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Abstract

In these supplementary materials, we first discuss the link with group

theory and the freeness and nonfreeness properties. We then discuss the

extension to a multivariate X. The third section gathers all proofs.

1 Link with group theory

1.1 Definitions

We first recall some useful definitions on group theory. A group S is a set
endowed with a binary operator ∗ which satisfies three properties. The first is
associativity: for all (s1, s2, s3) ∈ S3, (s1 ∗ s2) ∗ s3 = s1 ∗ (s2 ∗ s3). The second
is the existence of an identity element e ∈ S satisfying s ∗ e = e ∗ s = s for all
s ∈ S. The third is the existence of inverses. Every element s ∈ S admits an
element called its inverse and denoted s−1 which satisfies s ∗ s−1 = s−1 ∗ s = e.
∗CREST. E-mail address: xavier.dhaultfoeuille@ensae.fr.
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The set B of all bijections onto X , endowed with the composition operator, is
an example of a group.

A group S is said to be abelian if for every (s1, s2) ∈ S2, s1 ∗ s2 = s2 ∗ s1. A
subgroup T of S is a subset of S which is itself a group for ∗. If we let (Ti)i∈I
denote a family of subgroups of S, one can check that ∩i∈ITi is also a group.
The group generated by a subset I of S is the intersection of all subgroups of
S containing I. By definition, it is the smallest subgroup of S including I. In
the paper, S is the subgroup of B generated by the functions (sij)(i,j)∈{1,...,K}2 .

We also define the notion of group actions and orbits. For any set A and a
group S, a group action . is a function from S × A to A (denoted by s.x)
satisfying, for every (s1, t) ∈ S2 and x ∈ A, (s1 ∗ t).x = s1.(t.x) and e.x = x.
The orbit Ox of x ∈ A is then defined by

Ox = {s.x, s ∈ S}.

In the paper, the group action is s.x = s(x) and the orbit of x is the set
Ox = {s(x), s ∈ S}. Finally, a group action . is free if s.x = x for some x ∈ A
implies that s = e. This definition coincides, in the setting of the paper, with
the freeness property.

1.2 The freeness and nonfreeness properties

1.2.1 General results

Let us recall that the freeness properties holds if there exists no s ∈ S different
from the identity function that admits a fixed point. The nonfreeness property
holds if there exists s ∈ S different from the identity function that admits a
positive and finite number of fixed points.

Whether these properties hold depend on the way the instrument Z affects
the endogenous variable X. A first observation is that if there exists (i, j) ∈
{1, ..., K}2 such that FX|Z=i and FX|Z=j cross at least once and at most a
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finite number of times on X , then the nonfreeness holds.1 A case where the
different (FX|Z=i)i∈{1,...,K} cross are generalized location scale-models, with the
exception of pure location models. In the latter case, the freeness property
holds.

Proposition S1 Suppose that

h(Z, η) = µ(ν(Z) + σ(Z)η), (1.1)

where Z ⊥⊥ η, Support(η) = R, σ(Z) > 0 and µ is a strictly increasing
function from R to X . If σ(Z) is not constant, the nonfreeness property holds.
Otherwise, the freeness property holds.

1.2.2 Illustration

Let us illustrate the freeness and nonfreeness properties in a specific context.
Suppose that we are interested in measuring the effect of unemployment dura-
tionX on an health index Y , using policy changes on unemployment benefits as
an instrument Z. Suppose that the hazard rate of X conditional on Z = z sat-
isfies a Cox model λz(t) = λ0 exp(−cbz(t)), where bz(t) denotes unemployment
benefits at date t under policy status z.2 We show hereafter that depending
on the type of policy changes that we consider, we end up with either freeness
or nonfreeness.

First , if the unemployment benefits are less generous after the policy change,
so that b1(t) < b2(t) for all t, FX|Z=2 stochastically dominates FX|Z=1. The
freeness property holds because all unemployed people have less incentives to

1Torgovitsky (2014) uses such fixed points to achieve identification. Interestingly, this
crossing property is also used by Guerre et al. (2009) to achieve identification of a first-price
auctions models with risk averse bidders. They use for that purpose exogenous variation in
the number of bidders, which plays the role of discrete instrument in their framework. The
crossing they use is on the bidding functions, and is automatically satisfied by the theoretical
bidding model.

