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Abstract

This paper gathers the supplementary material to de Chaisemartin and D’Haultfœuille
(2017). First, we consider additional identification results. Second, we provide additional
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presented in Section 5 in de Chaisemartin and D’Haultfœuille (2017). Fourth, we present
two additional empirical applications. Finally, we present all the proofs not included in the
main paper.
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1 Additional identification results

1.1 Placebo tests

In this subsection, we explain how one can use placebo tests to assess the plausibility of As-
sumptions 4, 5, 4’, and 7.

Assume for instance that data is available for period T = −1, and that the share of treated
units is stable in both groups between T = −1 and T = 0: E(D10) − E(D1−1) = E(D00) −
E(D0−1) = 0.1 Then Assumptions 4 and 5 between T = −1 and 0 imply that E(Y10) −
E(Y1−1) − (E(Y00) − E(Y0−1)) = 0. Therefore, if in the data one rejects the null hypothesis
E(Y10) − E(Y1−1) − (E(Y00) − E(Y0−1)) = 0, this shows that Assumptions 4 and 5 are not
satisfied between T = −1 and T = 0, which in turns casts some doubt on the plausibility of
these assumptions between period 0 and 1.

Similarly, if E(D10)−E(D1−1) = E(D00)−E(D0−1) = 0, Assumption 4’ (resp. Assumption 7) be-
tween T = −1 and 0 implies that E(Y10)−E(Y1−1+δD1−1) = 0 (resp. E(Y10)−E(QD1−1(Y1−1)) =

0).2 Assumptions 4’ and 7 have further testable implications. For instance, Assumption 4’ im-
plies that for d ∈ {0, 1}, E(Yd10)−E(Yd1−1) = E(Yd00)−E(Yd0−1): common trends between the
two groups should hold conditional on each value of the treatment.

On the other hand, when E(D10) − E(D1−1) or E(D00) − E(D0−1) is different from 0, placebo
estimators can no longer be used to test Assumptions 4 and 5, 4’, or 7. Placebos might differ
from zero even if those assumptions are satisfied, because of the effect of the treatment.

Finally, placebo tests are generally uninformative as to the plausibility of Assumption 6, while
this assumption is necessary to have that WDID = ∆ when the share of treated units changes
over time in the control group. To see this, assume for instance that a treatment appears in
T = 1 and that some units are treated both in the treatment and in the control group. This
corresponds to the situation in Enikolopov et al. (2011), who study the effect of the introduction
of an independent TV channel in Russia on votes for the opposition. In such instances, placebo
DIDs comparing the evolution of the mean outcome in the two groups before T = 1 are tests

1Here, we keep the same notational shortcut as in the main text. Thus, for any random variable R, Rg−1 ∼
R|G = g, T = −1 and Rdg−1 ∼ R|D = d,G = g, T = −1.

2With a slight abuse of notation, here δd and Qd are computed between periods -1 and 0.
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of Assumption 4, but they are uninformative as to the plausibility of Assumption 6 because
nobody was treated before T = 1.

1.2 Identification with multiple groups and periods

In this subsection, we consider the case with multiple groups and multiple periods of time.
Let T ∈ {0, 1, ..., t} with t > 1 denote the period when a unit is observed. For any (g, t) ∈
S(G) × {1, ..., t}, let Sgt = {D(t) 6= D(t − 1), G = g} be the subset of group g that switches
treatment status between t− 1 and t. Also, let St = ∪gg=0Sgt denote the units switching between
t−1 and t. Finally, let S∗ =

⋃t
t=1 St be the union of all switchers. At each date, we can partition

the groups into three subsets, depending on whether their treatment rate is stable, increases, or
decreases between t− 1 and t. For every t ∈ {1, ..., t}, let

Gst = {g ∈ S(G) : E(Dgt) = E(Dgt−1)}
Git = {g ∈ S(G) : E(Dgt) > E(Dgt−1)}
Gdt = {g ∈ S(G) : E(Dgt) < E(Dgt−1)},

and let G∗t = 1{G ∈ Git}−1{G ∈ Gdt}. We introduce the following assumptions, which generalize
Assumptions 4, 5, and 4’ to settings with multiple groups and periods (Assumptions 7 and 8
apply to this case without modifications).

Assumption 4M (Common trends)

For every t ∈ {1, ..., t}, E(Y (0)|G, T = t)− E(Y (0)|G, T = t− 1) does not depend on G.

Assumption 5M (Stable treatment effect over time)

For every t ∈ {1, ..., t}, E(Y (1) − Y (0)|G, T = t,D(t − 1) = 1) = E(Y (1) − Y (0)|G, T =

t− 1, D(t− 1) = 1).

Assumption 4’M (Conditional common trends)

For every (d, t) ∈ {0, 1}×{1, ..., t}, E(Y (d)|G, T = t,D(t−1) = d)−E(Y (d)|G, T = t−1, D(t−
1) = d) does not depend on G.

Theorem 1 below shows that when there is at least one group in which the treatment rate is
stable between each pair of consecutive dates, combinations of these assumptions allow us to
point identify ∆w, a weighted average of LATEs over different periods:

∆w =
t∑
t=1

P (St)∑t
t=1 P (St)

E(Y (1)− Y (0)|St, T = t).

We also consider the following assumption, under which ∆w is equal to the LATE among the
whole population of switchers S∗.
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Assumption 13 (Monotonic evolution of treatment, and homogeneous treatment effects over
time)

1. For every t 6= t′ ∈ {1, ..., t}2 Git ∩ Gdt′ = ∅.

2. For every (t, t′) ∈ {1, ..., t}2, E(Y (1)− Y (0)|St, T = t′) = E(Y (1)− Y (0)|St, T = 1).

The first point of Assumption 13 requires that in every group, the treatment rate follows a
monotonic evolution over time. The second point requires that switchers’ LATE be constant
over time.

For any random variable R and for any g 6= g′ ∈ {−1, 0, 1}2, t ∈ {1, ..., t} and d ∈ {0, 1}, let

DID∗R(g, g′, t) = E(R|G∗t = g, T = t)− E(R|G∗t = g, T = t− 1)

− (E(R|G∗t = g′, T = t)− E(R|G∗t = g′, T = t− 1)),

δ∗dt = E(Y |D = d,G∗t = 0, T = t)− E(Y |D = d,G∗t = 0, T = t− 1),

Q∗dt(y) = F−1
Y |D=d,G∗t=0,T=t ◦ FY |D=d,G∗t=0,T=t−1(y),

W ∗
DID(g, g′, t) =

DID∗Y (g, g′, t)

DID∗D(g, g′, t)
,

W ∗
TC(g, 0, t) =

E(Y |G∗t = g, T = t)− E(Y + δ∗Dt|G∗t = g, T = t− 1)

E(D|G∗t = g, T = t)− E(D|G∗t = g, T = t− 1)
,

W ∗
CIC(g, 0, t) =

E(Y |G∗t = g, T = t)− E(Q∗Dt(Y )|G∗t = g, T = t− 1)

E(D|G∗t = g, T = t)− E(D|G∗t = g, T = t− 1)
.

We also define the following weights:

wt =
DID∗D(1, 0, t)P (G∗t = 1) +DID∗D(0,−1, t)P (G∗t = −1)∑t
t=1 DID

∗
D(1, 0, t)P (G∗t = 1) +DID∗D(0,−1, t)P (G∗t = −1)

,

w10|t =
DID∗D(1, 0, t)P (G∗t = 1)

DID∗D(1, 0, t)P (G∗t = 1) +DID∗D(0,−1, t)P (G∗t = −1)
.

Theorem S1 Assume that Assumption 3 is satisfied. Assume also that for every t ∈ {1, ..., t},
Gst 6= ∅. Finally, assume that G ⊥⊥ T .

1. If Assumptions 4M and 5M are satisfied,

t∑
t=1

wt(w10|tW
∗
DID(1, 0, t) + (1− w10|t)W

∗
DID(−1, 0, t)) =∆w.

2. If Assumption 4’M is satisfied,

t∑
t=1

wt(w10|tW
∗
TC(1, 0, t) + (1− w10|t)W

∗
TC(−1, 0, t)) =∆w.
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3. If Assumptions 7 and 8 are satisfied,

t∑
t=1

wt(w10|tW
∗
CIC(1, 0, t) + (1− w10|t)W

∗
CIC(−1, 0, t)) =∆w.

4. If Assumption 13 holds,
∆w = E(Y (1)− Y (0)|S, T > 0).

Theorem S1 resembles Theorem 3.2 on multiple groups, but aggregating estimands at different
dates proves more difficult than aggregating estimands from different groups. This is because
populations switching treatment between different dates might overlap. For instance, if a unit
goes from non treatment to treatment between period 0 and 1, and from treatment to non
treatment between period 1 and 2, she both belongs to period 1 and period 2 switchers. A
weighted average of, say, our Wald-DID estimands between period 0 and 1 and between period
1 and 2 estimates a weighted average of the LATEs of two potentially overlapping populations.
There is therefore no natural way to weight these two estimands to recover the LATE of the
union of period 1 and 2 switchers. As shown in the fourth point of the theorem, the aggregated
estimand we put forward still satisfies the following property: it is equal to the LATE of the
union of switchers in the special case where each group experiences a monotonic evolution of
its treatment rate over time. When this is the case, populations switching treatment status at
different dates cannot overlap, so our weighted average of switchers’ LATE across periods is
actually the LATE of all switchers.

As Theorem 3.2, Theorem S1 relies on G ⊥⊥ T . Large deviations from this stable group as-
sumption indicate that some groups grow much faster than others, which might anyway call into
question the common trends assumptions underlying DID identification strategies. Moreover,
this assumption is only a sufficient condition to rationalize our estimands under assumptions at
the group level. Another way to rationalize our estimands is to state our assumptions directly
at the “super group” level. For instance, if Assumptions 3, 4M, and 4’M are satisfied with G∗t
instead of G, then the first statement of Theorem S1 is still valid even if G is not indepen-
dent of T . Finally, when G is not independent of T , it is still possible to form a Wald-DID
and a Wald-TC type of estimand identifying a weighted average of LATEs under group-level
assumptions. To do so, one merely needs to implement some reweighting to ensure that the
distribution of groups is the same in periods t − 1 and t in the reweighted population. For all
(g, t) ∈ {0, 1, ..., g} × {1, ..., t}, let

rgt =
P (G = g|T = t)

P (G = g|T = t− 1)
.

One can show that a weighted average of
E(Y |G∗t = 1, T = t)− E (rGtY |G∗t = 1, T = t− 1)− (E(Y |G∗t = 0, T = t)− E (rGtY |G∗t = 0, T = t− 1))

E(D|G∗t = 1, T = t)− E (rGtD|G∗t = 1, T = t− 1)− (E(D|G∗t = 0, T = t)− E (rGtD|G∗t = 0, T = t− 1))
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and
E(Y |G∗t = −1, T = t)− E (rGtY |G∗t = −1, T = t− 1)− (E(Y |G∗t = 0, T = t)− E (rGtY |G∗t = 0, T = t− 1))

E(D|G∗t = −1, T = t)− E (rGtD|G∗t = −1, T = t− 1)− (E(D|G∗t = 0, T = t)− E (rGtD|G∗t = 0, T = t− 1))

identifies a weighted average of LATEs under Assumptions 3, 4M, and 5M even if G is not inde-
pendent of T .3 One can follow similar steps to construct a Wald-TC type of estimand identifying
a weighted average of LATEs under Assumptions 3 and 4M even if G is not independent of T .

1.3 Particular fuzzy designs

We now return to our initial setup with two groups and two periods. In Section 2, we have
considered general fuzzy situations where the P (Dgt = d) were restricted only by Assumption
1 and possibly Assumption 2. We first show that in the special case where P (D00 = 1) =

P (D01 = 1) = P (D10 = 1) = 0, identification of the average treatment effect on the treated can
be obtained under the same assumptions as those of the standard DID or CIC models.

Theorem S2 Suppose that P (D00 = 1) = P (D01 = 1) = P (D10 = 1) = 0 < P (D11 = 1).

1. If Assumption 4 holds, then WDID = WTC = E(Y11(1)− Y11(0)|D = 1).

2. If Y (0) = h0(U0, T ) with h0(., t) strictly increasing, U0 ⊥⊥ T |G, and S(U0|G = 1) ⊆
S(U0|G = 0), then WCIC = E(Y11(1)− Y11(0)|D = 1).

In this special case, identification of the average treatment effect on the treated can be obtained
under the same assumptions as those of the standard DID or CIC models. Note that under
Assumption 3, the treated population corresponds to S, so E(Y11(1)−Y11(0)|D = 1) = ∆ under
this additional assumption.

Second, we consider cases where P (D00 = 0) = P (D01 = 0) ∈ {0, 1}. Such situations arise when
a policy is extended to a previously ineligible group, or when a program or a technology previously
available in some geographic areas is extended to others (see e.g. Field, 2007). Theorem 2.1
applies in this special case, but not Theorems 2.2-2.3, as they require that 0 < P (D00 = 0) =

P (D01 = 0) < 1.

In such instances, identification must rely on the assumption that the trends on both potential
outcomes are the same. For instance, if P (D00 = 1) = P (D01 = 1) = 1 and P (D10 = 1) < 1,
there are no untreated units in the control group that we can use to infer trends for untreated
units in the treatment group. We must therefore use treated units. Instead of the Wald-
TC estimand, one could then use [E(Y11) − E(Y10 + δ1)]/[E(D11) − E(D10)]. But because

3The weights are the same as those in Theorem 1, except that one needs to replace P (G∗t = 1) and P (G∗t = −1)
by P (G∗t = 1|T = t) and P (G∗t = −1|T = t) in their definition.
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P (D00 = 1) = P (D01 = 1) = 1, this quantity is actually equal to the WDID. On the other
hand, generalizing the Wald-CIC estimand to these situations requires introducing an estimand
we have not considered so far.

Let us first consider the following assumption.

Assumption 14 (Common trends on both potential outcomes)

h0(h−1
0 (y, 1), 0) = h1(h−1

1 (y, 1), 0) for every y ∈ S(Y ).

Assumption 14 requires that trends on both potential outcomes are the same. Once combined
with Assumption 7, it implies that a treated and an untreated unit with the same outcome
in period 0 also have the same outcome in period 1. This restriction is not implied by the
assumptions we introduced in Section 2.4: Assumption 7 alone only implies that two treated
(resp. untreated) units with the same outcome in period 0 also have the same outcome in period
1. An example of a structural function satisfying Assumption 14 is hd(Ud, T ) = f(gd(Ud), T )

with f(., t) and gd(.) strictly increasing. This shows that Assumption 14 does not restrict the
effects of time and treatment to be homogeneous. Finally, Assumptions 5 and 14 are related,
but they also differ on some respects. Assumption 5 restricts the average time trends on the two
potential outcomes of always treated to be the same. Assumption 14 restricts time trends on
the two potential outcomes of units satisfying Y (0) = Y (1) at the first period to be the same.

Theorem S3 If Assumptions 1, 3, 7-8, and 14 hold, and P (D00 = d) = P (D01 = d) = 1 for
some d ∈ {0, 1},

P (D10 = d)FQd(Yd10)(y)− P (D11 = d)FYd11(y)

P (D10 = d)− P (D11 = d)
= FY11(d)|S(y),

P (D10 = 1− d)FQd(Y1−d10)(y)− P (D11 = 1− d)FY1−d11(y)

P (D10 = 1− d)− P (D11 = 1− d)
= FY11(1−d)|S(y),

E(Y11)− E(Qd(Y10))

E(D11)− E(D10)
= ∆.

The estimands considered in this theorem are similar to those considered in Theorem 2.3, except
that they apply the same quantile-quantile transform to all treatment units in period 0, instead
of applying different transforms to units with a different treatment. Indeed, under Assumption
14, if P (D00 = d) = P (D01 = d) = 1 we can use changes in the distribution of Y (d) in the
control group over time to identify the effect of time on Y (1− d), hence allowing us to recover
both FY11(d)|S and FY11(1−d)|S.

1.4 Identification with covariates

In this section, we consider a framework incorporating covariates. LetX be a vector of covariates.
We replace Assumptions 1-8 by the following conditions.
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Assumption 1X (Conditional fuzzy design)

Almost surely, E(D11|X) > E(D10|X), and E(D11|X)− E(D10|X) > E(D01|X)− E(D00|X).

Assumption 2X (Stable conditional percentage of treated units in the control group)

Almost surely, 0 < E(D01|X) = E(D00|X) < 1.

Assumption 3X (Treatment participation equation)
D = 1{V ≥ vGTX}, where V ⊥⊥ T |G,X. We then define D(t) = 1{V ≥ vGtX}.

Assumption 4X (Conditional common trends)

Almost surely, E(Y (0)|G, T = 1, X)− E(Y (0)|G, T = 0, X) does not depend on G.

Assumption 5X (Stable conditional treatment effects over time)

Almost surely, E(Y (1)−Y (0)|G, T = 1, D(0) = 1, X) = E(Y (1)−Y (0)|G, T = 0, D(0) = 1, X).

Assumption 4’X (Conditional common trends within treatment status at the first date)

Almost surely and for d ∈ {0, 1}, E(Y (d)|G, T = 1, D(0) = d,X) − E(Y (0)|G, T = 0, D(0) =

d,X) does not depend on G.

Assumption 7X (Monotonicity and conditional time invariance of unobservables)

Y (d) = hd(Ud, T,X), with Ud ∈ R and hd(u, t, x) strictly increasing in u for all (d, t, x) ∈
S((D,T,X)). Moreover, Ud ⊥⊥ T |G,D(0), X.

Assumption 8X (Data restrictions)

1. S(Ydgt|X = x) = S(Y ) for all (d, g, t, x) ∈ S((D,G, T,X)) and S(Y ) is a closed interval
of R.

2. FYdgt|X=x is strictly increasing on R and continuous on S(Y ), for all (d, g, t, x) ∈ S((D,G, T,X)).

3. S(Xdgt) = S(X) for all (d, g, t) ∈ S((D,G, T )).

For any random variable R, let DIDR(X) = E(R11|X)−E(R10|X)− (E(R01|X)−E(R00|X)).
We also let δd(x) = E(Yd01|X = x)− E(Yd00|X = x), Qd,x(y) = F−1

Yd01|X=x ◦ FYd00|X=x(y), and

WDID(X) =
DIDY (X)

DIDD(X)

WTC(X) =
E(Y11|X)− E(Y10 + δD10(X)|X)

E(D11|X)− E(D10|X)

WCIC(X) =
E(Y11|X)− E(QD10,X(Y10)|X)

E(D11|X)− E(D10|X)
.

Finally, let ∆(X) = E(Y11(1)− Y11(0)|S,X).
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Theorem S4 Assume that Assumptions 1X-3X hold. Then:

1. If Assumptions 4X-5X are satisfied, and if the third point of Assumption 8X holds,WDID(X) =

∆(X) and

WX
DID ≡

E[DIDY (X)|G = 1, T = 1]

E[DIDD(X)|G = 1, T = 1]
= ∆.

2. If Assumption 4’X is satisfied, and if the third point of Assumption 8X holds, WTC(X) =

∆(X) and

WX
TC ≡

E(Y11)− E[E(Y10 +D10δ1(X) + (1−D10)δ0(X)|X)|G = 1, T = 1]

E(D11)− E(E(D10|X)|G = 1, T = 1)
= ∆.

3. If Assumptions 7X-8X are satisfied, WCIC(X) = ∆(X) and

WX
CIC ≡

E(Y11)− E[E(D10Q1,X(Y10) + (1−D10)Q0,X(Y10)|X)|G = 1, T = 1]

E(D11)− E(E(D10|X)|G = 1, T = 1)
= ∆.

Incorporating covariates into the analysis has two advantages. First, it allows us to weaken our
identifying assumptions. For instance, if the distribution of X is not balanced in the treatment
and control groups and X is correlated to trends on the outcome, our unconditional common
trends assumptions might fail to hold while the conditional ones might hold (see Abadie, 2005).
Second, there might be instances where E(D00) 6= E(D01) but E(D00|X) = E(D01|X) > 0

almost surely, meaning that in the control group the evolution of the treatment rate is entirely
driven by a change in the distribution of X. If that is the case, one can use the previous theorem
to point identify treatment effects among switchers, while our theorems without covariates only
yield bounds. When E(D00|X) 6= E(D01|X), one can derive bounds for ∆(X) and then for ∆,
as in Theorem 3.1. These bounds could be tighter than the unconditional ones if changes in the
distribution of X drive most of the evolution of the treatment rate in the control group.

1.5 Identification with panel data

We start by presenting modifications of our assumptions better suited for the panel data case.
We index random variables by i, to distinguish individual effects from constant terms. First, we
replace Assumption 3 by the following assumption.

Assumption 3P (Treatment participation equation with panel data)
Dit = 1{Vit ≥ vGit}, where Vi1|Gi ∼ Vi0|Gi.

Assumption 3P is better suited for panel data than Assumption 3 because it allows for units in
both groups to switch treatment in both directions, from non-treatment to treatment but also
the other way around. In this framework, treatment and control group switchers are respectively
defined as Si = {Vi1 ∈ [v11, v10), Gi = 1} and S ′i = {Vi1 ∈ [min(v01, v00),max(v01, v00)), Gi = 0}.
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Under Assumption 3P, Theorems 2.1, 2.2, and 2.3 remain valid under the following modifications
of Assumptions 5, 4’, and 7:

Assumption 5P (Stable treatment effect over time)
E(Yi1(1)− Yi1(0)|Gi, Vi1 ≥ vGi0) = E(Yi0(1)− Yi0(0)|Gi, Vi0 ≥ vGi0).

Assumption 4’P (Conditional common trends)

E(Yi1(1)|Gi, Vi1 ≥ vGi0)−E(Yi0(1)|Gi, Vi0 ≥ vGi0) and E(Yi1(0)|Gi, Vi1 < vGi0)−E(Yi0(0)|Gi, Vi0 <

vGi0) do not depend on G.

Assumption 7P (Monotonicity and time invariance of unobservables)

Yit(d) = hd(Uitd, t), with Uitd ∈ R and hd(u, t) strictly increasing in u for all (d, t) ∈ {0, 1}2.
Moreover, Ui0d|Gi, Vi0 ≥ vGi0 ∼ Ui1d|Gi, Vi1 ≥ vGi0 and Ui0d|Gi, Vi0 < vGi0 ∼ Ui1d|Gi, Vi1 < vGi0.

Then we discuss whether those assumptions are satisfied in standard panel data models. We
consider the following model.

