 (ii), there exists a neighborhood V of

x∗ and C > 0 such that infx∈V
∣∣fX|Z(x|1)− fX|Z(x|0)

∣∣ > C. By the continuous mapping theorem,

1/A3(z)− 1/[Pr(Z = z) · fX|Z(x∗|z)] = oP (1) uniformly over z under Assumption 5 (ii).

Finally, the claim of the lemma follows by (B.6).

B.5 Proof of Lemma 4

Proof. Note that we can write

√
nhn(F̂Y |X,Z(y|x̂∗, z)− F̂Y |X,Z(y|x∗, z))

=
√
nhn

A3(z)
[
Â4(y, z)−A4(y, z)

]
−A4(y, z)

[
Â3(z)−A3(z)

]
A3(z)

[
Â3(z)−A3(z)

]
+A3(z)2

, (B.7)

where

A3(z) =
1

nhn

n∑
i=1

Khn(Xi − x∗) · 1{Zi = z},

A4(y, z) =
1

nhn

n∑
i=1

1{Yi ≤ y} ·Khn(Xi − x∗) · 1{Zi = z},

and

Â3(z) =
1

nhn

n∑
i=1

Khn(Xi − x̂∗) · 1{Zi = z},

Â4(y, z) =
1

nhn

n∑
i=1

1{Yi ≤ y} ·Khn(Xi − x̂∗) · 1{Zi = z}.
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From the proof of Lemma 3, we have

A3(z)− fX|Z(x∗|z) · Pr(Z = z) = O(hn) +OP

( 1√
nhn

)
(B.8)

uniformly over z under Assumption 5 (ii), (iv) and (v), where fX|Z(x∗|z) · Pr(Z = z) ∈ (0,∞) for all

z by Assumption 5 (ii).

Similar lines of calculations yield

A4(y, z)− FY |X,Z(y|x∗, z) · fX|Z(x∗|z) · Pr(Z = z) = O(hn) +OP

( 1√
nhn

)
(B.9)

uniformly over (y, z) under Assumption 5, where FY |X,Z(y|x∗, z) · fX|Z(x∗|z) · Pr(Z = z) is uniformly

bounded over (y, z) by Assumption 5 (ii)–(iii).

Conditionally on the event |x̂∗ − x∗| ≤ hn, we have

|Â3(z)−A3(z)| ≤
LK · |x̂∗ − x∗|

nhn

n∑
i=1

1{|Xi − x∗| ≤ 2hn} · 1{Zi = z}

=2 · Lk · |x̂∗ − x∗|
(
fX|Z(x∗|z) · Pr(Z = z) + oP (1)

)
=OP (|x̂∗ − x∗|)

uniformly over z under Assumption 5 (ii), (iv) and (v). Therefore, for any ε > 0,

Pr

(
sup
z∈Z
|Â3(z)−A3(z)| > ε√

nhn

)
= Pr

(
sup
z∈Z
|Â3(z)−A3(z)| > ε√

nhn

∣∣∣∣ |x̂∗ − x∗| ≤ hn) · Pr (|x̂∗ − x∗| ≤ hn)

+ Pr

(
sup
z∈Z
|Â3(z)−A3(z)| > ε√

nhn

∣∣∣∣ |x̂∗ − x∗| > hn

)
· Pr (|x̂∗ − x∗| > hn)

converges to zero due to |x̂∗−x∗| = oP

(
1
nhn
∧ hn

)
by Lemma 2 under Assumption 5 (i), (ii) and (iv).

This shows that

Â3(z)−A3(z) = oP

(
1√
nhn

)
(B.10)

uniformly over z. Similar arguments show that

Â4(y, z)−A4(y, z) = oP

(
1√
nhn

)
(B.11)

uniformly over (y, z) under Assumption 5. Combining (B.7)–(B.11) together proves (B.1). A proof of

(B.2) is analogous.
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B.6 Proof of Lemma 5

Proof. We can write

ν̂ζ,n(y, x̂∗, z)− ν̃ζ,n(y, x̂∗, x∗, z) =− 1

A6(z) + (Ã6(z)−A6(z))
· (Ãζ5(y, z)− Â

ζ
5(y, z))

− Ã6(z)−A6(z)

A6(z)2 +A6(z) · (Ã6(z)−A6(z))
· Âζ2(y, z)

where

ν̃ζ,n(y, x̂∗, x∗, z) =

n∑
i=1

ζi
(1{Yi ≤ y} − FY |X,Z(y|Xi, z)) ·Khn(Xi − x̂∗) · 1{Zi = z}

√
nhnfX|Z(x∗|z) · Pr(Z = z)

,

Âζ2(y, z) =
1√
nhn

n∑
i=1

ζi[1{Yi ≤ y} − FY |X,Z(y|Xi, z)] ·Khn(Xi − x̂∗) · 1{Zi = z},

Âζ5(y, z) =
1√
nhn

n∑
i=1

ζiFY |X,Z(y|Xi, z) ·Khn(Xi − x̂∗) · 1{Zi = z},

A6(z) =fX|Z(x∗|z) · Pr(Z = z),

and

Ãζ5(y, z) =
1√
nhn

n∑
i=1

ζiF̂Y |X,Z(y|Xi, z) ·Khn(Xi − x̂∗) · 1{Zi = z},

Ã6(z) =f̂X|Z(x̂∗|z) · P̂r(Z = z).