2This toy model is useful to discuss the economic contents of our assumptions but does
not pretend to be fully realistic.
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find a job. Now, consider the case where unemployment benefits were initially
constant over time, b1(t) = b1, but then become decreasing: b2(t) = b211{t ≤
t0}+b221{t > t0} for a given threshold t0, with b21 > b1 > b22. The new policy
is thus more generous for short periods of unemployment, and less generous
for longer ones. The integrated hazard satisfies Λ1(t) =

∫ t
0
λ1(u)du = B1t and

Λ2(t) = B21t1{t ≤ t0}+(B22t+(B21−B22)t0)1{t > t0}, with B1 = λ exp(−cb1)
and B2i = λ exp(−cb2i), i ∈ {1, 2}. Because FX|Z=z(x) = 1−exp(−Λz(x)) and
s12 = F−1X|Z=2 ◦ FX|Z=1, we obtain s12 = Λ−12 ◦ Λ1. Hence, nonfreeness holds
here, because Λ1 and Λ2 cross once.

Now, suppose that we experience several changes, but bz(t) = az + b(t), so
that unemployment benefits differ by the same constant over time under the
different policies. Then X satisfies a generalized location model, so that the
freeness property holds by Proposition 1. Finally, we provide an example
where K ≥ 3 and nonfreeness holds, though the (sij)i,j do not cross. Suppose
that b1(.) and b2(.) are as previously but b21 < b1, so that the second policy
is always less generous than the first. Suppose also we have a third policy
satisfying b3(t) = b311{t ≤ t0} + b221{t > t0} and b31 < b21. The third policy
is thus less generous than the second one. As a result, sij(x) > x for all
i < j. Suppose also for the ease of exposition that b21 = 2b1/3, b31 = b1/4 and
b22 = b1/5, and let us prove that s31 ◦ s212 admits a unique fixed point.3

Within this framework, the integrated hazard rates satisfy Λ1(t) = B1t, with
B1 = λ exp(−cb1), and

Λj(t) = Bj1t1{t ≤ t0}+ (B22t+ (Bj1 −B22)t0)1{t > t0}

for j = 2, 3, with Bji = λ exp(−cbji). Because sij = Λ−1j ◦ Λi, it follows that

si1(t) = Ei1t1{t ≤ t0}+ (Et+ (Ei1 − E)t0)1{t > t0}
3The same result holds for more general values of (b21, b31, b22) but the argument is more

complicated.
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for i = 2, 3, with Ei1 = Bi1/B1 > 1 and E = B22/B1 > Ei1. Some computa-
tions yield

s221(t) = E2
21t1{t ≤ t0/E21}+ (E21Et+ (E21 − E)t0)1{t0 ≥ t > t0/E21}

+(E2t+ (E21 − E)(E + 1)t0)1{t > t0}.

We have E31 = exp(3cb1/4) > exp(2cb1/3) = E2
21. Thus s31(t) > s221(t) for

t ∈ (0, t0/E21) and they do not cross on this interval. The functions s31
and s221 are then linear on (t0/E21, t0) and s31(t0/E21) > s221(t0/E21). If
s31(t0) > s221(t0), the functions do not cross on this interval either. Otherwise,
if s31(t0) < s221(t0), the functions cross only once on the interval (t0/E21, t0).
Finally, s31 and s221 are linear on [t0,+∞) with different slopes. Moreover,
for t > t0, E2 > E so that s221(t) > s31(t) for t > t0 large enough. Hence, if
s31(t0) > s221(t0), the functions cross only once on the interval [t0,+∞) whereas
they do not cross if s31(t0) < s221(t0). At the end, in all cases, s31 ◦s212 admits a
unique fixed point. The nonfreeness property holds though the (sij)i,j do not
cross.

2 The multivariate case

In the multivariate case, the topology of the orbits is more complicated and a
full classification is difficult to obtain. Yet, Theorem 1 is still valid and previous
ideas can be partially extended. We first write the suitable generalizations of
Assumptions 2-3 in this context. Henceforth, H still denotes the interior of
the support of η.

Assumption S1 (Dual strict monotonicity) ε ∈ R, h(Z, η) = (h1(Z, η1), ...,

hd(Z, ηd)) and for all (x, z,m) ∈ X × {1, ..., K} × {1, ...d}, τ 7→ g(x, τ) and
v 7→ hm(z, v) are strictly increasing.

Assumption S2 (technical restrictions)
(i) Support(X|Z = z) =

∏d
m=1[xm, xm] with −∞ ≤ xm < xm ≤ ∞ indepen-

dent of z.
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(ii) ε has a uniform distribution.
(iii) Fηm is continuous and strictly increasing on its support for m ∈ {1, ..., d}.
(iv) (u, v) 7→ Fε|η=v(u) is continuous and strictly increasing in u for all v ∈ H.
(v) g(., .) and h(z, .) are continuous on X × (0, 1) and H respectively.