Assumption 15 (Panel data model)

Yit = Λ (αi + γt + [βi + λt]Dit + εit) , (32)

where Λ(.) is strictly increasing, (αi, βi)|Gi, Vi1 ≥ vGi0 ∼ (αi, βi)|Gi, Vi0 ≥ vGi0 and (αi, βi)|Gi, Vi1 <

vGi0 ∼ (αi, βi)|Gi, Vi0 < vGi0.

Equation (32) has time and individual effects. It allows for heterogeneous and time varying
treatment effects that can be arbitrarily correlated with the treatment, the individual effect αi,
and the idiosyncratic shocks.

Theorem S5 below shows that when the treatment rate is stable in the control group, ∆ is
identified by the Wald-DID, Wald-TC, or Wald-CIC estimand under alternative restrictions on
Λ(.), λt, and the distribution of εit.

Theorem S5 Suppose that Assumptions 1, 2, 3P, and 15 hold.

1. If Λ(y) = y, λt = 0, and E (εi1|Gi) = E (εi0|Gi), then WDID = ∆.

2. If Λ(y) = y, E (εi1|Gi, Vi1 ≥ vGi0) = E (εi0|Gi, Vi0 ≥ vGi0), and E (εi1|Gi, Vi1 < vGi0) =

E (εi0|Gi, Vi0 < vGi0), then WTC = ∆.

3. If εi1|αi, βi, Gi, Vi1 ≥ vGi0 ∼ εi0|αi, βi, Gi, Vi0 ≥ vGi0 and εi1|αi, βi, Gi, Vi1 < vGi0 ∼
εi0|αi, βi, Gi, Vi0 < vGi0, then WCIC = ∆.

Theorem S5 underlines the trade-off between the three estimands in the context of this panel
data model. The Wald-DID requires the least stringent condition on the idiosyncratic terms εit,
but it requires that treatment effects do not vary over time. The Wald-TC does not rely on this
condition, but it imposes more restrictions on εit. The Wald-CIC is even more restrictive on this
front, but it allows for nonlinear models on the outcome.
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2 Additional inference results

2.1 Inference with multiple groups

In applications with multiple groups, it might be the case that the supergroups Gs,Gi, and Gd we
introduced in Subsection 3.2 are not known. That is for instance the case when the treatment
varies at the individual level, as in Duflo (2001), and not only at the group level, as in Gentzkow
et al. (2011). In this subsection, we propose an estimation procedure of these groups, and we
show that when the number of groups is fixed this first-step estimation of the supergroups does
not have any impact on the asymptotic variances of our estimators. We assume that the support
of G is equal to G = {0, ..., g}. We need to estimate Gs,Gi, Gd, and G∗ = 1{G ∈ Gi}−1{G ∈ Gd}.
To this end, let p̂gt = P̂ (Dgt = 1), p̂g = (ng1p̂g1 + ng0p̂g0)/(ng1 + ng0) and let us define the t-test

Tg =

√
ng1ng0
ng1 + ng0

p̂g1 − p̂g0√
p̂g(1− p̂g)

.

Let κn denote a threshold tending to infinity at a rate specified below. We estimate the super-
groups as follows:

Ĝs = {g ∈ G : |Tg| ≤ κn}, Ĝi = {g ∈ G : Tg > κn}, Ĝd = {g ∈ G : Tg < −κn}.

Then we define, for any unit j of the sample,

Ĝ∗j = 1{Gj ∈ Ĝi} − 1{Gj ∈ Ĝd}.

Next, we consider plug-in estimators of W ∗
DID,W

∗
TC and W ∗

CIC . We simply provide details for
W ∗
DID, as the other two are defined similarly. For any random variable R and (g, g′) ∈ {−1, 0, 1}2,

we estimate DID∗R(g, g′) by

D̂ID∗R(g, g′) =
1

n∗g1

∑
j∈I∗g1

Rj −
1

n∗g0

∑
j∈I∗g0

Rj −

 1

n∗g′1

∑
j∈I∗

g′1

Rj −
1

n∗g′0

∑
j∈I∗

g′0

Rj

 ,
where I∗gt = {j : Ĝ∗j = g, Tj = 1} and n∗gt is the size of I∗gt. We let, for g ∈ {−1, 0, 1},
P̂ (G∗ = g) = 1

n

∑n
j=1 1{Ĝ∗j = g} and estimate w10 by

ŵ10 =
D̂ID∗D(1, 0)P̂ (G∗ = 1)

D̂ID∗D(1, 0)P̂ (G∗ = 1) + D̂ID∗D(0,−1)P̂ (G∗ = −1)
.

We finally estimate W ∗
DID by

Ŵ ∗
DID = ŵ10

D̂ID∗Y (1, 0)

D̂ID∗D(1, 0)
+ (1− ŵ10)

D̂ID∗Y (−1, 0)

D̂ID∗D(−1, 0)
.
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Theorem S6 Assume that Assumption 3 is satisfied, that Gs 6= ∅, and that G ⊥⊥ T . Assume
also that κn →∞ and κn/

√
n→ 0.

1. If E(Y 2) <∞ and Assumptions 4 and 5 are satisfied,

√
n
(
Ŵ ∗
DID −∆∗

)
L−→ N (0, V (ψ∗DID)) ,

where ψ∗DID is defined in Equation (65) in Subsection 5.7 below.

2. If E(Y 2) <∞ and Assumption 4’ is satisfied,

√
n
(
Ŵ ∗
TC −∆∗

)
L−→ N (0, V (ψ∗TC))

where ψ∗TC is defined in Equation (66) in Subsection 5.7 below.

3. If Assumptions 7, 8 and 12 are satisfied,

√
n
(
Ŵ ∗
CIC −∆∗

)
L−→ N (0, V (ψ∗CIC)) ,

where ψ∗ is defined in Equation (67) in Subsection 5.7 below.

This theorem is very similar to Theorem 4.1. In particular, the first-step estimation of the
supergroups does not have any impact on the asymptotic variances of our estimators. This is
because the number of groups is fixed here, implying that the size of each group tends to infinity.
Then, with probability approaching one, all the groups can be classified correctly by letting κn
tend to infinity at an appropriate rate.

We expect this asymptotic framework to provide a good approximation of the finite sample
behavior of the estimators when the size of each group is large compared to the total number
of groups, g + 1. Then the probability of perfect classification is likely close to one. On the
other hand, this asymptotic framework is not appropriate when the number of groups is large
compared to the number of units in each group, as is the case in our application to Duflo (2001)
where there are 284 groups with 109 units on average. If one considers instead an asymptotic
framework where the number of groups tends to infinity, classification errors in the first step
may matter even asymptotically. Dealing with this case is left for future research.

2.2 Inference with clustering

In many applications, the i.i.d. condition in Assumption 11 is too strong, because of cross-
sectional or serial dependence within clusters. However, in such instances one can build upon
our previous results to draw inference on the Wald-DID and Wald-TC, as well as on the Wald-
CIC if clusters are of the same size.
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We consider an asymptotic framework where the number of clusters C tends to infinity while
the sample size within each cluster remains bounded in probability. Let nc = #{i ∈ c}, nc =
1
C

∑C
c=1 nc, nct = #{i ∈ c : Ti = t}, ncdt = #{i ∈ c : Ti = t,Di = d}, Dct = 1

nct

∑
i∈c:Ti=tDi,

Yct = 1
nct

∑
i∈c:Ti=t Yi, and Ycdt = 1

ncdt

∑
i∈c:Ti=t,Di=d Yi, with the convention that the sums are

equal to zero if they sum over empty sets. Then we can write the estimators of the Wald-DID
and Wald-TC as simple functions of averages of these variables defined at the cluster level. Using
the same reasoning as in the proof of Theorem 4.1, we can linearize both estimators, ending up
with

√
C
(
ŴDID −∆

)
=

1√
C

C∑
c=1

nc
nc
ψc,DID + oP (1),

√
C
(
ŴTC −∆

)
=

1√
C

C∑
c=1

nc
nc
ψc,TC + oP (1),

where ψc,DID = 1
nc

∑
i∈c ψi,DID and similarly for ψc,TC . In other words, to estimate the asymp-

totic variance of our estimators while accounting for clustering, it suffices to compute the average
over clusters of the influence functions we obtained assuming that observations were i.i.d, mul-
tiply them by nc

nc
, and then compute the variance of this variable over clusters.

The Wald-CIC estimator, on the other hand, cannot be written as functions of variables aggre-
gated at the cluster level: it depends on the variables of every unit in each cluster. A similar
argument as above still applies if clusters are of the same size. To see this, note that the Wald-
CIC estimator with clusters of the same size can be linearized, because weak convergence of the
empirical cdfs of the different subgroups still holds in this context.4 We conjecture that a similar
result can also be obtained when clusters are of random sizes.

2.3 Inference under partial identification

In this section, we show how to draw inference on the bounds given in Theorem 3.1. We adopt
the same notation hereafter. In order for the bounds to be finite, we assume that S(Y ) = [y, y]

with −∞ < y < y < +∞. We also suppose for simplicity that y and y are known by the
researcher.5 If not, they can respectively be estimated by mini=1...n Yi and maxi=1...n Yi, and
Theorem S7 below remains valid under regularity conditions on FYd01 at these boundaries.

4To simplify, let us ignore the different subgroups and let us consider the standard empirical process on Y . Let
Yc = (Yc1, ...., Ycnc)

′, where Yci denotes the outcome variable of individual i in cluster c. Because the (Yc)c=1...C

are i.i.d., its multivariate empirical process converges to a multivariate gaussian process. The standard empirical
process on Y can be written as the average over the nc components of this multivariate process. Therefore, it
also converges to a gaussian process.

5In particular, we estimate F−1Ydgt
(0) and F−1Ydgt

(1) by y and y respectively. The definition of F̂−1Ydgt
(τ) for

τ ∈ (0, 1) remains the same as in Section 4 of the main paper.
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First, let us consider the Wald-TC bounds. Let λ̂0d = P̂ (D01=d)

P̂ (D00=d)
, λ̂1d = P̂ (D11=d)

P̂ (D10=d)
, and

F̂ d01(y) = M01

(
1− λ̂0d(1− F̂Yd01(y))

)
−M01(1− λ̂0d)1{y < y},

F̂ d01(y) = M01

(
λ̂0dF̂Yd01(y)

)
+ (1−M01(λ̂0d))1{y ≥ y}.

Then define

δ̂d =

∫
ydF̂ d01(y)− 1

nd00

∑
i∈Id00

Yi, δ̂d =

∫
ydF̂ d01(y)− 1

nd00

∑
i∈Id00

Yi.

Finally, we estimate the bounds by

Ŵ TC =

1
n11

∑
i∈I11 Yi −

1
n10

∑
i∈I10

[
Yi + δ̂Di

]
1
n11

∑
i∈I11 Di − 1

n10

∑
i∈I10 Di

, Ŵ TC =

1
n11

∑
i∈I11 Yi −

1
n10

∑
i∈I10

[
Yi + δ̂Di

]
1
n11

∑
i∈I11 Di − 1

n10

∑
i∈I10 Di

.

Now let us turn to the Wald-CIC bounds. For d ∈ {0, 1}, let

T̂ d =M01

(
λ̂0dF̂Yd01 − Ĥ

−1
d (λ̂1dF̂Yd11)

λ̂0d − 1

)
, T̂ d =M01

(
λ̂0dF̂Yd01 − Ĥ

−1
d (λ̂1dF̂Yd11 + (1− λ̂1d))

λ̂0d − 1

)
,

Ĝd(T ) = λ̂0dF̂Yd01 + (1− λ̂0d)T, Ĉd(T ) =
λ̂1dF̂Yd11 − Ĥd ◦ Ĝd(T )

λ̂1d − 1
.

We then estimate the bounds on FY11(d)|S by

F̂CIC,d(y) = sup
y′≤y

Ĉd

(
T̂ d

)
(y′), F̂CIC,d(y) = inf

y′≥y
Ĉd

(
T̂ d

)
(y′).

Therefore, to estimate bounds for the LATE and LQTE, we use

ŴCIC =

∫
ydF̂CIC,1(y)−

∫
ydF̂CIC,0(y), ŴCIC =

∫
ydF̂CIC,1(y)−

∫
ydF̂CIC,0(y),

τ̂ q = F̂
−1

CIC,1(q)− F̂
−1

CIC,0(q), τ̂ q = F̂
−1

CIC,1(q)− F̂
−1

CIC,0(q).

Hereafter, we define q = FCIC,0(y), q = FCIC,0(y), q1 = [λ11FY111 ◦ F−1
Y101

( 1
λ01

)− 1]/[λ11 − 1] and
q2 = [λ11FY111 ◦ F−1

Y101
(1− 1/λ01)]/[λ11 − 1]. Our results rely on the following assumptions.

Assumption 16 (Technical conditions for inference with TC bounds)

1. S(Y ) = [y, y] with −∞ < y < y < +∞.

2. λ00 6= 1 and for d ∈ {0, 1}, the equation Fd01(y) = 1/λd0 admits at most one solution.

Assumption 16 allows for continuous or discrete outcome variables. In the case of a discrete
variable, the equation Fd01(y) = 1/λd0 will have no solution, except if there is a point in the
support of Yd01 at which Fd01(y) is exactly equal to 1/λd0. Therefore, Assumption 16 rules out
only very rare scenarios. In the continuous case, the equation Fd01(y) = 1/λd0 will have a unique
solution if, e.g., Fd01 is strictly increasing on its support.
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Assumption 17 (Technical conditions for inference with CIC bounds)

1. λ00 6= 1 and q < q.

2. FCIC,d and FCIC,d are strictly increasing on Sd = [F−1
CIC,d(q), F

−1
CIC,d(q)] and

Sd = [F
−1

CIC,d(q), F
−1

CIC,d(q)] respectively. Their derivatives, whenever they exist, are strictly
positive.

The condition q < q in Assumption 17 is automatically satisfied when λ00 > 1, because then
the bounds are proper cdfs so q = 0 and q = 1. When λ00 < 1 and Assumption 10 holds,
one can show that it is satisfied when λ10 < H0(λ00) −H0(1 − λ00). The larger the increase of
the treatment rate in the treatment group and the smaller the increase in the control group,
the more this condition is likely to hold. The strict monotonicity requirement is only a slight
reinforcement of Assumption 10. When λ00 < 1, FCIC,0 and FCIC,0 satisfy Assumption 17 when
H0(λ00F001)− λ10F011 and H0(λ00F001 + 1− λ00)− λ10F011 have positive derivatives on S(Y ). If
H0 is equal to the identity function, this will hold if the ratio of the derivatives of F011 and F001

is strictly lower than λ00
λ10

. Hence, here as well, the larger the increase of the treatment rate in
the treatment group and the smaller the increase in the control group, the more this condition
is likely to hold. It is possible to derive similar sufficient conditions for Assumption 17 to hold
in the three other possible cases (FCIC,0 and FCIC,0 when λ00 > 1, FCIC,1 and FCIC,1 when
λ00 < 1, and FCIC,1 and FCIC,1 when λ00 > 1). We refer the reader to the proof of Lemma S6
for more details.

Theorem S7 establishes the asymptotic normality of the estimated bounds of ∆ and τq for q ∈ Q,
where Q is defined as (q, q)\{q1, q2} when λ00 > 1 and (0, 1) when λ00 < 1.

Theorem S7 Assume that Assumptions 1, 3, and 11 hold.

- If Assumptions 4’ and 16 also hold, then (Ŵ TC −W TC , Ŵ TC −W TC) are asymptotically
normal. Moreover, the bootstrap is consistent for both.

- If Assumptions 7-8, 10, 12 and 17 hold, then (ŴCIC −WCIC , ŴCIC −WCIC) and (τ̂ q −
τ q, τ̂ q − τ q), for q ∈ Q, are asymptotically normal. Moreover, the bootstrap is consistent
for both.

For the CIC bounds, we restrict q to Q when λ00 < 1 because the estimated bounds on τq are
not root-n consistent and asymptotically normal for every q. First, the estimated bounds are
equal to the true bounds with probability approaching one for q < q or q > q, because basically,
the true bounds put mass at the boundaries y or y.6 Second, the bounds may exhibit kinks

6A similar conclusion holds if y or y are estimated rather than known by the researcher: the estimators are n
rather than root-n consistent and not asymptotically normal.
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at q1 and q2, which also leads to asymptotic non-normality of τ̂ q and τ̂ q. On the other hand,
when λ00 > 1, asymptotic normality holds for every q ∈ (0, 1): the bounds on FY11(d)|S are not
defective cdfs, and they do not exhibit kinks, except possibly at the boundaries of their support.

Theorem S7 can be used to construct confidence intervals on ∆ and τq as follows. Let us focus
on the Wald-TC bounds on ∆, the reasoning being similar for other bounds and parameters. If
we know ex ante that partial identification holds or, equivalently, that λ00 6= 1, we can follow
Imbens and Manski (2004) and use the lower bound of the one-sided confidence interval of level
1− α on W TC and the upper bound of the one-sided confidence interval of level 1− α on W TC .
However, in practice we rarely know ex ante whether λ00 = 1 or not. This is an important
issue, since the estimators and the way confidence intervals are constructed differ in the two
cases. To address this issue, we propose a procedure that yields confidence intervals with desired
asymptotic coverage in both cases. Let σ̂λ00 denote an estimator of the variance of λ̂00. Our
procedure has three steps:

1. Compare tλ00 =
∣∣∣ λ̂00−1
σ̂λ00

∣∣∣ to some sequence (cn)n∈N satisfying cn → +∞ and cn√
n
→ 0.

2. If tλ00 ≤ cn, form confidence intervals for ∆ using the point identification results.

3. If tλ00 > cn, form confidence intervals for ∆ using the partial identification results.

This procedure yields pointwise valid confidence intervals, because comparing |tλ00| to cn instead
of a fixed critical value ensures that asymptotically, the probability of conducting inference under
the wrong maintained assumption vanishes to 0. An inconvenient of this procedure is that it relies
on the choice of a tuning parameter, the sequence (cn)n∈N. Note that many procedures recently
suggested in the moment inequality literature also share this inconvenient (see Andrews and
Soares, 2010 or Chernozhukov, Lee and Rosen, 2013). Also, it is unclear whether the confidence
interval CI1−α resulting from that procedure is uniformly valid, i.e. whether it satisfies

lim
n→∞

inf
P∈P0

inf
∆∈[WTC ,WTC ]

P (∆ ∈ CI1−α) ≥ 1− α,

where P0 denotes a set of distributions of (D,G, T, Y ). Uniformly valid confidence intervals on
partially identified parameters have for instance been proposed by Imbens and Manski (2004),
Andrews and Soares (2010), Andrews and Barwick (2012), Chernozhukov, Lee and Rosen (2013),
and Romano et al. (2014). However, to the best of our knowledge none of the existing procedure
applies to our context. The solutions suggested by Imbens and Manski (2004) or Stoye (2009)
require that the bounds converge uniformly towards normal distributions. But our bounds
involve the terms M01(λ0d) and M01(1−λ0d), with M01 non-differentiable at 0 and 1. Therefore,
our estimators are not asymptotically normal when λ0d = 1. The literature on moment inequality
models does not apply either. One can for instance show that under Assumptions 1, 3 and 4,
our parameter of interest ∆ satisfies a moment inequality model with four moment inequalities.
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However, the moments depend on preliminary estimated parameters that once again, do not
have an asymptotically normal distribution when λ00 = 1, thus violating the requirements of,
e.g., Andrews and Soares (2010) and Andrews and Barwick (2012).

2.4 Inference with covariates

In this section, we consider estimators of the Wald-DID, Wald-TC, and Wald-CIC estimands
with covariates derived in Subsection 1.4. For the Wald-DID and Wald-TC, our estimators are
entirely non-parametric.7 For the Wald-CIC, we could define an estimator using a nonparametric
estimator of the conditional quantile-quantile transform Qd,X . However, such an estimator would
be cumbersome to compute. Following Melly and Santangelo (2015), we consider instead an
estimator of Qd,X based on quantile regressions. This estimator relies on the assumption that
conditional quantiles of the outcome are linear. However, it does not require that the effect of
the treatment be the same for units with different values of their covariates, contrary to the
estimator with covariates suggested in Athey and Imbens (2006).

Let us assume that X ∈ Rr is a vector of continuous covariates. Adding discrete covariates
is easy by reasoning conditional on each corresponding cell. We take an approach similar to,
e.g., Frölich (2007) by estimating in a first step conditional expectations by series estimators.
For any positive integer K, let pK(x) = (p1K(x), ..., pKK(x))′ be a vector of basis functions and
PK = (pK(X1), ..., pK(Xn)). For any random variable R, we estimate mR(x) = E(R|X = x) by
the series estimator

m̂R(x) = pKn(x)′
(
PKnPKn ′

)−
PKn (R1, ..., Rn)′ ,

where (.)− denotes the generalized inverse and (Kn)n∈N is a sequence of integers tending to
infinity at a rate specified below. Following Frölich (2007), for any (g, t) ∈ {0, 1}2 we estimate
mR
gt(x) = E(Rgt|X = x) by m̂R

gt(x) = m̂1{G=g,T=t}R(x)/m̂1{G=g,T=t}(x). mR
dgt(x) = E(Rdgt|X =

x) is estimated similarly. Then our Wald-DID and Wald-TC estimators with covariates are
defined by

ŴX
DID =

1
n11

∑
i∈I11

[
Yi − m̂Y

10(Xi)− m̂Y
01(Xi) + m̂Y

00(Xi)
]

1
n11

∑
i∈I11 [Di − m̂D

10(Xi)− m̂D
01(Xi) + m̂D

00(Xi)]
,

ŴX
TC =

1
n11

∑
i∈I11

[
Yi − m̂Y

10(Xi)− m̂D
10(Xi)δ̂1(Xi)− (1− m̂D

10(Xi))δ̂0(Xi)
]

1
n11

∑
i∈I11 [Di − m̂D

10(Xi)]
,

7In our Stata package, we also implement estimators relying on the assumption that all the conditional
expectations in WX

DID and WX
TC are linear functions of X and can therefore be estimated through simple OLS

regressions. These estimators might prove useful when the set of covariates is rich and the estimation of our non-
parametric estimators is cumbersome. Asymptotic normality of these estimators follows directly from standard
results on OLS regressions and the Delta method.
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where δ̂d(x) = m̂Y
d01(x)− m̂Y

d00(x).

We then introduce our Wald-CIC estimator with covariates. Suppose that for all (d, g, t, τ) ∈
{0, 1}3 × (0, 1),

F−1
Ydgt|X=x(τ) = x′βdgt(τ).

Using the fact that FYdgt|X=x(y) =
∫ 1

0
1{F−1

Ydgt|X=x(τ) ≤ y}dτ (see, e.g., Chernozhukov et al.,
2010), we obtain

Qd,x(y) = x′βd01

(∫ 1

0

1{x′βd00(τ) ≤ y}dτ
)
.