First,

|Ãζ5(y, z)− Â
ζ
5(y, z)| ≤

(
sup

(y,x,z)
|F̂Y |X,Z(y|x, z)− FY |X,Z(y|x, z)|

)
·
(
|Aζ7(z)|+ |Â

ζ
7(z)−A

ζ
7(z)|

)
,

where

Âζ7(z) =
1√
nhn

n∑
i=1

ζiKhn(Xi − x∗) · 1{Zi = z}

Aζ7(z) =
1√
nhn

n∑
i=1

ζiKhn(Xi − x̂∗) · 1{Zi = z}

Note that sup(y,x,z) |F̂Y |X,Z(y|x, z) − FY |X,Z(y|x, z)| = oP (1) under Assumption 5 (iii), (iv) and (v).

Under Assumption 5 (ii), (iv) and (v), we have Aζ7(z) = OP (1) uniformly over z, similarly to the
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argument that shows A2(y, z) = OP (1) uniformly over (y, z) in the proof of Lemma 3. Also, under

Assumption 5 (ii), (iv) and (v), we have Âζ7(z) − A
ζ
7(z) = oP (1) uniformly over z, similarly to the

proof of Lemma 4. It therefore follows that

Ãζ5(y, z)− Â
ζ
5(y, z) = oP (1)

uniformly over (y, z).

Second, we have Ãζ2(y, z) = OP (1) uniformly over (y, z), similarly to the argument that shows

A2(y, z) = OP (1) uniformly over (y, z) in the proof of Lemma 3.

Finally, Ã6(z)− A6(z) = oP (1) uniformly over z under Assumption 5 (ii), (iv) and (v) by similar

arguments to the proof of Lemma 4, and A6(z) bounded away from zero and infinity uniformly over

z by Assumption 5 (ii).

Putting all the above arguments together, we have

ν̂ζ,n(y, x̂∗, z)− ν̃ζ,n(y, x̂∗, x∗, z) = oP (1)

uniformly over (y, z).

C Proofs on the generalized location-scale models

C.1 Characterization of Assumption 4

To see the sufficiency, note that in the first case, we simply have FX|Z(·|z′) = FX|Z(·|z). In the

second case, let (z, z′) ∈ Z2 be such that σ(z′) 6= σ(z). Then one can check that FX|Z(x∗(z, z′)|z) =

FX|Z(x∗(z, z′)|z′) with

x∗(z, z′) = µ

[
σ(z)ψ(z′)− σ(z′)ψ(z)

σ(z)− σ(z′)

]
. (C.1)

Hence, Assumption 4 holds. On the other hand, if σ(·) is constant and ψ is one-to-one, then, for

any z 6= z′, we either have FX|Z(x|z) > FX|Z(x|z′) for all x ∈ Int(Supp(X|Z = z)) or FX|Z(x|z) <

FX|Z(x|z′) for all x ∈Int(Supp(X|Z = z)).
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C.2 Verification of Assumption 8

If σ(·) is not constant, let (z, z′) ∈ Z2 be such that σ(z′) 6= σ(z). Then FX|Z(x|z) = FX|Z(x|z′) if

and only if x = x∗(z, z′) defined in (C.1). Thus Assumption 8 holds. If σ(·) is constant but ψ(·) is

not, then we either have FX|Z(x|z) > FX|Z(x|z′) for all x or FX|Z(x|z) < FX|Z(x|z′), so Assumption

8 holds as well.

C.3 Verification of Assumptions 4 and 12

We already showed above that Assumption 4 holds. Next, Assumption 12(i) holds if β0 = 0. So let

us suppose hereafter that β0 6= 0. Given (3.1) and µ(x) = x, we have

qzz′(x) = ψ(z′) +
σ(z′)

σ(z)
(x− ψ(z)). (C.2)

For any (z1, z
′
1) such that σ(z1) 6= σ(z′1), let us define x1 by

x1 =
1

σ(z1)− σ(z′1)

[
σ(z1)ψ(z′1)− σ(z′1)ψ(z1) + σ(z1)(z

′
1 − z1)β0/α0

]
. (C.3)

Then some calculations show that

x1α0 + z1β0 = qz1z′1(x1)α0 + z′1β0. (C.4)

Now, recall that

E(Y |X = x1, Z = z1) =E[g1(x1α0 + z1β0, ε)|η = FX|Z(x1|z1)],

E(Y |X = qz1z′1(x1), Z = z′1) =E[g1(qz1z′1(x1)α0 + z′1β0, ε)|η = FX|Z(x1|z1)].

Thus, (C.4) implies that

E[Y |X = x1, Z = z1] = E[Y |X = qz1z′1(x1), Z = z′1],

and Assumption 12 holds.
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C.4 Verification of Assumptions 16-17

We first show that Assumption 16 holds as long as σ(·) is not constant. Take any z0 ∈ Z. For any

z ∈ Z, we either have σ(z) 6= σ(z0) or σ(z) = σ(z0). In the first case, x∗(z, z0) defined by (C.1)

satisfies FX|Z(x∗(z, z0)|z) = FX|Z(x∗(z, z0)|z0) ∈ (0, 1) and thus z is connected to z0. In the second

case, because σ(·) is not constant, there exists z′ such that σ(z′) 6= σ(z) = σ(z0). But then, we have

FX|Z(x∗(z, z′)|z) = FX|Z(x∗(z, z′)|z′) ∈ (0, 1) and FX|Z(x∗(z0, z
′)|z0) = FX|Z(x∗(z0, z

′)|z′) ∈ (0, 1). So

again, z is connected to z0.

Next, we show that Assumption 17 holds if 1, ψ(·) and σ(·) are not linearly related on any interval.

Let us assume that Assumption 17 does not hold. Then there exists u ∈ R and an interval I on which

h(·, u) is constant. Because µ is one-to-one, this means that z 7→ ψ(z) + σ(z)u is constant on I. But

this contradicts the fact that 1, ψ(·) and σ(·) are linearly independent on I.
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