It is easy to see that under these conditions, Theorem 1 is still valid, where S
is still the group generated by the sij(x) = (sij1(x1), ..., sijd(xd)), with sijm =

F−1Xm|Z=j ◦ FXm|Z=i. The issue is therefore whether the condition on the orbits
holds or not.

2.1 The free case

The powerful tools that we used for the univariate free case, namely Hölder’s
and Denjoy’s theorems, do not apply anymore. Hölder’s theorem states that
if freeness holds for a group of functions on the real line, this group is abelian.
Thanks to this property, we can reduce our study to the unit circle. This
result does not hold however for functions of several variables. Moreover, even
if we were able to come back to the unit circle on each coordinate, Denjoy’s
theorem would only prove density on each of these coordinates but not on the
cartesian product of these unit circles, which would be necessary to establish
full identification.

Even if we cannot use the same proof as in the univariate case, the generalized
location model still provides some interesting insights. Suppose that

Xm = µm (νm(Z) + ηm) , m = 1...d (2.1)

where µm is strictly increasing and continuous and, without loss of generality,
ν1(1) = ... = νd(1) = 0. We let hereafter A denote the K − 1 × d-matrix of
typical (k − 1,m) element νm(k), for k = 2, ..., K, and Ak be the kth line of
A. We make the following assumption.

Assumption S3 (Rank and non-periodicity condition) (i) The matrix A has
rank d and (ii) supposing without loss of generality that (A1, ..., Ad) are lin-
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early independent, there exists i > d such that Ai =
∑d

k=1 λkAk and for all
(c1, ..., cd) ∈ Zd, (c1, ..., cd) 6= (0, ..., 0),

∑d
k=1 λkck 6∈ Z.

Condition (i) is similar to the standard rank condition in linear IV models,
and actually identical when µ1, .., µd are the identity function. Condition (ii)
is similar to the non-periodicity condition imposed in Assumption 4 in the
univariate case, and can be interpreted as a rank condition. It basically states
that using a value i of the instrument, we can yield a binary instrument Zi
whose effect is truly distinct from those we can produce using the first d + 1

values of Z. A necessary condition for Assumption S3 to hold is thatK ≥ d+2,
which is logical since full identification was obtained in the univariate case with
K ≥ 3. Theorem S1 shows that the model is identified under this condition.
Its proof relies on a characterization of additive subgroups of Rd, which can
be found for instance in Bourbaki (1974).

Theorem S1 If Equation (2.1) and Assumptions 1, S1- S3 hold, g is identi-
fied.

2.2 The nonfree case

Without freeness, we can still use fixed points to achieve identification. How-
ever another element comes into play, namely the attractiveness of these fixed
points. Attractiveness is not an issue in the univariate case since the functions
are strictly increasing. Any fixed point of s can be reached by applying several
times either s or s−1 and g is thus identified at the fixed point.

This is not true anymore in a multidimensional setting, as illustrated in Figure
S1. Consider the bivariate case with K = 2, and let xf = (x1,f , x2,f ) denote
a fixed point of s12 = (s1,12, s2,12). Suppose first that s1,12(x1) > x1 if and
only if x1 < x1,f , while s2,12(x2) < x2 if and only if x2 < x2,f (see Figure
1, case (a)). No sequence (sk12(x))k∈N converges in X . When x = (x1, x2) ∈
(−∞, x1,f )× (−∞, x2,f ), for instance, the sequence (sk1,12(x1))k∈N converges to
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x1,f but the sequence (sk2,12(x2))k∈N tends to −∞, with (x1,f ,−∞) 6∈ X . On
the other hand, suppose that sm,12(xm) < xm if and only if xm < xm,f , for
m ∈ {1, 2} (Figure 1 case (b)). For any x = (x1, x2), the sequence (s−k12 (x))k∈N

converges to xf .

(.)12,1s

fx ,11x

)( case a

)( case b

(.)12,2s

fx ,22x

(.)12,2s

fx ,22x

(.)12,1s

fx ,11x

Figure S 1: Illustration of the attractiveness issue under nonfreeness.

In short, a condition on the position of the coordinates of s12 is necessary and
sufficient to secure identification when K = d = 2. The sufficiency part of this
result actually extends to any K and d, as Proposition S2 shows.

Proposition S2 Under Assumptions 1 and S1-S2, if there exists s = (s1, ..., sd) ∈
S with exactly one fixed point xf = (x1,f , ..., xd,f ) and such that for all x =
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(x1, ..., xd), sgn [(sm(x)− xm)(xm − xm,f )] does not depend on m ∈ {1, ..., d},
then g is identified.