Besides, some algebra shows that

E [QD10,X(Y10)|X] = mD
10(X)

∫ 1

0

Q1,X(X ′β110(u))du+ (1−mD
10(X))

∫ 1

0

Q0,X(X ′β010(u))du.

Hence, we estimate ŴX
CIC by

ŴX
CIC =

1
n11

∑
i∈I11

[
Yi − m̂D

10(Xi)
∫ 1

0
Q̂1,Xi(X

′
iβ̂110(u))du− (1− m̂D

10(Xi))
∫ 1

0
Q̂0,Xi(X

′
iβ̂010(u))du

]
1
n11

∑
i∈I11 [Di − m̂D

10(Xi)]
,

where the estimator of the conditional quantile-quantile transform satisfies

Q̂d,x(y) = x′β̂d01

(∫ 1

0

1{x′β̂d00(τ) ≤ y}dτ
)
,

and β̂dgt(τ) is obtained from a quantile regression of Y on X on the subsample Idgt:

β̂dgt(τ) = arg min
β∈B

∑
i∈Idgt

(τ − 1{Yi −X ′iβ ≤ 0})(Yi −X ′iβ).

Here B denotes a compact subset of Rr including βdgt(τ) for all (d, g, t, τ) ∈ {0, 1}3 × (0, 1). In
practice, instead of computing the whole quantile regression process, we can compute τ 7→ β̂dgt(τ)

on a fine enough grid and replace integrals by corresponding averages. See Melly and Santangelo
(2015) for a detailed discussion on computational issues.

We prove the asymptotic normality of our estimators under the following assumptions.

Assumption 18 (Regularity conditions for the series estimators)

1. For any (d, g, t, α) ∈ {0, 1}3 × {0, 1, 2}, infx∈S(X) P (D = d,G = g, T = t|X = x) > 0 and
x 7→ E(1{D = d}1{G = g}1{T = t}Y α|X = x) is s times continuously differentiable on
S(X), with s > 3r.

2. S(X) is a Cartesian product of compact connected intervals on which X has a probability
density function that is bounded away from zero. Moreover E(XX ′) is nonsingular.
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3. The series terms pkKn, 1 ≤ k ≤ Kn, are products of polynomials orthonormal with respect
to the uniform weight. Moreover, K4(s/r−1)

n /n→∞ and K7
n/n→ 0.

Assumption 19 (Regularity conditions for the conditional Wald-CIC estimator)

For all (d, g, t, x, τ) ∈ {0, 1}3 × S(X) × (0, 1), F−1
Ydgt|X=x(τ) = x′βdgt(τ), with βdgt(τ) ∈ B, a

compact subset of Rr. Moreover, FYdgt|X=x is differentiable, with

0 < inf
(x,y)∈S(X)×S(Y )

fYdgt|X=x(y) ≤ sup
(x,y)∈S(X)×S(Y )

fYdgt|X=x(y) < +∞.

Assumption 19 implies that Y has a compact support. If its conditional density is not bounded
away from zero, trimming may be necessary as discussed in Chernozhukov, Fernández-Val and
Melly (2013) and Melly and Santangelo (2015).

Theorem S8 Suppose that Assumptions 1X-3X, 11, and 18 hold. Then

1. If Assumptions 4X-5X and the third point of Assumption 8X also hold,
√
n
(
ŴX
DID −∆

)
L−→ N

(
0, V (ψXDID)

)
,

where the variable ψXDID is defined in Equation (68) in Section 5.

2. If Assumption 4’X and the third point of Assumption 8X also hold,
√
n
(
ŴX
TC −∆

)
L−→ N

(
0, V (ψXTC)

)
,

where the variable ψXTC is defined in Equation (69) in Section 5.

3. If Assumptions 7X-8X and 19 also hold,
√
n
(
ŴX
CIC −∆

)
L−→ N

(
0, V (ψXCIC)

)
,

where the variable ψXCIC is defined in Equation (71) in Section 5.

We prove the asymptotic normality of the Wald-DID and Wald-TC estimators using repeatedly
results on two-step estimators involving nonparametric first-step estimators, see e.g. Newey
(1994). Proving the asymptotic normality of the Wald-CIC estimator is more challenging. We
have to prove the weak convergence of

√
n
(
β̂dgt(.)− βdgt(.)

)
, seen as a stochastic process, on

the whole interval (0, 1). To our knowledge, this convergence has been established so far only
on [ε, 1 − ε], for any ε > 0 (see, e.g., Angrist et al., 2006). Here, the more general result holds
thanks to our assumptions on the conditional distribution of Y . Finally, note that our Wald-CIC
estimator does not require any first-step nonparametric estimator when P (D10 = 1) = 0. In
such a case, asymptotic normality still holds without the regularity conditions in Assumption
18. Only the nonsingularity of E(XX ′) is needed. In Section 4, we revisit results from Field
(2007) where P (D10 = 1) = 0.
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3 Additional material on returns to education in Indonesia

3.1 Descriptive statistics

In this subsection, we report descriptive statistics on the sample used in Section 5 of the main
paper, a subsample of male wage earners interviewed in the 1995 intercensal survey of Indonesia
(see Table S1 below). Cohort 0 are men born between 1957 and 1962. Cohort 1 are men born
between 1968 and 1972. The average log-wage of cohort 0 is 30% higher than that of cohort
1, presumably reflecting the fact that in 1995, the year when the wages of both cohorts are
measured, cohort 0 has more labor market experience than cohort 1. On the other hand, cohort
0 completed 0.32 fewer years of schooling than cohort 1. Cohort 1 bears less individuals, which
reflects the fact it comprises only 5 yearly birth cohorts, while cohort 0 comprises 6 of them.

Table S 1: Descriptive statistics

Cohort 0 Cohort 1

Average log-wages 7.02 6.72
Average years of schooling 9.25 9.57
N 16 118 14 710
Number of districts 284 284
Units per district 56.75 51.80

Notes. This table reports descriptive statistics on the sample used in Section 5 of the main paper. Cohort 0 are
male wage earners born between 1957 and 1962. Cohort 1 are male wage earners born between 1968 and 1972.

3.2 Computation of the bounds with an ordered treatment

Let ∆O =
∑d

d=1E(Y11(d) − Y11(d − 1)|D(1) ≥ d,D(0) < d)wd denote the ACR parameter
introduced in Subsection 3.3 in the main paper. When treatment is ordered and its distribution
is not stable in the control group, we can obtain bounds on ∆O following the same reasoning as
that used to derive bounds on ∆ with a binary treatment.

We start by deriving bounds valid under Assumptions 1, 3’ and 4’, hereafter referred to as
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TC-bounds. Under these assumptions, one can show that

∆O =
E(Y11)− E(Y10)−

∑d
d=0 P (D10 = d)E(Y01(d)− Y00(d)|D(0) = d)

E(D11)− E(D10)

=
E(Y11)− E(Y10)−

∑d
d=0 P (D10 = d) [E(Y01(d)|D(0) = d)− E(Yd00)]

E(D11)− E(D10)
.

Therefore, to obtain bounds on ∆O, it suffices to bound E(Y01(d)|D(0) = d). We have to
distinguish between several cases:

1. [FD00(d− 1), FD00(d)) ⊂ [FD01(d− 1), FD01(d)). Then

E
(
Yd01|Yd01 ≤ F−1

Yd01
(λ)
)
≤ E(Y01(d)|D(0) = d) ≤ E

(
Yd01|Yd01 ≥ F−1

Yd01
(1− λ)

)
,

with λ = (FD00(d)− FD00(d− 1))/(FD01(d)− FD01(d− 1)).

2. [FD01(d− 1), FD01(d)) ⊂ [FD00(d− 1), FD00(d)). Then

E(Y01(d)|D(0) = d) = 1/λE(Yd01) + (1− 1/λ)E(Y01(d)|D(0) = d,D(1) 6= d).

We then bound the last expectation of the right-hand side by y = minY and y = maxY .

3. FD01(d− 1) ≤ FD00(d− 1) ≤ FD01(d) ≤ FD00(d). Then

E (Y01(d)|D(0) = d) = µE (Y01(d)|D(0) = d,D(1) = d)+(1−µ)E (Y01(d)|D(0) = d,D(1) 6= d) ,

with µ = (FD01(d)− FD00(d− 1))/(FD00(d)− FD00(d− 1)). We bound the last expectation
by y and y. The first expectation of the right-hand side satisfies

E
(
Yd01|Yd01 ≤ F−1

Yd01
(ν)
)
≤ E (Y01(d)|D(0) = d,D(1) = d) ≤ E

(
Yd01|Yd01 ≥ F−1

Yd01
(1− ν)

)
,

with ν = (FD01(d)− FD00(d− 1))/(FD01(d)− FD01(d− 1)).

4. FD00(d − 1) ≤ FD01(d − 1) ≤ FD00(d) ≤ FD01(d). We apply the same reasoning as in the
previous case.

5. [FD00(d−1), FD00(d))∩[FD01(d−1), FD01(d)) = ∅. Then we simply boundE (Y01(d)|D(0) = d)

by y and y.

One can follow a similar reasoning to obtain bounds for ∆O valid under Assumptions 1, 3’,
7, and 8, hereafter referred to as CIC-bounds. Under those assumptions, one has to bound
Q̃d(y) = F−1

Y01(d)|D(0)=d ◦ FY00(d)|D(0)=d or, equivalently, FY01(d)|D(0)=d. To do so, we simply replace
the expectations in the equations above by cdfs. When we estimate these bounds in Table 3
in the main paper, we do not estimate bounds for Q̃d for each year of schooling. Instead, we
group schooling into 5 categories (did not complete primary school, completed primary school,
completed middle school, completed high school, completed college). Thus, we avoid estimating
the bounds on a very small number of units. To be consistent, we also use this definition when
estimating the numerator of our TC bounds.
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3.3 Choosing between the estimands

3.3.1 The Wald-DID is incompatible with decreasing returns to experience

In this application, the assumptions underlying the Wald-DID estimand are incompatible with a
simple wage equation with decreasing returns to experience. To see this, suppose for simplicity
that cohort T = t gathers people whose age is exactly at + 6 at the moment of the survey. Then
the experience of someone with T = t and D = d is (at + 6 − (d + 6)) = at − d. Suppose also
that

Y (d) = a(d,G) + f(aT − d) + e(d), (33)

where f(.) is increasing and concave, and E(e(d)|D(t), G, T ) = 0. Then:

E(Y (d)− Y (0)|G, T = t,D(t) = d) = a(d,G)− a(0, G) + f(at − d)− f(at)

< a(d,G)− a(0, G) + f(at−1 − d)− f(at−1)

= E(Y (d)− Y (0)|G, T = t− 1, D(t− 1) = d).

Hence, Assumption 5 is violated because of decreasing returns to experience.

3.3.2 Placebo tests

We use placebo experiments to assess the plausibility of the assumptions underlying the new
estimators of returns to schooling we propose in Subsection 5.2 of the main paper. For that
purpose, we use the cohorts of men born between 1945 and 1950 (cohort -2 hereafter) and
between 1951 and 1956 (cohort -1). Then, we compare the evolution of years of schooling and
wages from cohort -2 to -1, -1 to 0, and 0 to 1 in our two treatment groups (Ĝ∗ = 1 and
Ĝ∗ = −1) and in our control group (Ĝ∗ = 0). We also estimate the numerators of our Wald-TC
and Wald-CIC estimators for each pair of consecutive cohorts.

The results are displayed in Table S2. First consider the group Ĝ∗ = 1 where schooling increases
between cohorts 0 and 1. The difference in average years of education between Ĝ∗ = 1 and
Ĝ∗ = 0 is stable in cohorts -2, -1, and 0, while it is much larger in cohort 1. This shows that
cohorts -2, -1 and 0 can indeed be used to perform placebo tests. Specifically, we can test for
Assumptions 4-5 by testing the significance of the DID of wages between these three cohorts.
These two DIDs are insignificant, though the DID between cohorts -2 and -1 is close to being so,
with a t-stat of 1.43. Testing the significance of the numerators of the corresponding Wald-TC
(resp. Wald-CIC) estimators provides a test of Assumption 4’ (resp. Assumption 7). These
placebo estimators are small and insignificant.
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Table S 2: Placebo tests

-2 vs -1 -1 vs 0 0 vs 1

Ĝ∗ = 1 vs Ĝ∗ = 0 DID schooling 0.108 -0.006 1.030
(0.191) (0.160) (0.127)

DID wages 0.050 0.002 0.164
(0.035) (0.026) (0.028)

Numerator Wald-TC 0.024 -0.012 0.103
(0.026) (0.021) (0.028)

Numerator Wald-CIC 0.023 -0.009 0.099
(0.027) (0.021) (0.028)

N 14,452 19,938 22,339

Ĝ∗ = −1 vs Ĝ∗ = 0 DID schooling 0.115 0.295 -0.695
(0.217) (0.156) (0.120)

DID wages 0.013 0.008 -0.057
(0.038) (0.027) (0.029)

Numerator Wald-TC -0.006 0.020 -0.068
(0.033) (0.022) (0.027)

Numerator Wald-CIC -0.007 0.018 -0.072
(0.032) (0.023) (0.028)

N 9,361 12,909 13,357

Notes. This table reports placebo estimates comparing the evolution of education and wages in our new groups
of districts. Standard errors are clustered at the district level.

The same conclusion holds when comparing the group Ĝ∗ = −1 where schooling decreases
between cohorts 0 and 1 with our control group Ĝ∗ = 0. Neither the DID of wages nor the
numerators of the Wald-TC and of the Wald-CIC are significant in the older cohorts. Note
however that we cannot interpret the estimators comparing cohorts -1 and 0 as placebo tests,
because years of schooling significantly changed between these cohorts in Ĝ∗ = −1. Following
the discussion in Subsection 1.1 of this supplementary material, these placebos might differ from
0 due to the effect of the treatment.

Finally, the same conclusion also holds when we run placebo tests conditionally on different values
of the treatment, so as to assess more testable implications of Assumption 4’ (see Subsection 1.1
of this supplementary material). Let D′ denote a dummy equal to 1 for units completing high
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school. We regress Y on D′, 1−D′, D′× Ĝ∗, (1−D′)× Ĝ∗, D′×1{T = 0}, (1−D′)×1{T = 0},
D′ × Ĝ∗ × 1{T = 0}, and (1−D′)× Ĝ∗ × 1{T = 0} within the sample of units with T = −1 or
T = 0 and Ĝ∗ = 0 or Ĝ∗ = 1. The test of the nullity of the coefficients of D × Ĝ∗ × 1{T = 0}
and (1 −D) × Ĝ∗ × 1{T = 0} is not rejected (p-value = 0.16). The corresponding test within
the sample of units with T = −2 or T = −1 and Ĝ∗ = 0 or Ĝ∗ = 1 is also not rejected (p-value
= 0.16). Finally, the corresponding test within the sample of units with T = −2 or T = −1

and Ĝ∗ = 0 or Ĝ∗ = −1 is not rejected either (p-value = 0.30). The placebo tests therefore
lend strong support to the assumptions underlying the Wald-TC and the Wald-CIC. They lend
weaker support to the assumptions underlying the Wald-DID, because one of the placebo DIDs
is close to being significant.

We now further argue that the placebo DID tests may have low power. Indeed, decreasing
returns to experience would entail smaller violations of Assumption 5 for older cohorts than for
cohorts 0 and 1. Assume that potential wages are determined according to Equation (33) above,
where returns to experience are supposed to be decreasing. As explained above, these decreasing
returns lead to a violation of Assumption 5. Now, the extent to which Assumption 5 is violated
is equal in absolute value to:

[f(at−1 − d)− f(at−1)]− [f(at − d)− f(at)]. (34)

The age gap at−at−1 is larger between cohorts 0 and 1 (1957-1962 and 1968-1972 birth cohorts)
than between cohorts -2 and -1 (1945-1950 and 1951-1956 birth cohorts) and between cohorts
-1 and 0.8 Together with the concavity of f , this implies that the bias term in (34) is strictly
smaller for t = −1 and t = 0 than for t = 1, as long as f ′ is convex or linear. This is for instance
the case with a quadratic or logarithmic model in experience.

3.4 Robustness checks on our procedure to estimate treatment and control groups

In this subsection, we investigate whether the results we present in Subsection 5.2 in the main
paper are robust to our first-step estimation of the treatment and control groups, and whether
they would change much if we were to account for this first-step estimation in our second-step
estimation of returns to schooling.

First, we investigate whether misclassifications of treatment districts as controls can bias our
results. To do so, we construct our groups again using a more liberal criterion. Specifically,
we assign a district to the control group if the p-value of the chi-squared test comparing years
of schooling in cohorts 0 and 1 is greater than 0.6. The control group we obtain this way is
30% smaller than the previous one. It also has a more stable distribution of years of schooling:

8Note that our definition of cohorts 1, 0, and -1 is the same as in Duflo (2001). We added cohort -2 to estimate
a second placebo estimator.

25



a chi-squared test does not reject the assumption that this distribution is the same between
the two cohorts. Using this new control group hardly changes our estimates: the Wald-DID,
Wald-TC, and Wald-CIC are now respectively equal to 13.9%, 9.3%, and 9.2%.

Second, we investigate whether our estimation of the control group biases our estimates of
returns to schooling. Our method uses the data twice, to form groups and to estimate returns
to education. It therefore shares some similarities with the methods studied in Abadie et al.
(2013), which can produce finite sample biases. To detect potential biases, Abadie et al. (2013)
suggest comparing the baseline estimator to a split-sample estimator where half of the sample is
used to construct groups, while the other half is used to compute the estimator. We follow their
recommendation and re-estimate 200 times our Wald-DID, Wald-TC, and Wald-CIC estimators
using a split-sample procedure. The average of the split-sample estimators are respectively
17.3%, 10.9%, and 10.9%. Thus, the point estimates of the Wald-TC and Wald-CIC estimators
remain very stable. If anything, the split-sample produces slightly larger point estimates than
those we report in the main paper, thus increasing the difference with the original estimate in
Duflo (2001).

Third, we investigate whether accounting for the sampling variance induced by our estimation
of the control group would greatly affect our conclusions. Doing so is not straightforward. A
natural idea is to use a two-step bootstrap where in a first step we bootstrap individuals within
each cohort and district and run our procedure to form our control and treatment groups, while
in a second step we bootstrap districts and estimate the Wald-DID, the Wald-TC, and the
Wald-CIC. In practice, this procedure does not work well. Under the null that the distribution
of education did not change over time, one can show that the bootstrap statistics we use in our
chi-squared tests do not have an approximate chi-squared distribution, but are approximately
distributed as sums of squares of N (0, 2) variables.9 We therefore classify much fewer districts
as controls than in the original sample. Dividing the bootstrap test statistics by two does not
solve the problem, because the modified statistic then has a different distribution from that of
the original statistic under the alternative hypothesis. Instead, we opt for a modified version
of the two-step bootstrap: as in the original sample we classify 23% of districts as controls, in
each bootstrap replication we classify the 23% of districts with the lowest chi-squared statistic
as controls. The standard errors of our three estimators are now respectively equal to 0.021,
0.025, and 0.025. Thus, accounting for the sampling variance in our first step procedure seems to
increase the standard errors of our estimators, but also leaves our main conclusions unchanged.
For instance, our Wald-DID estimator is still significantly different from the Wald-TC and Wald-
CIC with these larger standard errors. However, proving that this procedure indeed reproduces
the distribution of our estimators goes beyond the scope of this paper and is left for future work.

9Because districts are of finite size, the distribution of the test statistic is not exactly equal to its asymptotic
distribution.
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4 Additional applications

4.1 The effect of newspapers on electoral participation

Gentzkow et al. (2011) study the effect of newspapers on electoral participation in the USA.
Using data from presidential elections from 1868 to 1928, they estimate OLS regressions of the
change in turnout between the elections in year t − 4 and t in county c on the change in the
number of daily newspapers between t − 4 and t in county c and on state × year dummies to
allow for state-specific trends.

As an alternative, we apply our results to the authors’ data set. Specifically, we follow Theorem
S1. For each election t ∈ {1872, 1876, ..., 1928}, we start by grouping together counties where
the number of newspapers remained stable between t − 4 and t into a “super control group”
G∗t = 0, counties where newspapers increased into a first “super treatment group” G∗t = 1, and
counties where newspapers decreased into a second “super treatment group” G∗t = −1. Then, we
estimate the W ∗

DID(1, 0, t), W ∗
DID(−1, 0, t), W ∗

TC(1, 0, t), and W ∗
TC(−1, 0, t) estimands defined in

Subsection 1.2. In the estimation, we control for state fixed effects to allow for state-specific
trends as the authors do.10 As only 18% of county × election cells have 3 newspapers or more,
in the estimation of the numerators of W ∗

TC(1, 0, t) and W ∗
TC(−1, 0, t) we group the number of

newspapers into 4 categories: 0, 1, 2, and more than 3.11 Finally, we estimate the weighted
average of W ∗

DID(1, 0, t) and W ∗
DID(−1, 0, t) defined in the first point of Theorem 1, and the

weighted average of W ∗
TC(1, 0, t) and W ∗

TC(−1, 0, t) defined in the second point of this theorem.
To simplify the exposition, hereafter we refer to these two estimators as the Wald-DID and
Wald-TC estimator respectively.

Results are presented in Table S3 below. The Wald-DID estimator is close to the estimator in
Gentzkow et al. (2011). On the other hand, the Wald-TC estimator is almost twice as large and
is significantly different from their estimator (t-stat=1.98). It is also significantly different from
the Wald-DID at the 10% level (t-stat=1.77).

10EstimatingW ∗CIC(1, 0, t), andW
∗
CIC(−1, 0, t) with state fixed effects appears difficult. There are many states

where only few counties had, say, 2 newspapers in t− 4 and in t. In these states, the quantile-quantile transform
Q2 between these dates would need to be estimated on a small number of observations, which would result in
imprecise estimates. We could estimate W ∗CIC(1, 0, t) and W

∗
CIC(−1, 0, t) without controlling for state dummies,

but we prefer to follow the authors’ specification and we therefore do not report a Wald-CIC estimator.
11Results do not change much if instead we group the number of newspapers into 5 categories: 0, 1, 2, 3, and

more than 4.
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Table S 3: Effect of one additional newspaper on turnout

Gentzkow et al. (2011) WDID WTC

Effect of newspapers on turnout 0.0026 0.0029 0.0045
(0.0009) (0.0014) (0.0016)

Notes. Sample size: 16 366 counties × election years. This table reports estimates of the effect of one additional
newspaper on turnout. Standard errors are clustered at the district level.

To choose between our estimators, we start by conducting placebo tests. For each pair of
consecutive elections t−4 and t, we start by restricting the estimation sample to counties with a
stable number of newspapers between t− 8 and t− 4. Then, within this subsample we form our
three supergroups G∗t = 0, G∗t = 1, and G∗t = −1 as above. Then, we compute placebo estimators
of W ∗

DID(1, 0, t), W ∗
DID(−1, 0, t), W ∗

TC(1, 0, t), and W ∗
TC(−1, 0, t), using turnout in election t− 4

instead of turnout in election t, and turnout in election t− 8 instead of turnout in election t− 4.
Thus, the placebo estimator of, say, W ∗

DID(1, 0, t) compares the evolution of turnout between
elections t− 8 and t− 4 in counties in G∗t = 1 and G∗t = 0 that did not experience a change in
their number of newspapers between t− 8 and t− 4. Finally, we estimate weighted averages of
these placebo estimators across values of t. Here as well, we use the weights defined in Theorem
S1, so our placebos perfectly mimic our main estimators.

We use a similar strategy to construct a placebo estimator of that in Gentzkow et al. (2011). We
regress the change in counties’ turnout between t − 8 and t − 4 on their change in newspapers
between t − 4 and t, restricting the sample to counties that did not experience a change in
newspapers between t− 8 and t− 4, and controlling for state × year effects. Before presenting
these placebos, let us note that restricting the sample to counties with a stable number of
newspapers between t− 8 and t− 4 reduces sample size by a third but does not affect much our
estimators. For instance, our Wald-TC estimator is equal to 0.0044 in this subsample.12

Our placebo estimators are presented in Table S4. The placebo Wald-DID and the placebo of
the estimator in Gentzkow et al. (2011) are larger than the placebo Wald-TC. However, none of
the placebos is significantly different from 0. Therefore, placebos cannot help us choose between
the three estimators.

12Computing placebo estimators from t − 12 to t − 8 and from t − 8 to t − 4 would require that we consider
only counties with a stable number of newspapers from t − 12 to t − 4. This would amount to dropping more
than 50% of our sample, which is why we chose to compute only one set of placebo estimators.

28



Table S 4: Placebo effect of one additional newspaper on turnout

Gentzkow et al. (2011) WDID WTC

Placebo effect of newspapers on turnout -0.0009 -0.0014 -0.0006
(0.0014) (0.0019) (0.0022)

Notes. Sample size: 10 735 counties × election years. This table reports placebo estimates of the effect of one
additional newspaper on turnout. Standard errors are clustered at the district level. The sample size is smaller
than in Table S3, because only counties with a stable number of newspapers between t− 8 and t− 4 are included
in the estimation. This ensures that placebo estimators are not actually estimating the effect of newspapers (see
Section 2.5 in the main paper).

Instead, our choice must be based on economic theory and a careful discussion of the assump-
tions underlying each estimator. The regression estimated by Gentzkow et al. (2011) is the
first-difference version of Regression 1 studied in de Chaisemartin and D’Haultfœuille (2016).
Therefore, it estimates a weighted average of Wald-DIDs. If Assumption 4M, a generalization
of Assumption 5M to non-binary treatments, and a generalization of Assumption 6 to multiple
periods and groups and non-binary treatments are satisfied, then this weighted average estimates
the effect of newspapers among counties experiencing a switch in their number of newspapers.
Actually, this weighted average of Wald-DIDs does not seem to rely much on Assumption 6: our
Wald-DID estimator does not rely on this assumption and it is very close to it.

On the other hand, the estimator of Gentzkow et al. and our Wald-DID estimator rely more
critically on Assumption 5M: our Wald-TC estimator does not rely on this assumption and
it is significantly different from those estimators. This stable treatment effect assumption is
not warranted. Starting from the end of the 19th century, alternative ways of communicating
information such as telegraphic lines, radio stations, and eventually TV stations developed in
the USA, thus gradually ending the print monopoly of mass media (see Douglas, 1989). This
might have reduced the effect of newspapers.

In their Table 5, Gentzkow et al. (2011) give suggestive evidence of this. They estimate again
their regression, but for elections taking place between 1932 and 1952, and for elections between
1956 and 2004. The coefficient of newspapers is smaller in these two regressions than in their
1872-1928 regression. Their 1932-1952 coefficient is still statistically significant at the 10% level,
while their 1956-2004 coefficient is insignificant. However, while these regression coefficients are
supposed to illustrate the drop in the effect of newspapers, they themselves require that this
effect be stable over time, a contradiction.
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To reassess whether the effect of newspapers is changing, we estimate instead our Wald-TC
estimator for the three periods defined by the authors. Our third period ends in 1996 as the
data for the 2000 and 2004 elections is proprietary and is not included in the authors’ publicly
available data set. Results are shown in Table S5. We also find much smaller Wald-TC estimates
from 1932 to 1952 and from 1956 to 1996 than from 1872 to 1928. The differences are marginally
insignificant. For instance, the t-stat of the difference between the 1872-1928 and 1956-1996
Wald-TCs is equal to 1.34: we can still reject at the 10% level the null that the 1956-1996 Wald-
TC is greater than the 1872-1928 one. Overall, this casts some doubt on the stable treatment
effect assumption underlying the authors’ and our Wald-DID estimator in Table S3. We therefore
choose the Wald-TC as our preferred estimator. Finally, it is worth noting that we still find a
significant effect of newspapers in the third period, contrary to Gentzkow et al. (2011).13

Table S 5: Effect of one additional newspaper on turnout, by time period

1872-1928 1932-1952 1956-1996

Wald-TC 0.0045 0.0014 0.0021
(0.0016) (0.0022) (0.0011)

N 16 366 10 219 17 780

Notes. This table reports estimates of the effect of one additional newspaper on turnout, for different time
periods. Standard errors are clustered at the district level.

4.2 The effects of a titling program in Peru on labour supply

Between 1996 and 2003, the Peruvian government issued property titles to 1.2 million urban
households, the largest titling program targeted to squatters in the developing world. Field
(2007) examines the labor market effects of increases in tenure security resulting from the pro-
gram. To isolate the effect of property rights, the author uses a survey conducted in 2000, and
exploits two sources of variation in exposure to the titling program. Firstly, this program took
place at different dates in different neighborhoods. In 2000, it had approximately reached 50% of
targeted neighborhoods. Secondly, it only impacted squatters, i.e. households without a prop-
erty title prior to the program. The author can therefore construct four groups of households:
squatters in neighborhoods reached by the program before 2000, squatters in neighborhoods

13This difference does not come from the fact we cannot use data from the 2000 and 2004 elections: estimating
the same regression as in Gentzkow et al. (2011) using only the 1956-1996 data also yields a small and insignificant
coefficient.
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reached by the program after 2000, non-squatters in neighborhoods reached by the program
before 2000, and non-squatters in neighborhoods reached by the program after 2000. Table S6
presents the share of households with a property title in 2000 in each group.

Table S 6: Share of households with a property right

Reached after 2000 Reached before 2000

Squatters 0% 71%
Non-squatters 100% 100%

In Table 5 of her paper, the author uses a 2SLS regression to estimate the effect of having a
property right on househods’ labor supply. Her dependent variable is the number of hours worked
per week by each household. Her explanatory variables are a dummy for squatters, a dummy for
neighbourhoods reached before 2000, a dummy for whether the household has a property right,
and a rich set of 62 control variables. Her instrument for property rights is the interaction of the
squatters and reached before 2000 dummies. Therefore, her estimator is a Wald-DID accounting
linearly for the effect of covariates. We revisit her results and compute instead the estimator
ŴX
CIC introduced in Section 2.4 of the main paper, with the same set of covariates. ŴX

CIC also
accounts linearly for the effect of covariates so this estimator is comparable to the author’s.
As all units in the control group are treated, we cannot estimate exactly ŴX

CIC but we follow
Theorem S3 and apply the quantile-quantile transform of treated units in the control group to
untreated units in the treatment group. On top of Assumptions 1X-3X and 7X-8X, the validity
of this estimator also requires a conditional version of Assumption 14. Her Wald-DID and our
Wald-CIC estimator with covariates are respectively equal to 18.07 and 16.17, thus implying
that being granted a property title increases the number of hours worked by 16 to 18 hours. The
two point estimates are not significantly different (t-stat=1.29). Quantile treatment effects are
shown in Figure 1. They are negative and insignificant in the bottom of the distribution of the
outcome, and positive and significant in the top. As per our estimates, being granted a property
title decreases the first decile of labour supply by 5 hours and increases the 9th decile by 53 hours.
These two estimates are significantly different (t-stat=2.21). The best affine approximation to
the QTE function has a slope of 74.6 with a standard error of 25.8.14 Overall, our reanalysis
yields a point estimate very similar to the author’s for the average effect of property titles, but it
also unveils an interesting pattern of heterogeneous effects along the distribution of the outcome.

14We estimate the standard error of this slope by bootstrap: in each bootstrap sample, we estimate the QTE
and the slope of the best affine approximation to the QTE function.
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Figure S1: Estimated LQTEs on the number of hours worked in Field (2005).

5 Additional proofs

In this section and in the next, we use the same notation and normalizations as those used in
the proofs of the main paper.

5.1 Theorem 2.3 (sharpness of the bounds)

Sharpness of the bounds for FY11(d)|S(y)

We only consider the sharpness of FCIC,0, the reasoning being similar for the upper bound. The
proof is also similar and actually simpler for d = 1. The corresponding bounds are proper cdf,
so we do not have to consider converging sequences of cdf as we do in case b) below.

a. λ00 > 1. We show that if Assumptions 1, 8, and 10 hold, then FCIC,0 is sharp. For that
purpose, we construct h̃0, Ũ0, Ṽ such that:

(i) Y = h̃0(Ũ0, T ) when D = 0 and D = 1{Ṽ ≥ vGT};

(ii) h̃0(., t) is strictly increasing for t ∈ {0, 1};

(iii) (Ũ0, Ṽ ) ⊥⊥ T |G;

32



(iv) Fh̃0(Ũ0,1)|G=0,T=1,Ṽ ∈[v00,v01) = T 0.

First, let

h̃0(., 0) = F−1
000 ◦G0(T 0) ◦ F−1

001,

h̃0(., 1) = F−1
001.

Second, let

Ũ0 = (1−D)h̃−1
0 (Y, T )

+D(1− T )(1−G)1{V ∈ [v00, v01)}Ũ1
0

+DTG1{V ∈ [v11, v00)}Ũ2
0

+D [1− (1− T )(1−G)1{V ∈ [v00, v01)} − TG1{V ∈ [v11, v00)}]U0,

where Ũ1
0 and Ũ2

0 are two random variables such that S(Ũ1
0 ) = S(Ũ2

0 ) = (0, 1), and

FŨ1
0 |G=0,T=0,V ∈[v00,v01) = T 0 ◦ F−1

001,

FŨ2
0 |G=1,T=1,V ∈[v11,v00) = C0(T 0) ◦ F−1

001.

FŨ1
0 |G=0,T=0,V ∈[v00,v01) is a valid cdf on (0, 1) since (i) T 0 is increasing by Assumption 10 and F−1

001 is
also increasing, (ii) limy→y T 0(y) = 0 and limy→y T 0(y) = 1 when λ00 > 1. FŨ2

0 |G=1,T=1,V ∈[v11,v00)

is also a valid cdf on (0, 1) since (i) C0(T 0) is increasing by Assumption 10 and F−1
001 is also

increasing, (ii) C0(T 0) (S(Y )) = (0, 1) when λ00 > 1, as per the second point of Lemma S1.

Third, for every u ∈ (0, 1), let

P0(u) = T 0 ◦ F−1
001(u),

P1(u) = C0(T 0) ◦ F−1
001(u),

P2(u) = H0 ◦G0(T 0) ◦ F−1
001(u).

As shown in the proof of Lemma S6 (lower bound, case 2), Assumption 10 ensures that P0(u),
P1(u), and P2(u) are non differentiable at only one point. Moreover, using the fact that

F001 =
1

λ00

G0 (T 0) +

(
1− 1

λ00

)
T 0, (35)

H0 ◦G0(T 0) = λ10F011 + (1− λ10)C0(T 0), (36)

and T 0, G (T 0), and C0(T 0) are increasing under Assumption 10, one can show that

0 ≤
(

1− 1

λ00

)
P ′0(u) ≤ 1,

0 ≤ (1− λ10)P ′1(u)

P ′2(u)
≤ 1,
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for any u at which P0(.), P1(.), and P2(.) are differentiable, and P ′2(u) > 0. Then, let BS′ and
BS be two Bernoulli random variables such that for every u ∈ (0, 1),

P (BS′ = 1|Ũ0 = u,D = 0, G = 0, T = 1) =

(
1− 1

λ00

)
P ′0(u),

P (BS = 1|Ũ0 = u,D = 0, G = 1, T = 0) =
(1− λ10)P ′1(u)

P ′2(u)
,

with the convention that P (BS′ = 1|Ũ0 = u,D = 0, G = 0, T = 1) and P (BS = 1|Ũ0 =

u,D = 0, G = 1, T = 0) are equal to 0 at the point at which P0(u), P1(u), and P2(u) are
not differentiable, and P (BS = 1|Ũ0 = u,D = 0, G = 1, T = 0) = 0 when P ′2(u) = 0. The
first convention is innocuous as it applies to a 0 Lebesgue measure set. As we shall see later,
the second convention is also innocuous, because when P ′2(u) = 0, Equation (36) implies that
P ′1(u) = 0 as well.

Finally, let

Ṽ = (1−D)(1−G)T
[
BS′Ṽ

1 + (1−BS′)Ṽ
2
]

+(1−D)G(1− T )
[
BSṼ

3 + (1−BS)Ṽ 4
]

+ (1− (1−D) [(1−G)T +G(1− T )])V,

where Ṽ 1, Ṽ 2, Ṽ 3, and Ṽ 4 are such that S(Ṽ 1) = S(V ) ∩ [v00, v01), S(Ṽ 2) = S(V ) ∩ (−∞, v00),
S(Ṽ 3) = S(V ) ∩ [v11, v00), S(Ṽ 4) = S(V ) ∩ (−∞, v11), and

fṼ 1|G=0,T=1,D=0,BS′=1,Ũ0
(v|u) = fV |G=0,T=0,V ∈[v00,v01),Ũ0

(v|u),

fṼ 2|G=0,T=1,D=0,BS′=0,Ũ0
(v|u) = fV |G=0,T=0,V <v00,Ũ0

(v|u),

fṼ 3|G=1,T=0,D=0,BS=1,Ũ0
(v|u) = fV |G=1,T=1,V ∈[v11,v00),Ũ0

(v|u),

fṼ 4|G=1,T=0,D=0,BS=0,Ũ0
(v|u) = fV |G=1,T=1,V <v11,Ũ0

(v|u).

We shall now show that (h̃0(., 0), h̃0(., 1), Ũ0, Ṽ ) satisfies (i), (ii), (iii), and (iv). By construction,
Point (i) is satisfied. Moreover, it follows from Assumption 8 that h̃0(., 1) is strictly increasing
on (0, 1). Besides, G0(T 0) ◦ F−1

001 is strictly increasing on (0, 1) and included between 0 and 1 as
shown in the first point of Lemma S1. F−1

000 is also strictly increasing on (0, 1) by Assumption 8.
Therefore, h̃0(., 0) is also strictly increasing on (0, 1), and Point (ii) is satisfied.

Then, we check Point (iii). We show that it holds in the control group. For that purpose, we
use Bayes law to write

fŨ0,Ṽ |G=0,T=t(u, v)

= P (Ṽ < v01|G = 0, T = t)[P (Ṽ < v00|G = 0, T = t, Ṽ < v01)fŨ0|G=0,T=t,Ṽ <v00
(u)fṼ |G=0,T=t,Ṽ <v00,Ũ0

(v|u)

+P (Ṽ ∈ [v00, v01)|G = 0, T = t, Ṽ < v01)fŨ0|G=0,T=t,Ṽ ∈[v00,v01)(u)fṼ |G=0,T=t,Ṽ ∈[v00,v01),Ũ0
(v|u)]

+P (Ṽ ≥ v01|G = 0, T = t)fŨ0,Ṽ |G=0,T=t,Ṽ≥v01(u, v), (37)
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and we show that all elements in the right-hand side of the previous display are equal for t = 0

and t = 1.

We first evaluate all of these quantities when T = 1. First, it follows from the definition of Ṽ
that

P (Ṽ < v01|G = 0, T = 1) = p0|01. (38)

Then,

P (Ũ0 ≤ u|G = 0, T = 1, Ṽ < v01) = P (Ũ0 ≤ u|G = 0, T = 1, D = 0)

= P (h̃−1
0 (Y, 1) ≤ u|G = 0, T = 1, D = 0)

= P (Y ≤ F−1
001(u)|G = 0, T = 1, D = 0)

= u.

Therefore,
fŨ0|G=0,T=1,Ṽ <v01

(u) = 1.

Then, we have, almost everywhere,

fŨ0,1{Ṽ ∈[v00,v01)}|G=0,T=1,Ṽ <v01
(u, 1)

= P (Ṽ ∈ [v00, v01)|G = 0, T = 1, Ṽ < v01, Ũ0 = u)fŨ0|G=0,T=1,Ṽ <v01
(u)

= P (BS′ = 1|G = 0, T = 1, D = 0, Ũ0 = u)

=

(
1− 1

λ00

)
P ′0(u). (39)

The second equality follows from the definition of Ṽ , and from fŨ0|G=0,T=1,Ṽ <v01
(u) = 1. Equation

(39) and the fact that P ′0 is a density imply that

P (Ṽ ∈ [v00, v01)|G = 0, T = 1, Ṽ < v01) = 1− 1

λ00

, (40)

fŨ0|G=0,T=1,Ṽ ∈[v00,v01)(u) = P ′0(u), (41)

and

P (Ṽ < v00|G = 0, T = 1, Ṽ < v01) =
1

λ00

, (42)

fŨ0|G=0,T=1,Ṽ <v00
(u) = λ00 − (λ00 − 1)P ′0(u). (43)

Next, we have

fṼ |G=0,T=1,Ṽ ∈[v00,v01),Ũ0
(v|u) = fṼ 1|G=0,T=1,D=0,BS′=1,Ũ0

(v|u),

= fV |G=0,T=0,V ∈[v00,v01),Ũ0
(v|u), (44)

35



and

fṼ |G=0,T=1,Ṽ <v00,Ũ0
(v|u) = fṼ 2|G=0,T=1,D=0,BS′=0,Ũ0

(v|u)

= fV |G=0,T=0,V <v00,Ũ0
(v|u). (45)

Then, we evaluate all of these quantities when T = 0. First, notice that

P (Ṽ < v01|G = 0, T = 0) = P (V < v01|G = 0, T = 0)

= P (V < v01|G = 0, T = 1)

= p0|01. (46)

The first equality follows from the definition of Ṽ and the second from the fact V satisfies
Assumption 3. One can use similar arguments to show that

P (Ṽ ∈ [v00, v01)|G = 0, T = 0, Ṽ < v01) = 1− 1

λ00

, (47)

P (Ṽ < v00|G = 0, T = 0, Ṽ < v01) =
1

λ00

. (48)

Then, it follows from the definition of Ṽ and Ũ0 that

fŨ0|G=0,T=0,Ṽ ∈[v00,v01)(u) = fŨ1
0 |G=0,T=0,V ∈[v00,v01)(u) = P ′0(u). (49)

Next,

P (Ũ0 ≤ u|G = 0, T = 0, Ṽ < v00) = P (Ũ0 ≤ u|G = 0, T = 0, D = 0)

= P (h̃−1
0 (Y, 0) ≤ u|G = 0, T = 0, D = 0)

= P (Y ≤ F−1
000 ◦G0(T 0) ◦ F−1

001(u)|G = 0, T = 0, D = 0)

= G0(T 0) ◦ F−1
001(u)

= λ00u− (λ00 − 1)P0(u),

where the last equality follows from (35). This implies that

fŨ0|G=0,T=0,Ṽ <v00
(u) = λ00 − (λ00 − 1)P ′0(u). (50)

Then, it follows from the definition of Ṽ that

fṼ |G=0,T=0,Ṽ ∈[v00,v01),Ũ0
(v|u) = fV |G=0,T=0,V ∈[v00,v01),Ũ0

(v|u), (51)

fṼ |G=0,T=0,Ṽ <v00,Ũ0
(v|u) = fV |G=0,T=0,V <v00,Ũ0

(v|u). (52)

Finally,

fŨ0,Ṽ |G=0,T=0,Ṽ≥v01(u, v) = fU0,V |G=0,T=0,V≥v01(u, v)

= fU0,V |G=0,T=1,V≥v01(u, v)

= fŨ0,Ṽ |G=0,T=1,Ṽ≥v01(u, v), (53)
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where the first and last equality follow from the definition of (Ũ0, Ṽ ), while the second equality
follows from the fact (U0, V ) satisfies Assumptions 3 and 7.

Finally, combining Equation (37) with Equations (38) and (46), (40) and (47), (42) and (48),
(41) and (49), (43) and (50), (44) and (51), (45) and (52), and (53), we get that

fŨ0,Ṽ |G=0,T=1(u, v) = fŨ0,Ṽ |G=0,T=0(u, v).

This shows that (iii) holds in the control group. Showing that it also holds in the treatment
group relies on a very similar reasoning, so we skip this part of the proof due to a concern for
brevity.

b. λ00 < 1. The idea is similar as in the previous case. A difference, however, is that when
λ00 < 1 and y = +∞, T 0 is not a proper cdf, but a defective one, since limy→+∞ T 0(y) < 1.
As a result, we cannot define a DGP such that T̃0 = T 0, However, by Lemma S2, there exists
a sequence (T k0)k of cdf such that T k0 → T 0, G0(T k0) is an increasing bijection from S(Y ) to
(0, 1) and C0(T k0) is increasing and onto (0, 1). We can then construct a sequence of DGP
(h̃k0(., 0), h̃k0(., 1), Ũk

0 , Ṽ
k) such that Points (i) to (iii) listed above hold for every k, and such that

T̃ k0 = T k0. Since T k0(y) converges to T 0(y) for every y in
◦
S(Y ), we thus define a sequence of

DGP such that T̃ k0 can be arbitrarily close to T 0 on
◦
S(Y ) for sufficiently large k. Since C0(.) is

continuous, this proves that FCIC,0 is sharp on
◦
S(Y ).

In what follows, we exhibit h̃k0(., 0) and h̃k0(., 1) satisfying (i), as well as distributions of Ũk
0 for

all relevant subpopulations that are a) compatible with the data, b) satisfy (iii), and c) reach
the bound. We do not not exhibit (Ũk

0 , Ṽ
k) as we did in the previous proof, to avoid repeating

twice similar arguments.