Even if the attractiveness condition may seem restrictive, it is important to
note that only one function in the group has to satisfy this condition. Hence, it
may hold even when no function sij admits an attractive fixed point, because
we also have at hand all the compositions of the sij. To illustrate this idea,
consider the generalized location-scale models of the form

Xm = µm (νm(Z) + σm(Z)ηm) , (2.2)

with σm(Z) > 0 and µm a strictly increasing and continuous function. Without
loss of generality, we set σ1(1) = ... = σd(1) = 1. Unless σm(.) is constant for
somem, all the functions sij admit a unique fixed point, which is not attractive
in general. Nevertheless, under a simple rank condition, the model is identified
because one can always construct a function s ∈ S with an attractive fixed
point.

Theorem S2 If Equation (2.2) and Assumptions 1, S1- S2 hold, and the rank
of the matrix of typical (i, j) element lnσi(j + 1) is d, there exists s ∈ S that
admits a unique and attractive fixed point. Thus, g is identified.

3 Additional proofs

We begin by stating and proving Lemma S1, used in the proof of Theorem 2.

Lemma S1 Suppose that s12 is C2 with s12(x) − x > 0 for all x ∈ X . Then
for any a ∈ X , there exists an increasing C2 diffeomorphism r̃ from [0, 1) to
[a, s12(a)) satisfying r̃(0) = a, limx→1 r̃(x) = s12(a), limx→1 r̃

′(x) = [s12 ◦ r̃]′ (0)

and limx→1 r̃
′′(x) = [s12 ◦ r̃]′′ (0).

Proof: we actually prove the stronger result that for any (a, b, c) ∈ X ×R∗+×
R, there exists an increasing C2 diffeomorphism r̃ from [0, 1) to [a, s12(a))
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satisfying r̃(0) = a, limx→1 r̃(x) = s12(a), r̃′(0) = b, limx→1 r̃
′(x) = s′12(a)b,

r̃′′(0) = c and limx→1 r̃
′′(x) = s′′12(a)b2 + s′12(a)c. For that, we construct r̃′

satisfying all the restrictions. We first define the functions gd,e, for any d > 0

and e ∈ (0, 1/4), as follows:

- on [0, e), let gd,e(x) = b+ cx(1− x/2e);

- on [e, 2e), gd,e(x) = 1/2[(b+ce/2−d) sin(π(x−e)/e+π/2)+(b+ce/2+d)];

- on [2e, 1− 2e), gd,e(x) = d;

- on [1 − 2e, 1 − e), gd,e(x) = 1/2[(f(e) − d) sin(π(x − 1 + e)/e + π/2) +

(f(e) + d)], with f(e) = s′12(a)b− (s′′12(a)b2 + s′12(a)c)e/2;

- on [1−e, 1), gd,e(x) = s′12(a)b+[s”12(a)b2+s′12(a)c](x−1) (1 + (x− 1)/2e).

By construction, gd,e and g′d,e are continuous. If e is small enough, b +

ce/2 > 0 f(e) > 0 and gd,e(x) > 0 for all x ∈ [0, 1). Moreover, gd,e(0) =

b, limx→1 gd,e(x) = s′12(a)b, g′d,e(0) = c and limx→1 g
′
d,e(x) = s”12(a)b2 +

s′12(a)c. Moreover, because limd→0
e→0

∫ 1

0
gd,e(x)dx = 0 and for any e ∈ (0, 1/4),

limd→∞
∫ 1

0
gd,e(x)dx = +∞, there exists, by the intermediate value theorem,

(d∗, e∗) such that f(e∗) > 0 and
∫ 1

0
gd∗,e∗(x)dx = s12(a)− a. By construction,

r̃(x) = a+
∫ x
0
gd∗,e∗(t)dt satisfies all the restrictions of the lemma. �

3.1 Proof of Proposition S1

Suppose first that σ(Z) is constant, equal to one without loss of generality. We
have h−1(i, x) = −ν(i) +µ−1(x). As a result, sij(x) = µ(ν(j)− ν(i) +µ−1(x)).
For any s ∈ S, there exists (i1, j1, ..., ip, jp) ∈ {1, ..., K}2p such that s = si1j1 ◦
... ◦ sipjp . By a straightforward induction, s(x) = µ

(∑K
i=1 ν(i)n(i) + µ−1(x)

)
,

where n(i) =
∑p

l=1 1{jl = i} − 1{il = i}. s(x) = x for some x thus implies
that

∑K
i=1 ν(i)n(i) = 0, implying in turn that s is the identity function. Thus

freeness holds. Now, suppose that σ(Z) is not constant, and let i, j be such
that σ(i) 6= σ(j). We have

sij(x) = µ

[
ν(j) + σ(j)