Let

h̃k0(., 1) = G0(T k0)−1

h̃k0(., 0) = F−1
000

h̃k0(., 1) is strictly increasing on (0, 1) since G0(T k0) is an increasing bijection on (0, 1) as shown in
Lemma S2. h̃k0(., 0) is strictly increasing on (0, 1) under Assumption 8. Therefore, (i) is verified.

Let us consider first the distribution of Ũk
0 among untreated observations in the control group

in period 1. It follows from Bayes rule that

FŨk0 |G=0,T=1,Ṽ <v00
= λ00FŨk0 |G=0,T=1,Ṽ <v01

+ (1− λ00)FŨk0 |G=0,T=1,Ṽ ∈[v01,v00) (54)

Given h̃k0(., 1), to have T̃ k0 = T k0, we must have

FŨk0 |G=0,T=1,Ṽ ∈[v01,v00) = T k0 ◦G0(T k0)−1.
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This defines a valid cdf since T k0 is a cdf and G0(T k0)−1 is increasing and onto S(Y ). It can be
achieved by constructing Ṽ using an appropriate Bernoulli random variable to split untreated
observations in the control group in period 0 between some for which Ṽ ∈ [v01, v00), and some
for which Ṽ < v01, exactly as we did for λ00 > 1.

Given h̃k0(., 1), and the fact h̃k0(Ũk
0 , 1) = Y for all observations such that G = 0, T = 1, Ṽ < v01,

a few computations yield

FŨk0 |G=0,T=1,Ṽ <v01
= F001 ◦G0(T k0)−1.

Plugging the last two equations into (54) finally yields FŨk0 |G=0,T=1,Ṽ <v00
= I, where I denotes

the identity function on [0, 1].

Now, let us turn to untreated observations in the control group in period 0. Given h̃k0(., 0),
and the fact h̃k0(Ũk

0 , 0) = Y for all observations such that G = 0, T = 0, Ṽ < v00, a few
computations yield FŨk0 |G=0,T=0,Ṽ <v00

= I. Since Y (0) is not observed for observations such that
G = 0, T = 1, Ṽ ∈ [v01, v00), the data does not impose any constraint on their U0, so we can set

FŨk0 |G=0,T=0,Ṽ ∈[v01,v00) = T k0 ◦G0(T k0)−1.

Therefore, the distributions of Ũk
0 |G = 0, T = t, Ṽ < v01 and Ũk

0 |G = 0, T = t, Ṽ ∈ [v01, v00)

satisfy (iii).

Then, let us consider untreated observations in the treatment group in period 1. Using the
definition of h̃k0(., 1) and the fact h̃k0(Ũk

0 , 1) = Y for all observations such that G = 1, T = 1, Ṽ <

v11, one can show after a few computations that

FŨk0 |G=1,T=1,Ṽ <v11
= F011 ◦G0(T k0)−1.

Since Y (0) is not observed for observations such that G = 1, T = 1, Ṽ ∈ [v11, v00), the data does
not impose any constraint on their U0, so we can set

FŨk0 |G=1,T=1,Ṽ ∈[v11,v00) = C0(T k0) ◦G0(T k0)−1.

This defines a valid cdf, as shown in Points 2 and 3 of Lemma S2.

Finally, let us consider untreated observations in the treatment group in period 0. It follows
from Bayes rule that we must have

FŨk0 |G=1,T=0,Ṽ <v00
= λ10FŨk0 |G=1,T=0,Ṽ <v11

+ (1− λ10)FŨk0 |G=1,T=0,Ṽ ∈[v11,v00). (55)

To satisfy point (iii), we must have

FŨk0 |G=1,T=0,Ṽ <v11
= F011 ◦G0(T k0)−1.
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This can be achieved by constructing Ṽ using an appropriate Bernoulli random variable to split
untreated observations in the treatment group in period 0 between some for which Ṽ ∈ [v11, v00),
and some for which Ṽ < v11, exactly as we did for λ00 > 1. Using the definition of h̃k0(., 1) and
the fact h̃k0(Ũk

0 , 1) = Y for all observations such that G = 0, T = 1, Ṽ < v11, one can show after
a few computations that

FŨk0 |G=1,T=0,Ṽ <v00
= F010 ◦ F−1

000.

Plugging the last two equations into (55) finally yields

FŨk0 |G=1,T=0,Ṽ ∈[v11,v00) =
p0|10F010 ◦ F−1

000 − p0|11F011 ◦G0(T k0)−1

p0|10 − p0|11

= C0(T k0) ◦G0(T k0)−1.

Therefore, the distributions of Ũk
0 |G = 1, T = t, Ṽ < v11 and Ũk

0 |G = 1, T = t, Ṽ ∈ [v11, v00)

satisfy (iii). This completes the proof when λ00 < 1.

Sharpness of the bounds for ∆ and τq

We prove that the bounds on ∆ and τq are sharp under Assumption 10. We only focus on
the lower bound, the result being similar for the upper bound. The model and data impose
no condition on the joint distribution of (U0, U1). Hence, by the previous sharpness proof we
can rationalize the fact that (FY11(0)|S, FY11(1)|S) = (FCIC,0, FCIC,1) when λ00 > 1. Sharpness
of ∆ and τq follows directly. When λ00 < 1, on the other hand, we can only rationalize the
fact that (FY11(0)|S, FY11(1)|S) = (C0k, FCIC,1), where C0k converges pointwise to FCIC,0. To
show the sharpness of the LATE and LQTE, we thus have to prove that limk→∞

∫
ydC0k(y) =∫

ydFCIC,0(y) and limk→∞C
−1
0k (q) = F−1

CIC,0(q).

As for the LATE, we have, by integration by parts for Lebesgue-Stieljes integrals,∫
ydC0k(y) = y −

∫ y

y

C0kdy = −
∫ 0

y

C0k(y)dy +

∫ y

0

[1− C0k(y)] dy. (56)

We now prove the convergence of each integral in the right-hand side. As shown by Lemma S2,
C0k can be defined as C0k = C0(T k0) with T k0 ≤ T0, T0 denoting FY11(0)|S′ . Because C0(T0) =

FY11(0)|S and C0(.) is increasing when λ00 < 1, C0k ≤ FY11(0)|S. E(|Y11(0)| |S) < +∞ implies that∫ 0

y
FY11(0)|S(y)dy < +∞. Thus, by the dominated convergence theorem,

lim
k→∞

∫ 0

y

C0kdy =

∫ 0

y

FCIC,0(y)dy < +∞.

Now consider the second integral in (56). If y < +∞, we can also apply the dominated conver-
gence theorem: 1−C0k ≤ 1 implies that

∫ y
0

[1− C0k(y)] dy →
∫ y

0

[
1− FCIC,0(y)

]
dy. If y = +∞,

limy→+∞ FCIC,0(y) = ` < 1 so that∫ y

0

[
1− FCIC,0(y)

]
dy = +∞.
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By Fatou’s lemma,

lim inf

∫ y

0

[1− C0k(y)] dy ≥
∫ y

0

[
1− FCIC,0(y)

]
dy = +∞.

Thus, in this case as well the second integral in (56) converges to
∫ y

0

[
1− FCIC,0(y)

]
dy. Finally,

because
∫ 0

y
C0k(y)dy converges to a finite limit,

∫
ydC0k(y) converges to

∫
ydFCIC,0(y). Hence,

the lower bound of ∆ is sharp.

Now, let us turn to τq. Following Lemma S2, we can let C0k = C0(T k0), where T k0 and C0(T k0)

satisfy the three following requirements:

1. T k0 ≥ T 0

2. for all y∗ ∈
◦
S(Y ), there is a k ∈ N such that for every k′ ≥ k, T k

′

0 (y) = T 0(y) for all y ≤ y∗.

3. C0(T k0) is increasing.

Suppose first that yq ≡ F−1
CIC,0(q) ∈

◦
S(Y ). Then point 2 above implies that for all k large

enough, C0k(y) = FCIC,0(y) for every y ≤ yq. This implies that C−1
0k (q) = yq. Hence, C−1

0k (q)

converges to yq. Now suppose that yq 6∈
◦
S(Y ). Given that S(Y ) = [y, y], yq ∈ {y, y}. If

yq = y, y ≤ C−1
0k (q) ≤ F−1

CIC,0(q), where the second inequality follows from the fact that point
1 above implies that C0k ≥ FCIC,0. Therefore, C

−1
0k (q) = yq. Finally, if yq = y, the proof of

Lemma S2 shows that there exists a sequence (yk)k∈N converging towards y such that, for every
k ≥ 1, C0k(yk − 1/k) = FCIC,0(yk − 1/k). Moreover, by definition, FCIC,0(yk − 1/k) < q. Thus,
C0k(yk − 1/k) < q, and y ≥ C−1

0k (q) ≥ yk − 1/k, where the second inequality holds by point 3
above. Hence, in this case as well, C−1

0k (q) converges to y. This proves that the lower bound of
τq is sharp, which completes the proof �

5.2 Theorem S1

We start by proving the first statement. Under the assumptions of the theorem, Assumptions 1-5
are satisfied for the treatment and control groups G∗t = 1 and G∗t = 0 between dates t− 1 and t.
For instance, the fact that V ⊥⊥ T |G∗t = 0 follows from the fact that G ⊥⊥ T and V ⊥⊥ T |G = g

for every g ∈ Gst. Moreover, for every t ≥ 1 and for every g ∈ Gst, E(Dgt) = E(Dgt−1), thus
implying that E(D|G∗t = 0, T = t) = E(D|G∗t = 0, T = t − 1). Therefore, it follows from
Theorem 2.1 that

W ∗
DID(1, 0, t) = E(Y (1)− Y (0)|St, G∗t = 1, T = t). (57)

Similarly, one can show that

W ∗
DID(−1, 0, t) = E(Y (1)− Y (0)|St, G∗t = −1, T = t). (58)
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Then, G ⊥⊥ T implies that

DID∗D(1, 0, t)P (G∗t = 1) = (E(D|G∗t = 1, T = t)− E(D|G∗t = 1, T = t− 1))P (G∗t = 1)

= P (St|G∗t = 1)P (G∗t = 1)

= P (St, G
∗
t = 1).

Similarly, one can show that

DID∗D(0,−1, t)P (G∗t = −1) = P (St, G
∗
t = −1).

Therefore, it follows from the two previous displays that

DID∗D(1, 0, t)P (G∗t = 1) +DID∗D(0,−1, t)P (G∗t = −1) = P (St) (59)

and

DID∗D(1, 0, t)P (G∗t = 1)

DID∗D(1, 0, t)P (G∗t = 1) +DID∗D(0,−1, t)P (G∗t = −1)
= P (G∗t = 1|St). (60)

The result follows combining Equations (57)-(60), once noted that Assumption 3 and G ⊥⊥ T

imply that P (G∗t = 1|St) = P (G∗t = 1|St, T = t) and P (G∗t = −1|St) = P (G∗t = −1|St, T = t).

The proofs of the second and third statements follow from similar arguments. To prove the
fourth statement, it suffices to notice that the first point of Assumption 13 implies that for
every g ∈ {0, 1, ..., g} the sequence vgt is monotonic in t. Therefore, for every g ∈ S(G) and
t 6= t′ ∈ {1, ..., t}2, Sgt ∩ Sgt′ = ∅. This in turn implies that St ∩ St′ = ∅. Combining this with
the second point of Assumption 13 yields the result �

5.3 Theorem S2

Proof of 1

p1|00 = p1|10 implies that WDID = WTC . Therefore, the proof will be complete if we can show
that WDID = E(Y11(1)− Y11(0)|D = 1). On that purpose, notice that

DIDY = E(Y11)− E(Y10)− (E(Y01)− E(Y00))

= p1|11E(Y11(1)− Y11(0)|D = 1) + E(Y11(0))− E(Y10(0))− (E(Y01(0))− E(Y00(0)))

= p1|11E(Y11(1)− Y11(0)|D = 1).

The second equality follows from p1|00 = p1|01 = p1|10 = 0, the third from Assumption 4. This
completes the proof once noted that DIDD = p1|11.

Proof of 2
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As p1|10 = 0, the numerator of WCIC is E(Y11) − E(Q0(Y10)). It is easy to see that the proof
will be complete if we can show that E(Q0(Y10)) = E(Y11(0)). As p1|00 = p1|01 = 0, Q0 is the
quantile-quantile transform of the outcome in the entire control group, so E(Q0(Y10)) is the same
estimand as that considered in Equation (16) in Athey and Imbens (2006). Y (0) = h0(U0, T )

with h0(., t) strictly increasing, U0 ⊥⊥ T |G, and S(U0|G = 1) ⊆ S(U0|G = 0) ensure that the
assumptions of their Theorem 3.1 hold. Therefore, E(Q0(Y10)) = E(Y11(0)) �

5.4 Theorem S3

Assume that p1|00 = p1|01 = 1 (the proof is symmetric when p1|00 = p1|01 = 0). For FY11(1)|S(y),
the proof directly follows from the proof of Theorem 2.3. For FY11(0)|S(y), one can follow similar
steps as those used to establish Equation (15) in the main paper and show that for all y ∈ S(Y ),

F−1
Y00(1)|V≥v00 ◦ FY01(1)|V≥v00(y) = h1(h−1

1 (y, 1), 0). (61)

Equations (15) and (61), Assumption 14, and p1|00 = p1|01 = 1 imply that for all y ∈ S(Y ),

FY11(0)|V <v00(y) = F010 ◦ F−1
100 ◦ F101(y). (62)

Combining Equations (13) in the main paper and (62) yields the result �

5.5 Theorem S4

We only prove the first result, the second and third results follow from similar arguments.

WDID(X) = ∆(X) follows from the same steps as those used to prove Theorem 2.1. Then,
WX
DID = ∆ follows after some algebra, once noted that

fX11|S(x) =
E(D11|X = x)− E(D10|X = x)

E(D11)− E(E(D10|X)|G = 1, T = 1)
fX11(x)

=
DIDD(x)

E[DIDD(X)|G = 1, T = 1]
fX11(x).

The first equality follows from Assumption 3X and Bayes’s law. The second follows from the
fact that E(D01|X)− E(D00|X) = 0 almost surely �

5.6 Theorem S5

We only prove the first result, the second and third results follow from similar arguments.
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First, under Assumption 3P we have

E(Di1|Gi = 1)− E(Di0|Gi = 1) =P (Vi1 ≥ v11|Gi = 1)− P (Vi0 ≥ v00|Gi = 1)

=P (Vi1 ∈ [v11, v00)|Gi = 1)

=P (Si|Gi = 1).

Then the rest of the proof of Theorem 2.1 will follow, provided we can show that Assumptions 4
and 5P are satisfied. To see this, note that Equation (32) is equivalent to Yit(d) = γt+αi+ [βi+

λt]d+εit for d ∈ {0, 1}. Therefore, Yi1(0)−Yi0(0) = γ1−γ0 +εi1−εi0. This and E(εi1−εi0|Gi =

1) = 0 = E(εi1 − εi0|Gi = 0) imply that Assumption 4 holds. Besides, λt = 0 implies that
Yit(1) − Yit(0) = βi. Moreover, by assumption E (βi|Gi, Vi1 ≥ vGi0) = E (βi|Gi, Vi0 ≥ vGi0).
Hence, Assumption 5P holds as well. The result follows.

5.7 Theorem S6

Hereafter, we add stars to our usual notation whenever G is replaced by G∗. For instance, p∗gt
denotes P (G∗ = g, T = t).

Proof of 1

We consider the unfeasible estimator W̃ ∗
DID, identical to Ŵ ∗

DID except that Ĝ∗j is replaced by
the unobserved variable G∗j . We define similarly other estimators with tildes hereafter. We first
show that with probability tending to one, Ŵ ∗

DID = W̃ ∗
DID. It suffices to show that for any

g ∈ Gk, k ∈ {s, i, d}, P (g ∈ Ĝk) tends to one. Suppose first that k = s. Then, by the central
limit theorem and Slutsky’s lemma, Tg = OP (1). Because κn → ∞, |Tg| ≤ κn with probability
tending to one. Now, if k = i,

Tg =

√
ng1ng0

p̂g(1− p̂g)(ng1 + ng0)
[(p̂g1 − p̂g0 − (P (Dg1 = 1)− P (Dg0 = 1)))

+ (P (Dg1 = 1)− P (Dg0 = 1))]

= OP (1)
[
1 +
√
n (P (Dg1 = 1)− P (Dg0 = 1))

]
.

Moreover, because k = i, P (Dg1 = 1) − P (Dg0 = 1) > 0. Hence, because κn/
√
n → 0, with

probability approaching one, |Tg| > κn and g ∈ Gk. The reasoning is similar for k = d. This
implies that with probability tending to one, Ŵ ∗

DID = W̃ ∗
DID.

Hence, it suffices to show that W̃ ∗
DID is asymptotically normal. Let

W̃ ∗
DID(g, 0) = D̃ID∗Y (g, 0)/D̃ID∗D(g, 0).

Reasoning as in Point 1 of the proof of Theorem 4.1, we obtain, for g ∈ {−1, 1},

√
n
(
W̃ ∗
DID(g, 0)−W ∗

DID(g, 0)
)

=
1√
n

n∑
i=1

ψ∗DID,i(g) + oP (1), (63)
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where, omitting the index i, ψ∗DID(g) is defined by

ψ∗DID(g) =
1

DID∗D(g, 0)

[
1{G∗ = g}T (εg − E(εg|G∗ = g, T = 1))

p∗g1

− 1{G∗ = g}(1− T )(εg − E(εg|G∗ = g, T = 0))

p∗g0

− 1{G∗ = 0}T (εg − E(εg|G∗ = 0, T = 1))

p∗01

+
1{G∗ = 0}(1− T )(εg − E(εg|G∗ = 0, T = 0))

p∗00

]
,

with εg = Y −W ∗
DID(g, 0)D. Similarly,

√
n (w̃10 − w10) =

1√
n

n∑
i=1

ψw,i + oP (1), (64)

where, still omitting i,

ψw =
ψD(1)− w10(ψD(1) + ψD(−1))

DID∗D(1, 0)P (G∗ = 1) +DID∗D(0,−1)P (G∗ = −1)
.

Besides, ψD(g) satisfies, for g ∈ {−1, 1},

ψD(g) = DID∗D(g, 0) (1{G∗ = g} − P (G∗ = g)) + P (G∗ = g)

[
1{G∗ = g}T (D − p∗1|g1)

p∗g1

−
1{G∗ = g}(1− T )(D − p∗1|g0)

p∗g0
−
1{G∗ = 0}T (D − p∗1|01)

p∗01

+
1{G∗ = 0}(1− T )(D − p∗1|00)

p∗00

]
.

Now, W̃ ∗
DID = w̃10W̃

∗
DID(1, 0)+(1− w̃10)W̃ ∗

DID(−1, 0). Combining (63) and (64), we then obtain

√
n
(
W̃ ∗
DID −∆∗

)
=

1√
n

n∑
i=1

ψ∗DID,i + oP (1),

with

ψDID(g) = w10ψ
∗
DID(1) + (1− w10)ψ∗DID(−1) + (W ∗

DID(1, 0)−W ∗
DID(−1, 0))ψw. (65)

The result follows by the central limit theorem.

Proof of 2 and 3

We follow exactly the same logic as above. Using (64) and reasoning as in Points 2 and 3 of the
proof of Theorem 4.1, we obtain, after some algebra,

√
n
(
W̃ ∗
TC −∆∗

)
=

1√
n

n∑
i=1

ψ∗TC,i + oP (1),
√
n
(
W̃ ∗
CIC −∆∗

)
=

1√
n

n∑
i=1

ψ∗CIC,i + oP (1).
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where, as above,

ψ∗TC = w10ψ
∗
TC(1) + (1− w10)ψ∗TC(−1) + (W ∗

TC(1)−W ∗
TC(−1))ψw, (66)

ψ∗CIC = w10ψ
∗
CIC(1) + (1− w10)ψ∗CIC(−1) + (W ∗

CIC(1)−W ∗
CIC(−1, 0))ψw. (67)

We finally give the expressions of ψ∗TC(g) and ψ∗CIC(g). First,

ψ∗TC(g) =
1

p∗1|11 − p∗1|10

{
1{G∗ = g}T (εg − E(εg|G∗ = g, T = 1))

p∗g1

−
1{G∗ = g}(1− T )(εg − E(εg|G∗ = g, T = 0) + (δ1 − δ0)(D − p∗1|10)

p∗g0

− p∗1|10D1{G∗ = 0}
[
T (Y − E(Y ∗101))

p∗101

− (1− T )(Y − E(Y ∗100))

p∗100

]
− p∗0|10(1−D)1{G∗ = 0}

[
T (Y − E(Y ∗001))

p∗001

− (1− T )(Y − E(Y ∗000))

p∗000

]}
,

where Y ∗dgt ∼ Y |D = d,G∗ = g, T = t.

Second, ψ∗CIC(g) =
∫

Ψ∗0(g, y)−Ψ∗1(g, y)dy, with

Ψ∗d(g, y) =
1

p∗d|11 − p∗d|10

{
1{G∗ = g}T

p∗g1

[
1{D = d}1{Y ≤ y} − p∗d|g1F ∗dg1(y)

−FY ∗g1(d)|S(y)
(
1{D = d} − p∗d|g1

)]
+
1{G∗ = g}(1− T )

p∗10

[−1{D = d} (1{Q∗d(Y ) ≤ y}

−H∗d ◦ F ∗d01(y)) +
(
1{D = d} − p∗d|10

) (
FY ∗g1(d)|S(y)−H∗d ◦ F ∗d01(y)

)]
+ p∗d|g01{G∗ = 0}1{D = d}H∗d ′ ◦ F ∗d01(y)

[
(1− T )(1{Q∗d(Y ) ≤ y} − F ∗d01(y))

p∗d00

−T (1{Y ≤ y} − F ∗d01(y))

p∗d01

]}
.

5.8 Theorem S7

We let hereafter θ = (F000, ..., F011, F100, ..., F111, λ00, λ10, λ01, λ11).

Proof of 1

We already showed in the proof of Theorem 4.1 that each term of the bounds, except
∫
ydF̂ d10(y)

and
∫
ydF̂ d10(y), could be linearized. Therefore, it suffices to prove that these integrals can be

linearized as well. Let us focus on
∫
ydF̂ d10(y), as the reasoning is similar for the other integral.
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An integration by part yields∫
ydF̂ d10(y)−

∫
ydF d10(y)

=−
∫ y

y

[
F̂ d10(y)− F d10(y)

]
dy

=−
∫ y

y

[
m1

(
λ̂0dF̂Yd01(y)

)
−m1 (λ0dFYd01(y))

]
dy + (y − y)

[
m1

(
λ̂0d

)
−m1 (λ0d)

]
,

where m1(x) = min(1, x). By assumption, the equation λ0dFYd01(y) = 1 admits at most one
solution. Hence, by Point 2 of Lemma 6 and the chain rule, θ 7→

∫ y
y
m1 (λ0dFYd01(y)) dy + (y −

y)m1 (λ0d) is Hadamard differentiable tangentially to (C0)4 × R2. The result then follows from
Lemma 4, the functional delta method, and the functional delta method for the bootstrap.

Proof of 2

Let θ = (F000, ..., F011, F100, ..., F111, λ00, λ10, λ01, λ11). By Lemma 6, for d ∈ {0, 1} and q ∈ Q,
θ 7→

∫ y
y
FCIC,d(y)dy, θ 7→

∫ y
y
FCIC,d(y)dy, θ 7→ F

−1

CIC,d(q), and θ 7→ F−1
CIC,d(q) are Hadamard

differentiable tangentially to (C0)4 × R2. Because ∆ =
∫
S(Y )

FCIC,0(y)− FCIC,1(y)dy, ∆ is also
a Hadamard differentiable function of θ tangentially to (C0)4 × R2. The same reasoning applies
for ∆, and for τq and τq for every q ∈ Q. The result follows as previously �

5.9 Theorem S8

Proof of 1

For any random variable R, let mR
gt(x) = E(Rgt|X = x). The estimator ŴX

DID can be written
as ŴX

DID = N̂X
DID/D̂

X
DID, with

N̂X
DID = Ê [Y11]− Ê

[
m̂Y

10(X11)
]
− Ê

[
m̂Y

01(X11)
]

+ Ê
[
m̂Y

00(X11)
]

D̂X
DID = Ê [D11]− Ê

[
m̂D

10(X11)
]
− Ê

[
m̂D

01(X11)
]

+ Ê
[
m̂D

00(X11)
]
.

∆ = NX
DID/D

X
DID can be decomposed similarly. We show below that the eight terms in the

numerator N̂X
DID and in the denominator D̂X

DID can be linearized. We can then use the same
formula for linearizing ratios as in the proof of Theorem 4.1.

Let us first consider Ê
[
Ê(Y10|X)|G = 1, T = 1

]
. Assumption 18 ensures that we can apply

Lemma S8 to I = G× T , J = G× (1− T ), U = Y and V = 1. As a result,

√
n
(
Ê
[
Ê(Y10|X)|G = 1, T = 1

]
− E

[
mY

10(X)|G = 1, T = 1
])

=
1√
np11

n∑
i=1

Gi

[
Ti
(
mY

10(Xi)− E
[
mY

10(X)|G = 1, T = 1
])

+
(1− Ti)E(GT |Xi)

E(G(1− T )|Xi)

(
Yi −mY

10(Xi)
)]

+ oP (1).
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Applying the same reasoning as above to the two other terms of N̂X
DID, we obtain

√
n
(
N̂X
DID −NX

DID

)
=

1√
np11

n∑
i=1

GiTi(Yi −mY
10(Xi)−mY

01(Xi) +mY
00(Xi)−NX

DID)− Gi(1− Ti)E(GT |Xi)

E(G(1− T )|Xi)

(
Yi −mY

10(Xi)
)

+
(1−Gi)TiE(GT |Xi)

E((1−G)T |Xi)

(
Yi −mY

01(Xi)
)
− (1−Gi)(1− Ti)E(GT |Xi)

E(1−G)(1− T )|Xi)

(
Yi −mY

00(Xi)
)

+ oP (1).

Similarly, the denominator satisfies
√
n
(
D̂X
DID −DX

DID

)
=

1√
np11

n∑
i=1

{
GiTi(Di −mD

10(Xi)−mD
01(Xi) +mD

00(Xi)−DX
DID)− Gi(1− Ti)E(GT |Xi)

E(G(1− T )|Xi)

(
Di −mD

10(Xi)
)

+
(1−Gi)TiE(GT |Xi)

E((1−G)T |Xi)

(
Di −mD

01(Xi)
)
− (1−Gi)(1− Ti)E(GT |Xi)

E((1−G)(1− T )|Xi)

(
Di −mD

00(Xi)
)

+ oP (1).

Combining these two results and (28) in the main paper, we finally obtain

√
n
(
ŴX
DID −∆

)
=

1√
n

n∑
i=1

ψXDID,i + oP (1),

where, omitting the index i, ψXDID is defined by

ψXDID =
1

p11DX
DID

{
GT (ε−mε

10(X)−mε
01(X) +mε

00(X))−
[
G(1− T )E(GT |X)

E(G(1− T )|X)
(ε−mε

10(X))

+
(1−G)TE(GT |X)

E((1−G)T |X)
(ε−mε

01(X))− (1−G)(1− T )E(GT |X)

E((1−G)(1− T )|X)
(ε−mε

00(X))

]}
, (68)

and ε = Y −∆D. The result follows by the central limit theorem.

Proof of 2

The proof is very similar as above. For any random variable R, Let mR
dgt(x) = E(Rdgt|X = x).

The estimator satisfies ŴX
TC = N̂X

TC/D̂
X
TC , with

N̂X
TC = Ê [Y11]− Ê

[
m̂Y

10(X11)
]
− Ê

[
m̂Y

001(X11)
]

+ Ê
[
m̂Y

000(X11)
]
− Ê

[
m̂D

10(X11)m̂Y
101(X11)

]
+ Ê

[
m̂D

10(X11)m̂Y
100(X11)

]
+ Ê

[
m̂D

10(X11)m̂Y
001(X11)

]
− Ê

[
m̂D

10(X11)m̂Y
000(X11)

]
D̂X
TC = Ê [D11]− Ê

[
m̂D

10(X11)
]
.

The two terms of the denominator and the first four terms of the numerator can be linearized
exactly as above. Regarding the other four terms, remark that for instance

Ê
[
m̂D

10(X11)m̂Y
101(X11)

]
− Ê

[
mD

10(X11)mY
101(X11)

]
=Ê

[
mD

10(X11)
(
m̂Y

101(X11)−mY
101(X11)

)]
+ Ê

[
mY

101(X11)
(
m̂D

10(X11)−mD
10(X11)

)]
+ Ê

[(
m̂D

10(X11)−mD
10(X11)

) (
m̂Y

101(X11)−mY
101(X11)

)]
.

47



Lemma S7 implies that the last term is an oP (1/
√
n). As a result,

N̂X
TC = Ê [Y11]− Ê

[
m̂Y

10(X11)
]
− Ê

[
m̂Y

001(X11)
]

+ Ê
[
m̂Y

000(X11)
]
− Ê

[
mD

10(X11)m̂Y
101(X11)

]
− Ê

[
m̂D

10(X11)mY
101(X11)

]
+ Ê

[
mD

10(X11)mY
101(X11)

]
+ Ê

[
mD

10(X11)m̂Y
100(X11)

]
+ Ê

[
m̂D

10(X11)mY
100(X11)

]
− Ê

[
mD

10(X11)mY
100(X11)

]
+ Ê

[
mD

10(X11)m̂Y
001(X11)

]
+ Ê

[
m̂D

10(X11)mY
001(X11)

]
− Ê

[
mD

10(X11)mY
001(X11)

]
− Ê

[
mD

10(X11)m̂Y
000(X11)

]
− Ê

[
m̂D

10(X11)mY
000(X11)

]
+ Ê

[
mD

10(X11)mY
000(X11)

]
+ oP (1/

√
n).

We then apply Lemma S8 to each of these terms. After some tedious algebra, we obtain

√
n
(
ŴX
TC −WX

TC

)
=

1√
n

n∑
i=1

ψXTC,i + oP (1),

where ψXTC satisfies

ψXTC =
1

p11DX
TC

{
GT

(
U −∆(D −mD

10(X))− E
[
U11 −∆(D11 −mD

10(X11))
])

+E(GT |X)

[
V −∆

G(1− T )

E(G(1− T )|X)
(D −mD

10(X))

]}
. (69)

and

U = Y −mY
10(X)−mY

001(X) +mY
000(X)−mD

10(X)
(
mY

101(X)−mY
100(X)−mY

001(X) +mY
000(X)

)
,

V =
G(1− T )

E(G(1− T )|X)

{
−(Y −mY

10(X)) +
[
mY

100(X)−mY
101(X)−mY

000(X) +mY
001(X)

]
(D −mD

10(X))
}

+ (1−G)

{
mD

10(X)D

[
−T (Y −mY

101(X))

E(D(1−G)T )|X)
+

(1− T )
(
Y −mY

100(X)
)

E(D(1−G)(1− T )|X)

]

+(1−D)(1−mD
10(X))

[
T (Y −mY

001(X))

E((1−D)(1−G)T |X)
− (1− T )(Y −mY

000(X))

E((1−D)(1−G)(1− T )|X)

]}
.

The result follows by the central limit theorem.

Proof of 3

The estimand is the same as WX
TC , except for the second term of the numerator. Therefore, it

suffices to prove that we can linearize this specific term, which is the plug-in estimator of

E [E(DQ1X(Y ) + (1−D)Q0X(Y )|X,G = 1, T = 0)|G = 1, T = 1] .

This expectation comprises two terms. As the reasoning is similar for both, let us focus
on the first, θ1 = E [E(DQ1X(Y )|X,G = 1, T = 0)|G = 1, T = 1]. Let us define mQ1

dgt(x) =
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E(Q1X(Y )|X = x,D = d,G = g, T = t). First, the estimator θ̂1 of θ1 satisfies

θ̂1 − θ1 = Ê
[
m̂D

10(X)m̂Q1

110(X)|G = 1, T = 1
]
− θ1

= Ê
[
m̂D

10(X)mQ1

110(X)|G = T = 1
]
− Ê

[
mD

10(X)mQ1

110(X)|G = 1, T = 1
]

+ θ̃1 − θ1 + Ê
[(
m̂D

10(X)−mD
10(X)

) (
m̂Q1

110(X)−mQ1

110(X)
)
|G = 1, T = 1

]
, (70)

where θ̃1 = Ê
[
mD

10(X)m̂Q1

110(X)|G = T = 1
]
. As in parts 1 and 2 above, the first two terms on

the right-hand side can be linearized using Lemma S8. We linearize below θ̃1 − θ1 and prove
that the last term is an oP (1/

√
n). As in Lemma S5, let us define

R4(FX , Q1|X , Q2|X , Q3|X) =

∫
mD

10(x)×
∫ 1

0

Q1|X{Q−1
2|X [Q3|X(u|x)|x]|x}dudFX(x).

Let us define hereafter Fdgt|X = FYdgt|X and Fdgt|x = FYdgt|X=x. Because

E [Q1X(Y )|X = x,D = G = 1, T = 0] =

∫ 1

0

F−1
101|x ◦ F100|x ◦ F−1

110|x(u)du,

we have

θ1 = R4(FX11 , F
−1
101|X , F

−1
100|X , F

−1
110|X), θ̃1 = R4(F̂X11 , F̂

−1
101|X , F̂

−1
100|X , F̂

−1
110|X),

where F̂X11 is the empirical cdf of X11. By Lemma S9, the process

(x, τ) 7→ (F̂X11(x), F̂−1
101|x(τ), F̂−1

100|x(τ), F̂−1
110|x(τ)),

defined on S(X)× (0, 1) and suitably normalized, converges to a continuous gaussian process G.
Moreover,

√
n
[
F̂−1
dgt|x(τ)− F−1

dgt|x(τ)
]

=
1√
n

n∑
i=1

ψidgtx(τ) + oP (1),

where the oP (1) is uniform over (x, τ) and

ψidgtx(τ) =
1{Di = d}1{Gi = g}1{Ti = t}x′JτXi

pdgt
(τ − 1{Yi −X ′iβdgt(τ) ≤ 0}) .

Besides, R4 is Hadamard differentiable at (FX11 , F
−1
101|X , F

−1
100|X , F

−1
110|X) tangentially to C0(S(X))×

C0((0, 1)× S(X))3. Therefore, by the functional delta method and because G is continuous,

√
n(θ̃1 − θ1) =

1√
n

n∑
i=1

Ψ1i + oP (1),

where

Ψ1i =
GiTi
p11

[
mD

10(Xi)m
Q1

110(Xi)− θ1

]
+

∫
mD

10(x)

{∫ 1

0

ψi101x

(
F100|x ◦ F−1

110|x(u)
)

+
F−1

101|x
′ ◦ F100|x ◦ F−1

110|x(u)

F−1
100|x

′ ◦ F100|x ◦ F−1
110|x(u)

[
− ψi100x

(
F100|x ◦ F−1

110|x(u)
)

+ ψi110x(u)

]
du

}
dFX11(x).
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We now prove that the third term in (70) is an oP (1/
√
n). We have∣∣∣Ê [(m̂D

10(X)−mD
10(X)

) (
m̂Q1

110(X)−mQ1

110(X)
)
|G = 1, T = 1

]∣∣∣
≤
∥∥m̂D

10 −mD
10

∥∥
∞ ×

∥∥∥m̂Q1

110 −m
Q1

110

∥∥∥
∞
.

By Lemma S7,
∥∥m̂D

10 −mD
10

∥∥
∞ = oP (n−1/4). Besides, m̂Q1

110 = R5(F̂−1
101|X , F̂

−1
100|X , F̂

−1
110|X), where

R5(Q1|X , Q2|X , Q3|X) =
∫ 1

0
Q1|X{Q−1

2|X [Q3|X(u|x)|x]|x}du. Part 3 of the proof of Lemma S5 im-
plies that R5 is Hadamard differentiable at (F−1

101|X , F
−1
100|X , F

−1
110|X). Then, by Lemma S9 and

the functional delta method,
∥∥∥m̂Q1

110 −m
Q1

110

∥∥∥
∞

= OP (n−1/2). Thus, the third term in (70) is an
oP (1/

√
n).

To conclude, we provide the linearization of WX
CIC . Let us define for that purpose

Ψ0i =
GiTi
p11

[
(1−mD

10(Xi))m
Q0

010(Xi)− θ0

]
+

∫
(1−mD

10(x))

{∫ 1

0

ψi001x

(
F000|x ◦ F−1

010|x(u)
)

+
F−1

001|x
′ ◦ F000|x ◦ F−1

010|x(u)

F−1
000|x

′ ◦ F000|x ◦ F−1
010|x(u)

[
− ψi000x

(
F000|x ◦ F−1

010|x(u)
)

+ ψi010x(u)

]
du

}
dFX11(x),

where θ0 = E [E((1−D)Q0X(Y )|X,G = 1, T = 0)|G = 1, T = 1]. Using what precedes and
Lemma S8 on the remaining terms, we obtain after some tedious algebra

√
n
(
ŴX
CIC −WX

CIC

)
=

1√
n

n∑
i=1

ψXCIC,i + oP (1),

where ψXCIC satisfies

ψXCIC =
1

p11DX
CIC

{
GT

(
Y −∆(D −mD

10(X))− E
[
Y11 −∆(D11 −mD

10(X11))
])
− p11(Ψ1 + Ψ0)

+
E(GT |X)G(1− T )

E(G(1− T )|X)
(D −mD

10(X))
[
mQ0

010(X)−mQ1

110(X)−∆
]}

. (71)

6 Technical lemmas

6.1 Lemmas related to identification

Lemma S1 Assume Assumptions 8 and 10 hold, and λ0d > 1. Then:

1. Gd(T d) is a bijection from S(Y ) to [0, 1];

2. Cd(T d) (S(Y )) = [0, 1].
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Proof: we only prove the result for d = 0, the reasoning being similar otherwise. One can show
that when λ00 > 1,

G0(T 0) = min
(
λ00F001,max

(
λ00F001 + (1− λ00), H

−1
0 ◦ (λ10F011)

))
. (72)

By Assumption 8, λ10F011 is strictly increasing. Moreover, S(Y10|D = 0) = S(Y00|D = 0) implies
that H−1

0 is strictly increasing on [0, 1]. Consequently, H−1
0 ◦ (λ10F011) is strictly increasing on

S(Y ) since λ10 < 1. Therefore, G0(T 0) is strictly increasing on S(Y ) as a composition of the
max and min of strictly increasing functions, which in turn implies that G0(T 0) ◦F−1

001 is strictly
increasing on [0, 1]. Moreover, it is easy to see that since S(Y1t|D = 0) = S(Y0t|D = 0),

lim
y→y

H−1
0 ◦ (λ10F011) ◦ F−1

001(y) = 0,

lim
y→y

H−1
0 ◦ (λ10F011) ◦ F−1

001(y) ≤ 1.

Hence, by Equation (72),

lim
y→y

G0(T 0)(y) = 0, lim
y→y

G0(T 0)(y) = 1. (73)

Finally, G0(T 0) ◦ F−1
001 is also continuous by Assumption 8, as a composition of continuous func-

tions. Point 1 then follows, by the intermediate value theorem.

Now, we have

C0(T 0) =
p0|10F010 ◦ F−1

001 ◦G0(T 0)− p0|11F011

p0|10 − p0|11

.

(73) implies that G0(T 0) is a cdf. Hence, by Assumption 8,

lim
y→y

C0(T 0)(y) = 0, lim
y→y

C0(T 0)(y) = 1.

Moreover, C0(T 0) is increasing by Assumption 10. Combining this with Assumption 8 yields
Point 2, since C0(T 0) is continuous by Assumption 8 once more �

Lemma S2 Suppose Assumptions 8 and 10 hold, p0|g0 > 0 for g ∈ {0; 1} and λ00 < 1. Then
there exists a sequence of cdf T k0 such that

1. T k0(y)→ T 0(y) for all y ∈
◦
S(Y );

2. G0(T k0) is an increasing bijection from S(Y ) to [0, 1];

3. C0(T k0) is increasing and onto [0, 1].

The same holds for the upper bound.
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Proof: we consider a sequence (yk)k∈N converging to y and such that yk < y. Since yk < y, we
can also define a strictly positive sequence (ηk)k∈N such that yk + ηk < y. By Assumption 10,
H0 is continuously differentiable. Moreover,

H ′0 =
F ′010 ◦ F−1

000

F ′000 ◦ F−1
000

is strictly positive on S(Y ) under Assumption 10. F ′011 is also strictly positive on S(Y ) under
Assumption 10. Therefore, using a Taylor expansion of H0 and F011, it is easy to show that
there exists constants A1k > 0 and A2k > 0 such that for all y < y′ ∈ [yk, yk + ηk]

2,

H0(y′)−H0(y) ≥ A1k(y
′ − y), (74)

F011(y′)− F011(y) ≤ A2k(y
′ − y). (75)

We also define a sequence (εk)k∈N by

εk = min

(
ηk,

A1k(1− λ00) (T0(yk)− T 0(yk))

λ10A2k

)
. (76)

As shown in (17) in the main paper, 0 ≤ T0, G0(T0), C0(T0) ≤ 1 and λ00 < 1 imply that we must
have

T0 ≤ T0,

which implies in turn that εk ≥ 0. Consequently, since 0 ≤ εk ≤ ηk, inequalities (74) and (75)
also hold for y < y′ ∈ [yk, yk + εk]

2.

We now define T k0. For every k such that εk > 0, let

T k0(y) =

∣∣∣∣∣∣∣
T 0(y) if y < yk

T 0(yk) +
T0(yk+εk)−T 0(yk)

εk
(y − yk) if y ∈ [yk, yk + εk]

T0(y) if y > yk + εk.

For every k such that εk = 0, let

T k0(y) =

∣∣∣∣∣ T 0(y) if y < yk

T0(y) if y ≥ yk.

Then, we verify that T k0 defines a sequence of cdf which satisfy Points 1, 2 and 3. Under
Assumption 10, T 0(y) is increasing, which implies that T k0(y) is increasing on (y, yk). Since
T0(y) is a cdf, T k0(y) is also increasing on (yk + εk, y). Finally, it is easy to check that when
εk > 0, T k0(y) is increasing on [yk, yk + εk]. T k0 is continuous on (y, yk) and (yk + εk, y) under
Assumption 8. It is also continuous at yk and yk + εk by construction. This proves that T k0(y)

is increasing on S(Y ). Moreover,

lim
y→y

T k0(y) = lim
y→y

T 0(y) = 0,

lim
y→y

T k0(y) = lim
y→y

T0(y) = 1.
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Hence, T k0 is a cdf. Point 1 also holds by construction of T k0(y).

G0(T k0) = λ00F001 + (1 − λ00)T k0 is strictly increasing and continuous as a sum of the strictly
increasing and continuous function λ00F001 and an increasing and continuous function. Moreover,
G0(T k0) tends to 0 (resp. 1) when y tends to y (resp. to y). Point 2 follows by the intermediate
value theorem.

Finally, let us show Point 3. Because G0(T k0) is a continuous cdf, C0(T k0) is also continuous and
converges to 0 (resp. 1) when y tends to y (resp. to y). Thus, the proof will be completed if we
show that C0(T k0) is increasing. By Assumption 10, C0(T k0) is increasing on (y, yk). Moreover,
since FY11(0)|S = C0(T0), C0(T k0) is also increasing on (yk + εk, y). Finally, when εk > 0, we have
that for all y < y′ ∈ [yk, yk + εk]

2,

H0(λ00F001(y
′) + (1− λ00)T

k
0(y
′))−H0(λ00F001(y) + (1− λ00)T

k
0(y))

≥ A1k(1− λ00)
(
T k0(y

′)− T k0(y)
)

≥ A1k(1− λ00) (T0(yk)− T 0(yk))

εk
(y′ − y)

≥ λ10A2k(y
′ − y)

≥ λ10

(
F011(y

′)− F011(y)
)
,

where the first inequality follows by (74) and F001(y′) ≥ F001(y), the second by the definition of
T k0 and T0(yk + εk) ≥ T0(yk), the third by (76) and the fourth by (75). This implies that C0(T k0)

is increasing on [yk, yk + εk], since

C0(T k0) =
H0(λ00F001 + (1− λ00)T k0)− λ10F011

1− λ10

.

It is easy to check that under Assumption 8 C0(T k0) is continuous on S(Y ). This completes the
proof �

6.2 Lemmas related to inference

In the following lemmas, we let, for any functional R, dRF denote the Hadamard differential of
R taken at F . Whenever it exists, this differential is the continuous linear form satisfying

dRF (h) = lim
t→0

R(F + tht)−R(F )

t
, for any ht s.t. ||ht − h||∞ → 0.