µ−1(x)− ν(i)

σ(i)

]
.
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Thus, sij is different from the identity function and we can easily see that it
admits a unique fixed point. Therefore, the nonfreeness property holds. �

3.2 Proof of Theorem S1

As in the univariate case, we prove that any orbit is dense. The functions
s ∈ S take the form

s(x1, ..., xd) =

(
µ1

[
K∑
k=2

n(k)ν1(k) + µ−11 (x1)

]
, ..., µd

[
K∑
k=2

n(k)νd(k) + µ−1d (xd)

])
,

for some n = (n(2), ..., n(K)) ∈ ZK−1 . Moreover, any n ∈ ZK−1 corresponds
to a function s ∈ S. We thus have

Ox0 =

{(
µ1

[
K∑
k=2

n(k)ν1(k) + µ−11 (x01)

]
, ..., µd

[
K∑
k=2

n(k)νd(k) + µ−1d (x0d)

])
,

(n(2), ..., n(K)) ∈ ZK−1
}
.

By continuity of µ1, ..., µd, it suffices to show thatH = {
∑K

k=2 n(k)A′k−1, n(k) ∈
Z} is dense in Rd. Because H is an additive subgroup of Rd, it suffices to show
(see, e.g., Bourbaki, 1974, paragraph 1, n◦3) that

< H, x >⊂ Z =⇒ x = 0, (3.1)

where for any x ∈ Rd,

< H, x >= {h′x, h ∈ H} =

{
K∑
k=2

n(k)Ak−1x, n(k) ∈ Z

}
.

Suppose that < x,H >⊂ Z for some x ∈ Rd. Then Akx ∈ Z for all k = 1, ..., d.
Choosing i > d + 1 as in Assumption S3, we also have Aix ∈ Z. This implies
that

∑d
k=1 λk(Akx) ∈ Z. Because Akx ∈ Z, Akx = 0 for k = 1, ..., d by

Assumption S3. Because (A1, ..., Ad) are linearly independent, x = 0, implying
(3.1). �
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3.3 Proof of Proposition S2

Suppose without loss of generality that sgn [(sm(xm)− xm)(xm − xm,f )] = −1

for all m = 1...d. To prove Theorem S2, it suffices to show that xf =

limk→∞ s
k(x) for all x = (x1, ..., xd) ∈ X , or, equivalently, that for allm = 1...d,

xm,f = limk→∞ s
k
m(xm). If xm < xm,f , a straightforward induction shows that

(skm(x))k∈N is increasing and bounded above by xm,f . Because s has a unique
fixed point, xm,f = limk→∞ s

k
m(xm). Similarly, if xm > xm,f , skm(x) is decreas-

ing and bounded below by xm,f , and the sequence also converges to xm,f . �

3.4 Proof of Theorem S2

First, some algebra shows that functions s ∈ S take the form

s(x1, ..., xd) =

(
µ1

[
α1 +

(
K∏
k=2

σ1(k)
ek

)
µ−11 (x1)

]
, ...,

µd

[
αd +

(
K∏
k=2

σd(k)
ek

)
µ−1d (xd)

])
,

for some (α1, ..., αd) ∈ Rd and (e2, ..., eK) ∈ ZK−1. Moreover, any e ∈ ZK−1

corresponds to a function s ∈ S. Noting βm =
∏K

k=2 σm(k)ek , the function s
admits a unique attractive fixed point xf = (x1,f , ..., xd,f ) if, for all m, 0 <

βm < 1. Indeed µm(αm+βmµ
−1
m (xm,f )) = xm,f if and only if µ−1m (xm,f ) = αm

1−βm .
Moreover, µm(α + βµ−1m (xm)) > xm for xm < xm,f . Thus, by Proposition S2,
it suffices to show that there exists (e2, ..., eK) ∈ ZK−1 such that(

K∏
k=2

σm(k)ek

)
< 1 for all m ∈ {1, ..., d}. (3.2)

Let M denote the d × K − 1 matrix of typical (i, j) element lnσi(j + 1).
Because M is full rank by assumption, there exists u ∈ RK−1 such that Mu =

−(1, ..., 1)′. Thus, by density of QK−1, there exists ũ ∈ QK−1 such that Mũ <

0, where the inequality should be understood componentwise. Moreover, ũ
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can be written (e2/D, ..., eK/D)′, where (e2, ...eK , D) ∈ ZK . This implies that
M(e2, ...eK)′ < 0 which is equivalent to (3.2). �
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