In absence of ambiguity, we let the point at which the differential is taken implicit and simply
denote it by dR. In addition to the sets C0(Θ) and C1(Θ), we also denote by D(Θ) (resp. Dc(Θ))
the set of bounded càdlàg (resp. cdfs) functions on Θ. Once more, Θ is left implicit when it is
equal to S(Y ).
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Also, for any (r, k) ∈ N∗, u = (u1, ..., ur) ∈ Rr and any function h = (h1, ...hk)
′ from Rr to Rk,

let ‖u‖1 =
∑r

j=1 |uj| and ‖h‖∞ = maxj=1,...,k supx∈Rr |hj(x)| denote the usual L1 norm of u and
the supremum norm of h, respectively. The following inequality on ratios is used repeatedly in
the proofs of Theorems 4.1 and 8. It is well-known but we prove it for the sake of completeness.

Lemma S3 Let (x1, y1) and (x2, y2) be such that y2 ≥ C > 0 and max(|x1−x2|, |y1−y2|) ≤ C/2.
Then ∣∣∣∣x1

y1

− x2

y2

− 1

y2

(
x1 − x2 −

x2

y2

(y1 − y2)

)∣∣∣∣ ≤ 2(1 + |x2/y2|)
C2

max(|x1 − x2|, |y1 − y2|)2.

Proof:

First, some algebra shows that

x1

y1

− x2

y2

− 1

y2

(
x1 − x2 −

x2

y2

(y1 − y2)

)
=
y1 − y2

y2
2

[
(x2 − x1) +

x1

y1

(y1 − y2)

]
.

As a result,∣∣∣∣x1

y1

− x2

y2

− 1

y2

(
x1 − x2 −

x2

y2

(y1 − y2)

)∣∣∣∣ ≤ 1 + |x1/y1|
C2

max(|x1 − x2|, |y1 − y2|)2.

Besides, y1 ≥ y2 − |y1 − y2| ≥ C/2. Thus,∣∣∣∣x1

y1

− x2

y2

∣∣∣∣ ≤ |x2||y2 − y1|
y1y2

+
|x1 − x2|

y1

≤ C

2y1

(
|x2|
y2

+ 1

)
≤ 1 + |x2/y2|.

The triangular inequality then yields∣∣∣∣x1

y1

− x2

y2

− 1

y2

(
x1 − x2 −

x2

y2

(y1 − y2)

)∣∣∣∣ ≤ 2(1 + |x2/y2|)
C2

max(|x1 − x2|, |y1 − y2|)2
�

The following lemma is used to establish the asymptotic normality of the Wald-CIC estimator
in the proof of Theorem 4.1.

Lemma S4 Suppose that pd|g0 > 0 for (d, g) ∈ {0, 1}2 and let

θ = (F000, F001, ..., F111, λ00, λ10, λ01, λ11)

and
θ̂ = (F̂000, F̂001, ..., F̂111, λ̂00, λ̂10, λ̂01, λ̂11).

Then √
n
(
θ̂ − θ

)
=⇒ G,

where G denotes a gaussian process defined on S(Y )8 × {0}4. Moreover, G is continuous in its
k-th component (k ∈ {1, ..., 8}) if the corresponding Fdgt is continuous.15 Finally, the bootstrap
is consistent for θ̂.

15Formally, the link between (d, g, t) and k is k = 1 + t+ 2g + 4t.

54



Proof: let Gn denote the standard empirical process. We prove the result for

η = (F000, F001, ..., F111, p1|00, p1|01, p1|10, p1|11)

instead of θ. The result on θ then follows as (λ00, λ10, λ01, λ11) is a smooth function of (p1|00, p1|01, p1|10, p1|11).
For any (y, d, g, t) ∈ (S(Y ) ∪ {+∞})× {0, 1}3, let

fdgty(Y,D,G, T ) =
1{D = d}1{G = g}1{T = t} [1{Y ≤ y} − Fdgt(y)]

pdgt
,

fgt(Y,D,G, T ) = 1{G = g}1{T = t}
[
1{D = 1} − p1|gt

]
/pgt.

We have, for all (y, d, g, t) ∈ (S(Y ) ∪ {−∞,+∞})× {0, 1}3,

√
n
(
F̂dgt(y)− Fdgt(y)

)
=

√
n

ndgt

n∑
i=1

1{Di = d}1{Gi = g}1{Ti = t} [1{Yi ≤ y} − Fdgt(y)]

=
npdgt
ndgt

Gnfdgty

= Gnfdgty (1 + oP (1)) .

Similarly,
√
n
(
p̂1|gt − p1|gt

)
= Gnfg,t (1 + oP (1)). Hence, letting

fy = (f000y, ..., f111y, f00, f01, f10, f11)′,

we obtain
√
n (η̂ − η) = Gnfy (1 + oP (1)). Weak convergence of the left-hand side to a gaus-

sian process follows because each class {fdgty : y ∈ S(Y )} is Donsker. Moreover, remark that
√
ndgt

(
F̂dgt(y)− Fdgt(y)

)
is the standard empirical process on the sample Idgt of random size

ndgt. Therefore (see, e.g. Theorem 3.5.1 in van der Vaart and Wellner, 1996), it converges in
distribution to a process B ◦ Fdgt, where B is a Brownian bridge. Hence, continuity follows as
long as Fdgt is continuous.

Now let us turn to the bootstrap. Observe that

√
n
(
F̂ b
dgt(y)− Fdgt(y)

)
=
npdgt
nbdgt

Gb
nfy,d,g,t,

where Gb
n denote the bootstrap empirical process. Because npdgt/nbdgt

P−→ 1 and by consistency
of the bootstrap empirical process (see, e.g., van der Vaart, 2000, Theorem 23.7), the bootstrap
is consistent for η̂ �

The next two lemmas allow us to use the functional delta method for the CIC estimators of
average and quantile treatment effects, both in the point and partially identified cases, with and
without covariates.
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Lemma S5 1. Let R1(F1, F2, F3, F4, λ, µ) =
µF4−F1◦F−1

2 ◦q1(F3,λ)

µ−1
and R2(F1, F2, F3, F4, λ, µ) =

µF4−F1◦F−1
2 ◦q2(F3,λ)

µ−1
, with q1(F3, λ) = λF3 and q2(F3, λ) = λF3 + 1 − λ. R1 and R2 are

Hadamard differentiable at any (F10, F20, F30, F40, λ00, λ10) ∈ (C1)4× [0,∞)× ([0,∞)\{1}),
tangentially to (C0)4 × R2. Moreover, dR1 ((C0)4 × R2) and dR2 ((C0)4 × R2) are included
in C0.

2. Let R3(F1) =
∫ y
y
m1(F1)(y)dy and R4(F1, F2) =

∫ y
y
F2(m1(F1))(y)dy. Tangentially to C0,

R3 is Hadamard differentiable at any F10 ∈ Dc and the equation F10(y) = 1 admits at

most one solution on
◦
S(Y ). Tangentially to (C0)2, R4 is Hadamard differentiable at any

(F10, F20) such that F10 satisfies the same conditions as for R3 and F20 is continuously
differentiable on [0, 1]. The same holds if we replace m1 (and the equation F10(y) = 1) by
M0 (and F10(y) = 0), with M0(x) = max(0, x).

3. Let R4(F,Q1|X , Q2|X , Q3|X) =
∫
mD

10(x)
∫ 1

0
Q1|X{Q−1

2|X [Q3|X(u|x)|x]|x}dudF (x), wheremD
10(x) =

E(D10|X = x). Then, tangentially to C0(S(X))×C0((0, 1)×S(X))3 , R4 is Hadamard dif-
ferentiable at any (F0, Q10|X , Q20|X , Q30|X) such that F0 ∈ Dc(S(X)), (Q1|X(.|x), Q2|X(.|x), Q3|X(.|x)) ∈
(C1(0, 1))3 for all x ∈ S(X) and G(x) = mD

10(x)
∫ 1

0
Q10|X{Q−1

20|X [Q30|X(u|x)|x]|x}du is of
bounded variation. Moreover, for all h1 such that h1(inf S(X)) = h1(supS(X)) = 0,

dR4(h1, h2, h3, h4) =

∫
mD

10(x)

∫ 1

0

{
h2

[
Q−1

20|X [Q30|X(u|x)], x
]

+ ∂u

[
Q10|X ◦Q−1

20|X

]
[(Q30|X(u|x)|x)|x]

×
[
−h3

[
Q−1

20|X [Q30|X(u|x)], x
]

+ h4(u, x)
]}

dudF0(x)−
∫
h1(x)dG(x).

Proof of 1. We first prove that φ1(F1, F2, F3) = F1 ◦ F−1
2 ◦ F3 is Hadamard differentiable at

(F10, F20, F30) ∈ (C1)
3. Because (F10, F20) ∈ (C1)

2, the function φ2 : (F1, F2, F3) 7→ (F1 ◦F−1
2 , F3)

is Hadamard differentiable at (F10, F20, F30) tangentially to D×C0×D (see, e.g., van der Vaart
and Wellner, 1996, Problem 3.9.4), and therefore tangentially to (C0)

3. Moreover computations
show that its derivative at (F10, F20, F30) satisfies

dφ2(h1, h2, h3) =

(
h1 ◦ F−1

20 −
F ′10 ◦ F−1

20

F ′20 ◦ F−1
20

h2 ◦ F−1
20 , h3

)
.

This shows that dφ2

(
(C0)

3
)
⊆ (C0)

2.

Then, the composition function φ3 : (U, V ) 7→ U ◦V is Hadamard differentiable at any (U0, V0) ∈
(C1)

2, tangentially to C0 × D (see, e.g., van der Vaart and Wellner, 1996, Lemma 3.9.27), and
therefore tangentially to (C0)

2. It is thus Hadamard differentiable at (F10 ◦ F−1
20 , F30), and one

can show that dφ3

(
(C0)

2
)
⊆ C0. Thus, by the chain rule (see van der Vaart and Wellner, 1996,

Lemma 3.9.3), φ1 = φ3 ◦ φ2 is also Hadamard differentiable at (F10, F20, F30) tangentially to
(C0)3, and dφ1

(
(C0)

3
)
⊆ C0.
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Finally, because q1(F3, λ) is a smooth function of F3 and λ, and R1 is a smooth function of
(φ1(F1, F2, q1(F3, λ)), F4, µ), it is also Hadamard differentiable at (F10, F20, F30, F40, λ00, λ10) tan-
gentially to (C0)4 × R2, and dR1 ((C0)4 × R2) ⊆ C0.

Proof of 2. We only prove the result for R4 and m1, the reasoning being similar (and simpler)
for R3 and M0. For any collections of functions (ht1) and (ht2) in C0, respectively converging
uniformly towards h1 and h2 in C0, we have

R4(F10 + tht1, F20 + tht2)−R4(F10, F20)

t
=

∫ y

y

ht2 ◦m1(F10 + tht1)(y)dy

+

∫ y

y

F20 ◦m1(F10 + tht1)− F20 ◦m1(F10)

t
(y)dy.

Consider the first integral I1.

|ht2 ◦m1(F10 + tht1)(y)− h2 ◦m1(F10)(y)|
≤ |ht2 ◦m1(F10 + tht1)(y)− h2 ◦m1(F10 + tht1)(y)|
+ |h2 ◦m1(F10 + tht1)(y)− h2 ◦m1(F10)(y)|
≤ ||ht2 − h2||∞ + |h2 ◦m1(F10 + tht1)(y)− h2 ◦m1(F10)(y)|.

By uniform convergence of ht2 towards h2, the first term in the last inequality converges to 0

when t goes to 0. By convergence of m1(F10 + tht1) towards m1(F10) and continuity of h2, the
second term also converges to 0. As a result,

ht2 ◦m1(F10 + tht1)(y)→ h2 ◦m1(F10)(y).

Moreover, for t small enough,

|ht2 ◦m1(F10 + tht1)(y)| ≤ ||h2||∞ + 1.

Thus, by the dominated convergence theorem, I1 →
∫ y
y
h2 ◦m1(F10)(y)dy, which is linear in h2

and continuous since the integral is taken over a bounded interval.

Now consider the second integral I2. Let us define y
1
as the solution to F10(y) = 1 on (y, y) if

there is one such solution, y
1

= y otherwise. We prove that almost everywhere,

F20 ◦m1(F10(y) + tht1(y))− F20 ◦m1(F10(y))

t
→ F ′20(F10(y))h1(y)1{y < y

1
}. (77)

As F10 is increasing, for y < y
1
, F10(y) < 1, so that for t small enough, F10(y) + tht1(y) < 1.

Therefore, for t small enough,

F20 ◦m1(F10(y) + tht1(y))− F20 ◦m1(F10(y))

t
=

F20 ◦ (F10(y) + tht1(y))− F20 ◦ F10(y)

t

=
(F ′20(F10(y)) + ε(t))(F10(y) + tht1(y)− F10(y))

t
= (F ′20(F10(y)) + ε(t))ht1(y)
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for some function ε(t) converging towards 0 when t goes to 0. Therefore,

F20 ◦m1(F10(y) + tht1(y))− F20 ◦m1(F10(y))

t
→ F ′20(F10(y))h1(y),

so that (77) holds for y < y
1
. Now, if y > y > y

1
, F10(y) > 1 because F10 is increasing. Thus,

for t small enough, F10(y) + tht1(y) > 1. Therefore, for t small enough,

F20 ◦m1(F10(y) + tht1(y))− F20 ◦m1(F10(y))

t
= 0,

so that (77) holds as well. Thus, (77) holds almost everywhere.

Now, remark that m1 is 1-Lipschitz. As a result,∣∣∣∣F20 ◦m1(F10(y) + tht1(y))− F20 ◦m1(F10(y))

t

∣∣∣∣ ≤ ||F ′20||∞|ht1(y)|

≤ ||F ′20||∞ (|h1(y)|+ ||ht1 − h1||∞) .

Because ||ht1 − h1||∞ → 0, |h1(y)|+ ||ht1 − h1||∞ ≤ |h1(y)|+ 1 for t small enough. Thus, by the
dominated convergence theorem,∫ y

y

F20 ◦m1(F10 + tht1)− F20 ◦m1(F10)

t
(y)dy →

∫ y
1

y

F ′20(F10(y))h1(y)dy.

The right-hand side is linear with respect to h1. It is also continuous since the integral is taken
over a bounded interval. The second point follows.

Proof of 3. Combining the same reasoning as in part 1 with a dominated convergence ar-
gument, we obtain that R5(Q1|X , Q2|X , Q3|X) =

∫ 1

0
Q1|X{Q−1

2|X [Q3|X(u|x)|x]|x}du is Hadamard
differentiable at (Q10|X , Q20|X , Q30|X), with

dR5(h1, h2, h3) =

∫ 1

0

{
h1

[
Q−1

20|X [Q30|X(u|x)], x
]

+ ∂u

[
Q10|X ◦Q−1

20|X

]
[(Q30|X(u|x)|x), x]

×
[
−h2

[
Q−1

20|X [Q30|X(u|x)], x
]

+ h3(u, x)
]}

du.

Besides, by the same reasoning as in the proof of Lemma 20.10 of van der Vaart (2000),
R6(FX , G) =

∫
mD

10(x)G(x)dFX(x) is Hadamard differentiable at any (FX , G) such that FX
is a cdf and G is of bounded variation. Moreover,

dR6(h1, h2) = −
∫
h1d[mD

10 ×G] +

∫ [
mD

10 × h2

]
dFX .

The result follows by the chain rule �

Lemma S6 Assume Assumptions 1, 8, 10-12 and 17 hold. Let

θ = (F000, ..., F011, F100, ..., F111, λ00, λ10, λ01, λ11).

For d ∈ {0, 1} and q ∈ Q, θ 7→
∫ y
y
FCIC,d(y)dy, θ 7→

∫ y
y
FCIC,d(y)dy, θ 7→ F

−1

CIC,d(q) and
θ 7→ F−1

CIC,d(q) are Hadamard differentiable tangentially to (C0)4 × R2.
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Proof: the proof is complicated by the fact that even if the primitive cdf are smooth, the bounds
FCIC,d and FCIC,d may admit kinks, so that Hadamard differentiability is not trivial to derive.
The proof is also lengthy as FCIC,d and FCIC,d take different forms depending on d ∈ {0, 1} and
whether λ00 < 1 or λ00 > 1. Before considering all possible cases, note that by Assumption 10,
FCIC,d = Cd(T d).

1. Lower bound FCIC,d

For d ∈ {0, 1}, let Ud =
λ0dFd01−H−1

d (m1(λ1dFd11))

λ0d−1
, so that

T d = M0 (m1 (Ud)) ,

Cd(T d) =
λ1dFd11 −Hd (λ0dFd01 + (1− λ0d)T d)

λ1d − 1
.

Also, let
yu0d = inf{y : Ud(y) > 0} and yu1d = inf{y : Ud(y) > 1}.

When yu0d and yu1d are in R, we have, by continuity of Ud, Ud(yu0d) = 0 and Ud(yu1d) = 1. Conse-
quently, T d(yu0d) = Ud(y

u
0d) and T d(yu1d) = Ud(y

u
1d).

Case 1: λ00 < 1 and d = 0.

In this case, U0 =
H−1

0 (λ10F011)−λ00F001

1−λ00 . We first prove by contradiction that yu00 = +∞. First,
because limy→+∞ U0(y) < 1, we have

lim
y→+∞

T 0(y) = M0( lim
y→+∞

U0(y)) < 1.

Thus, by Assumption 10, U0(y) < 1 for all y, otherwise T 0(y) would be decreasing. Hence,
yu10 = +∞.

Therefore, when yu00 < +∞, there exists y such that 0 < U0(y) < 1. Assume that there exists
y′ ≥ y such that U0(y′) < 0. By continuity and the intermediate value theorem, this would
imply that there exists y′′ ∈ (y, y′) such that U0(y′′) = 0. But since both U0(y) and U0(y′′) are
included in [0, 1], this would imply that T 0 is strictly decreasing between y and y′′, which is not
possible under Assumption 10. This proves that when yu00 < +∞, there exists y such that for
every y′ ≥ y, 0 ≤ U0(y′) < 1.

Consequently, T 0 = U0 for every y′ ≥ y. This in turn implies that C0(T 0) = 0 for every y′ ≥ y.
Moreover, C0(T 0) is increasing under Assumption 10, which implies that C0(T 0) = 0 for every
y. This proves that when yu00 < +∞, C0(T 0) = 0. This implies that S0 is empty, which violates
Assumption 17. Therefore, under Assumption 10, we cannot have yu00 < +∞ when λ00 < 1.
Because yu00 = +∞, T 0 = 0. Therefore,

C0(T 0)(y) =
λ10F011(y)−H0 (λ00F001(y))

λ10 − 1
.
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The map F 7→
∫
S(Y )

F (y)dy is linear and continuous with respect to the supremum norm at any
continuous F because S(Y ) is bounded. It is thus Hadamard differentiable, tangentially to C0.
Therefore, by Assumption 17, the first point of Lemma S5, and the chain rule,

θ 7→
∫
S(Y )

FCIC,0(y)dy

is Hadamard differentiable tangentially to (C0)4 × R2.

Then, the map F 7→ F−1 is Hadamard differentiable at any F with strictly positive derivative,
tangentially to C0 (see, e.g., van der Vaart, 2000, Lemma 21.4). Moreover, by Assumption 17,
C0(T 0) is increasing and differentiable with strictly positive derivative on S0, which is equal to
S(Y ) in this case. Thus, by the first point of Lemma 5 and the chain rule, θ 7→ F−1

CIC,0(q) is
Hadamard differentiable tangentially to (C0)4 × R2 for any q ∈ Q.

Case 2: λ00 > 1 and d = 0.

In this case,

U0 =
λ00F001 −H−1

0 (λ10F011)

λ00 − 1
.

Therefore, limy→y U0(y) = 0, and limy→y U0(y) > 1. As a result, −∞ < yu10 < +∞, and
T 0(yu10) = U0(yu10) = 1. This in turn implies C0(T 0)(yu10) = 0. Combining this with Assumption
10 implies that C0(T 0)(y) = 0 for every y ≤ yu10. Moreover, Assumption 10 also implies that
T d(y) = 1 for every y ≥ yu10. Therefore,

C0(T 0)(y) =

∣∣∣∣∣ 0 if y ≤ yu10,
λ10F011(y)−H0(λ00F001(y)+(1−λ00))

λ10−1
if y > yu10.

Thus, C0(T 0)(y) = M0(R2(F011, F010, F000, F001, λ00, λ10)), where R2 is defined as in Lemma S5.
Hadamard differentiability of

∫ y
y
C0(T 0)(y)dy tangentially to (C0)4×R2 thus follows by Points 1

and 2 of Lemma S5, the chain rule and the fact that by Assumption 12, (F011, F010, F000, F001, λ00, λ10) ∈
(C1)4× [0,∞)× ([0,∞)\{1}). As for the LQTE, note that by Point 1 of Lemma S5, θ 7→ C0(T 0)

is Hadamard differentiable as a function on (yu10, y), tangentially to (C0)4 ×R2. By Assumption
17, C0(T 0) is also strictly increasing and differentiable with positive derivative on S0 = (yu10, y).
Thus, by point 1 of Lemma S5, Hadamard differentiability of F 7→ F−1(q) at (C0(T 0), q) for
q ∈ Q tangentially to C0, and the chain rule, θ 7→ F−1

CIC,0(q) is Hadamard differentiable tangen-
tially to (C0)4 × R2.

Case 3: λ00 < 1 and d = 1.

In this case,

U1 =
λ01F100 −H−1

1 (λ11F111)

λ01 − 1
.
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λ11 > 1 implies that 1
λ11

< 1. Therefore, y∗ = F−1
111( 1

λ11
) is in

◦
S(Y ) under Assumption 8.

Case 3.a: λ00 < 1, d = 1 and yu01 < y∗.

We have U1(y∗) = λ01F100(y∗)−1
λ01−1

< 1. Assume that U1(y∗) < 0. Since yu01 < y∗, this implies that
there exists y < y∗ such that 0 < U1(y). Since U1 is continuous, there also exists y′ < y∗ such
that 0 < U1(y′) < 1. By continuity and the intermediate value theorem, this finally implies that
there exists y′′ such that y′ < y′′ and U1(y′′) = 0. This contradicts Assumption 10 since this
would imply that T 1 is decreasing between y′ and y′′. This proves that

0 ≤ U1(y∗) < 1.

Therefore, T 1(y∗) = U1(y∗), which in turn implies that C1(T 1)(y∗) = 0. By Assumption 10, this
implies that for every y ≤ y∗, C1(T 1)(y) = 0.

For every y greater than y∗,

U1(y) =
λ01F100(y)− 1

λ01 − 1
.

U1(y) < 1. Since U1(y∗) ≥ 0 and y 7→ λ01F100(y)−1
λ01−1

is increasing, U1(y) ≥ 0. Consequently, for
y ≥ y∗, T 1(y) = U1(y).

Finally, we obtain

C1(T 1)(y) =

∣∣∣∣∣ 0 if y ≤ y∗,
λ11F111(y)−1

λ11−1
if y > y∗.

The result follows as in Case 2 above.

Case 3.b: λ00 < 1, d = 1 and yu01 ≥ y∗.

For all y ≥ y∗, U1(y) = λ01F100(y)−1
λ01−1

. This implies that yu01 = F−1
100(1/λ01) < +∞ and U1(yu01) = 0.

Because y 7→ λ01F100(y)−1
λ01−1

is increasing, U1(y) ≥ 0 for every y ≥ yu01. Moreover, U1(y) ≤ 1.
Therefore, T 1(y) = U1(y) for every y ≥ yu01. Beside, for every y lower than yu01, T 1(y) = 0. As a
result,

C1(T 1)(y) =

∣∣∣∣∣ λ11F111(y)−H1(λ01F101(y))
λ11−1

if y ≤ yu01,
λ11F111(y)−1

λ11−1
if y > yu01.

This implies that∫ y

y

C1(T 1)(y)dy =
1

λ11 − 1

[
λ11

∫ y

y

F111(y)dy −R4(λ01F101, H1)

]
,

where R4 is defined in Lemma S5. θ 7→
∫ y
y
F111(y)dy is Hadamard differentiable at F111, tan-

gentially to C0. As shown in the proof of Lemma S5, H1 = F110 ◦ F−1
100 is a Hadamard differ-

entiable function of (F110, F100), tangentially to (C0)2. Thus, by Lemma S5 and the chain rule,
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R4(λ01F101, H1) is a Hadamard differentiable function of (F101, F110, F100), tangentially to (C0)3.
The result follows for

∫ y
y
C1(T 1)(y)dy.

The previous display also shows that C1(T 1) is Hadamard differentiable as a function of

(F100, F101, F110, F111, λ01, λ11)

when considering the restriction of these functions to (y, yu01) only. By Assumption 17, C1(T 1)

is also a differentiable function with positive derivative on (y, yu01). Therefore, using once again
the first point of Lemma S5 and the chain rule, θ 7→ C1(T 1)−1(q) is Hadamard differentiable
tangentially to (C0)4×R2, for q ∈ (C1(T 1)(y), C1(T 1)(yu01)) = (0, q1). The same holds when con-
sidering the interval (yu01, y) instead of (y, yu01). Hence, θ 7→ F−1

CIC,1(q) is Hadamard differentiable
tangentially to (C0)4 × R2, for q ∈ (0, 1)\{q1} = Q.

Case 4: λ00 > 1 and d = 1.

In this case,

U1 =
H−1

1 (λ11F111)− λ01F100

1− λ01

.

Therefore, limy→y U1(y) = 0, which implies that yu11 > −∞. As above, λ11 > 1 implies that

y∗ is in
◦
S(Y ) under Assumption 8. U1(y∗) = 1−λ01F100(y∗)

1−λ01 > 1, which implies that yu11 < +∞.
Therefore, reasoning as for Case 2, we obtain

C1(T 1)(y) =

∣∣∣∣∣ 0 if y ≤ yu11,
λ11F111(y)−H1(λ01F100(y)+(1−λ01))

λ11−1
if y > yu11.

The result follows as in Case 2 above.

2. Upper bound FCIC,d.

Let Vd =
λ0dFd01−H−1

d (M0(λ1dFd11+(1−λ1d)))

λ0d−1
, so that

T d = M0 (m1 (Vd)) ,

Cd(T d) =
λ1dFd11 −Hd

(
λ0dFd01 + (1− λ0d)T d

)
λ1d − 1

.

Also, let
yv0d = inf{y : Vd(y) > 0}, yv1d = inf{y : Vd(y) > 1}.

Note that when yv0d and yv1d are in R, by continuity of Vd we have Vd(yv0d) = 0 and Vd(yv1d) = 1.
Consequently, T d(yv0d) = Vd(y

v
0d) and T d(yv1d) = Vd(y

v
1d).

Case 1: λ00 < 1 and d = 0.
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In this case,

V0 =
H−1

0 (λ10F011 + (1− λ10))− λ00F001

1− λ00

.

Since λ10 < 1, limy→y V0(y) > 0 and can even be greater than 1.

First, let us prove by contradiction that yv10 = −∞. V0(y) ≤ 1 for every y ≤ yv10. Using the fact
that limy→y V0(y) > 0 and that T 0 must be increasing under Assumption 10, one can also show
that 0 ≤ V0(y) for every y ≤ yv10. This implies that T 0(y) = V0(y) which in turn implies that
C0(T 0)(y) = 1 for every y ≤ yv10. Since C0(T 0) must be increasing under Assumption 10, this
implies that for every y ∈ S(Y ),

C0(T 0)(y) = 1.

This implies that S0 is empty, which violates Assumption 17. Therefore, yv10 = −∞.

yv10 = −∞ implies that limy→y T 0(y) = 1. This combined with Assumption 10 implies that
T 0(y) = 1 for every y ∈ S(Y ). Therefore,

C0(T 0)(y) =
λ10F011(y)−H0 (λ00F001(y) + (1− λ00))

λ10 − 1
.

The result follows as in Case 1 of the lower bound.

Case 2: λ00 > 1 and d = 0.

In this case,

V0 =
λ00F001 −H−1

0 (λ10F011 + (1− λ10))

λ00 − 1
.

Since λ10 < 1, limy→y V0(y) < 0. Therefore, yv00 > −∞.

Case 2.a): λ00 > 1, d = 0 and yv00 < +∞.

If yv00 ∈ R, T 0(yv00) = V0(yv00) which in turn implies that C0(T 0)(yv00) = 1. By Assumption 10,
this implies that for every y ≥ yv00, C0(T 0)(y) = 1. For every y ≤ yv00, T 0(y) = 0, so that

C0(T 0) =
λ10F011 −H0 (λ00F001)

λ10 − 1
.

As a result,

C0(T 0)(y) =

∣∣∣∣∣ λ10F011(y)−H0(λ00F001(y))
λ10−1

if y ≤ yv00,

1 if y > yv00.

The result follows as in Case 2 of the lower bound.

Case 2.b): λ00 > 1, d = 0 and yv00 = +∞.
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If yv00 = +∞, T 0(y) = 0 for every y ∈ S(Y ), so that

C0(T 0)(y) =
λ10F011(y)−H0 (λ00F001(y))

λ10 − 1
.

The result follows as in Case 1 of the lower bound.

Case 3: λ00 < 1 and d = 1.

In this case,

V1 =
λ01F101 −H−1

1 (λ11F111 − (λ11 − 1))

λ01 − 1
.

Therefore, limy→y V1(y) = 0, which implies that yv11 > −∞. λ11 > 1 implies that λ11−1
λ11

< 1.

Therefore, y∗ = F−1
111(λ11−1

λ11
) is in

◦
S(Y ) under Assumption 8.

Case 3.a): λ00 < 1, d = 1 and yv11 > y∗.
We have V1(y∗) = λ01F101(y∗)/(λ01 − 1) > 0. If y∗ < yv11, V1(y∗) < 1. Therefore, 0 < T 1(y∗) =

V1(y∗) < 1. This implies that C1(T 1)(y∗) = 1 which in turn implies that C1(T 1)(y) = 1 for every
y ≥ y∗ under Assumption 10.

For every y lower than y∗,

V1(y) =
λ01F101(y)

λ01 − 1
.

V1(y) > 0. Since by assumption yv11 > y∗, V1(y) < 1. Consequently, for y ≤ y∗, we have
T 1(y) = V1(y). As a result,

C1(T 1)(y) =

∣∣∣∣∣ λ11F111(y)
λ11−1

if y ≤ y∗,

1 if y > y∗.

The result follows as in Case 2 of the lower bound.

Case 3.b): λ00 < 1, d = 1, and yv11 ≤ y∗.

First, V1(yv11) = 1, implying T 1(yv11) = 1. By Assumption 10, T 1(y) = 1 for all y ≥ yv11. Second,
if y ≤ yv11 ≤ y∗, V1(y) = λ01F101(y)

λ01−1
. Thus V1 is increasing on (−∞, yv11). Moreover V1(yv11) = 1.

Hence, V1(y) ≤ 1 for every y ≤ yv11. Because we also have V1(y) ≥ 0, T 1(y) = V1(y) for every
y ≤ yv11.

As a result,

C1(T 1)(y) =

∣∣∣∣∣ λ11F111(y)
λ11−1

if y ≤ yv11,
λ11F111(y)−H1(λ01F101(y)+1−λ01)

λ11−1
if y > yv11.

The result follows as in Case 3.b) of the lower bound. Note that here, C1(T 1)(y) is kinked
at yv11, with C1(T 1)(yv11) = q2. Hence, we have to exclude this point of the domain on which
θ 7→ F

−1

CIC,1(q) is Hadamard differentiable.
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Case 4: λ00 > 1 and d = 1.

In this case,

V1 =
H−1

1 (λ11F111 − (λ11 − 1))− λ01F101

1− λ01

.

limy→y V1(y) = 1, which implies that yv01 < +∞. As above, λ11 > 1 implies that λ11−1
λ11

< 1.

Therefore, y∗ = F−1
111(λ11−1

λ11
) is in

◦
S(Y ) under Assumption 8. V1(y∗) = −λ01F101(y∗)

1−λ01 < 0. Since
T 1 is increasing under Assumption 10, one can show that this implies that yv01 > y∗. Therefore,
reasoning as for Case 2, we obtain that

C1(T 1)(y) =

∣∣∣∣∣ λ11F111(y)−H1(λ01F101(y))
λ11−1

if y ≤ yv01,

1 if y > yv01.

The result follows as in Case 2 of the lower bound �

For any random variable U , we let hereafter m̂U denote the series estimator ofmU(x) = E(U |X =

x) with Kn terms in the series estimator. Then, for any other random variable J ∈ {0, 1}, we
let m̂U

J=1(x) = m̂UJ(x)/m̂J(x) denote our estimator of mU
J=1(x) = E(U |J = 1, X = x).

Lemma S7 Suppose that (Ii, Ji, Ui, Vi, Xi)i=1,...,n are i.i.d. and parts 2 and 3 of Assumption 18
hold. Suppose also thatmJ andmJU are s times continuously differentiable. Then

∥∥m̂U
J=1(x)−mU

J=1

∥∥
∞ =

oP (n−1/4).

Proof: by Theorem 4 of Newey (1997) and parts 2 and 3 of Assumption 18,

max
(∥∥m̂JU −mJU

∥∥
∞ ,
∥∥m̂J −mJ

∥∥
∞

)
= Op

(
Kn

[√
Kn/n+K−s/rn

])
.

Moreover, by the conditions on Kn, the right-hand side is an oP (n−1/4). Hence, with probability
approaching one, the left-hand side is smaller than c/2, where c = infx∈S(X) m

J(x) > 0. Then,
by Lemma S3 and the triangular inequality,∥∥m̂U

J=1 −mU
J=1

∥∥
∞ ≤

1

c

[∥∥m̂JU −mJU
∥∥
∞ +

∥∥mU
J=1

∥∥
∞

∥∥mJ −mJ
∥∥
∞

]
+

2(1 +
∥∥mU

J=1

∥∥
∞)

c2
max

(∥∥m̂JU −mJU
∥∥
∞ ,
∥∥m̂J −mJ

∥∥
∞

)2
.

The result follows �

The proof of Theorem 8 uses repeatedly Lemma S8 below, which establishes a linear represen-
tation result on two-steps estimators involving a nonparametric first step. Let I and J be two
dummy variables and let U and V be two other random variables. In the proof of Theorem
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8, I and J are functions of D, G and T , U is D or Y and V is a function of X. Let also
γ0 = E[V E[U |X, J = 1]|I = 1] and

γ̂ =

∑n
i=1 IiVim̂

U
J=1(Xi)∑n

i=1 Ii
.

The following lemma shows that under suitable conditions, γ̂ admits a linear representation.

Lemma S8 Suppose that (Ii, Ji, Ui, Vi, Xi)i=1,...,n are i.i.d. and parts 2 and 3 of Assumption 18
hold. Suppose also that x 7→ E(U2|X = x) is bounded, x 7→ E(JU |X = x), x 7→ E(J |X = x)

and E(IV |X = x) are s times continuously differentiable, E(|V |3) < ∞, P (J = 1|X) ≥ p > 0

almost surely and P (I = 1) > 0. Then

√
n (γ̂ − γ0) =

1√
n

n∑
i=1

Ii(Vim
U
J=1(Xi)− γ0) + λ(Xi)Ji(Ui −mU

J=1(Xi))

P (I = 1)
+ oP (1), (78)

where λ(x) = E(IV |X = x)/E(J |X = x).

Proof: let β̂ = 1
n

∑n
i=1 IiVim̂

U
J=1(Xi) and β0 = E(IV mU

J=1(X)). We first prove that β̂ is root-n
consistent and can be linearized. We follow Frölich (2007, pp.62-69) by checking that Condi-
tions 6.1-6.6 of Newey (1994) are satisfied, except for 6.4-(i): we check instead that his weaker
Condition 5.1-(i) is satisfied, since 6.4-(i) is only needed for the consistency of the asymptotic
variance estimator. We adopt the same notation as Newey (1994), by letting g0 = (g01, g02)′ =

(mJU ,mJ)′, ĝ(x) = (m̂JU , m̂J)′, Zi = (Ii, Ji, Xi, Ui, Vi)
′, m(Z, g, β) = IV g1(X)/g2(X) − β and

m(Z, g) = m(Z, g, β0).

First, remark that E[(J − E(J |X))2|X] ≤ 1/4 and E[(JU − E(JU |X))2|X] ≤ E(U2|X), which
is bounded by assumption. Hence, Condition 6.1 holds. Conditions 6.2 and 6.3 are satisfied here
by parts 2 and 3 of Assumption 18, as shown in page 156 of Newey (1997). To check Assumption
5.1-(i), let

D(Z, g; β, g̃) =
IV

g̃2(X)

[
g1(X)− g̃1(X)

g̃2(X)
× g2(X)

]
.

Let C = p, so that ‖g02‖∞ ≥ C. By Lemma S3 applied to x1 = IV g1(X), y1 = g2(X),
x2 = IV g01(X) and y2 = g02(X), with g satisfying ‖g − g0‖∞ < C/2,

|m(Z, g)−m(Z, g0)−D(Z, g − g0; β, g0)|

≤2(1 + |V mU
J=1(X)|)

C2
max (|V | ‖g1 − g01‖∞ , ‖g2 − g02‖∞)2

≤2(1 + |V mU
J=1(X)|)

C2
(1 + |V |)2 ‖g − g0‖2

∞ ,
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so Condition 5.1-(i) holds. Now let us turn to Condition 6.4-(ii). Using Newey’s notation, we
check it for d = 0. First, E[|V |3] <∞ and there exists K0 such that |mU

J=1(x)| ≤ K0 on S(X).
Thus,

E
[
(1 + |V mU

J=1(X)|)|V |2
]
<∞.

Then, here α = s/r and ζ0(Kn) ≤ C1Kn for some constant C1 (see Newey, 1994, p.1371). There-
fore, the two statements of Condition 6.4-(ii) hold because Kn

[√
Kn/n+K

−s/r
n

]
= o(n−1/4) by

part 3 of Assumption 18.

We check Condition 6.5 with d = 1. A similar reasoning as above shows that

|D(Z, g; β, g0)| ≤ |V |
p

(1 +K0) ‖g‖∞ ,

which implies the first statement. The second and third statement follow from the same reasoning
as in Frölich (2007), p.68, and from the conditions s > 3r and K7

n/n → 0. Finally, Condition
6.6-(i) is satisfied with δ(X) = λ(X)

(
1,−mU

J=1(X)
)
. Then Condition 6.6-(ii) holds by applying

the same reasoning as in Frölich (2007), pp.68-69, and because both g0 and δ are s times
differentiable.

Hence, Conditions 6.1-6.6 of Newey (1994) hold. By the proof of his Theorem 6.1, this implies
that his Conditions 5.1-5.3 also hold. Then, by his Lemma 5.1,

√
n
(
β̂ − β0

)
=

1√
n

n∑
i=1

m(Zi, g0) + δ(Xi)
(
JiUi −mJU(Xi), (Ji −mJ(Xi))

)′
+ oP (1)

=
1√
n

n∑
i=1

IiVim
U
J=1(Xi)− β0 + λ(Xi)Ji(Ui −mU

J=1(Xi)) + oP (1).

Now, applying Lemma S3 with x1 = β̂, y1 = P̂ (Ii = 1), x2 = β0 and y2 = P (I = 1), we obtain,
with a large probability,∣∣∣∣γ̂ − γ0 −

1

P (I = 1)

[
β̂ − β0 − γ0

(
P̂ (I = 1)− P (I = 1)

)]∣∣∣∣
≤ 2(1 + |γ0|)
P (I = 1)2

max(|β̂ − β0|, |P̂ (I = 1)− P (I = 1)|)2.

Moreover, the right-hand side is an oP (1/
√
n). By rearranging the left-hand side, we finally

obtain the linear decomposition (78) �

Finally, the asymptotic normality of the CIC-type estimator with covariates, established in Part
3 of Theorem 8, uses the following Lemma S9, together with Part 3 of Lemma S5 above.

Lemma S9 1. Under Assumptions 8X, 18 and 19, we have

√
n
[
F̂−1
dgt|x(τ)− F−1

dgt|x(τ)
]

=
1√
n

∑
i∈Idgt

x′JτXi

pdgt
(τ − 1{Yi −X ′iβ(τ) ≤ 0}) + oP (1),
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where Jτ = E
[
fY |X(X ′β(τ))XX ′

]−1 and the oP (1) is uniform over (τ, x) ∈ (0, 1)× S(X).
2. For any (x, τ) ∈ S(X)× (0, 1), let Ĝ(τ, x) = (F̂X11(x), F̂−1

101|x(τ), F̂−1
100|x(τ), F̂−1

110|x(τ)). Then

√
n
[
Ĝ−G

]
=⇒ G,

where the convergence is in the space of continuous process on (0, 1) × S(X) and G denotes a
continuous gaussian process defined on that space.

Proof: Part 1. We prove that uniformly over (τ, x),

√
ndgt

[
F̂−1
dgt|x(τ)− F

−1
dgt|x(τ)

]
=

1
√
ndgt

∑
i∈Idgt

x′JτXi

(
τ − 1{Yi −X ′iβdgt(τ) ≤ 0}

)
+ oP (1). (79)

The result then follows directly from ndgt/[npdgt]
P−→ 1, as in the proof of Lemma S4. To alleviate

the notational burden, we let the dependency in (d, g, t) implicit hereafter. For instance, we let
I denote Idgt, n denote ndgt, etc.. We denote by Pn the empirical distribution of (X, Y ) on I,
P denote its true distribution and Gn =

√
n(Pn − P ). We write, e.g., Ph as a shortcut for∫

hdP . We also let ρτ,β(x, y) = (τ − 1{y − x′β ≤ 0})(y − x′β), hτ,β(x, y) = x(τ − 1{y ≤ x′β}),
R = {ρτ,β, (τ, β) ∈ [0, 1] × B} and H = {hτ,β, (τ, β) ∈ [0, 1] × B}. To establish our proof of
(79), we first show that β̂(τ) is uniformly consistent in τ . Then we prove a uniform Bahadur
representation on β̂(τ).

a. Uniform consistency
Let Mτ (β) = −Pρτ,β and Mnτ (β) = −Pnρτ,β. First, R is Glivenko-Cantelli because it satisfies
the conditions of pointwise compact classes considered in Example 19.8 in van der Vaart (2000).
As a result,

sup
β,τ
|Mnτ (β)−Mτ (β)| P−→ 0.

Following the proof of Theorem 5.7 of van der Vaart (2000), this implies

0 ≤ sup
τ∈(0,1)

Mτ (β(τ))−Mτ (β̂(τ))
P−→ 0. (80)

Second, using Equation (4.3) of Koenker (2005), we obtain, for any β,

Mτ (β(τ))−Mτ (β) = E[ρτ (Y −X ′β)]− E[ρτ (Y −X ′β(τ))]

= E

[∫ X′(β−β(τ))

0

FY |X(s+X ′β(τ))− FY |X(X ′β(τ))ds

]
.

Because inf(y,x) fY |X(y|x) = c > 0 and X is assumed to have bounded support, this yields

Mτ (β(τ))−Mτ (β) ≥ K ‖β(τ)− β‖2 , (81)
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for some constant K > 0 independent of τ . Fix ε > 0. If supτ∈(0,1)

∥∥∥β̂(τ)− β(τ)
∥∥∥ > ε, then

there exists τ0 such that
∥∥∥β̂(τ0)− β(τ0)

∥∥∥ > ε/2. Then (81) implies that

sup
τ∈(0,1)

Mτ (β(τ))−Mτ (β̂(τ)) ≥ Kε2/4,

which happens with proability approaching 0 in view of (80). The result follows.

b. Uniform Bahadur representation

Let X (resp. Y) denote the matrix (resp. the vector) stacking all Xi (resp. Yi), for i ∈ I. For all
τ ∈ (0, 1), there exists a subset h ⊂ I of r elements such that the corresponding submatrix (resp.
subvector) X(h) (resp. Y (h)) of X (resp. of Y) satisfies β̂(τ) = X(h)−1Y (h) (see Koenker, 2005,
p.34). Note also that by Assumptions 18-19, Y and X are in general position with probability
one (see Koenker, 2005, p.35). Then∑

i∈h

Xi(τ − 1{Yi ≤ X ′iβ̂(τ)} = (τ − 1)X(h)′ιr,

where ιr is a vector of one of size r. Moreover, by Theorem 2.1 of Koenker (2005), there exists
λ = (λ1, ..., λr)

′ with |λj| ≤ 1 such that∑
i∈h

Xi(τ − 1{Yi ≤ X ′iβ̂(τ)} = X(h)′λ,

where h denotes the complement of h in I. By Assumption 19, ‖Xi‖1 ≤ C for some C > 0.
Hence, we obtain, ∥∥∥∥∥∑

i∈I

Xi(τ − 1{Yi ≤ X ′iβ̂(τ)})

∥∥∥∥∥
1

≤ 2
∑
i∈h

‖Xi‖1 ≤ 2Cr,

which holds uniformly over (d, g, t, τ). Thus,

sup
τ∈(0,1)

∥∥∥∥∥ 1√
n

∑
i∈I

Xi(τ − 1{Yi ≤ X ′iβ̂(τ)})

∥∥∥∥∥
1

P−→ 0.

Now, using Phτ,β(τ) = 0, we obtain

−
√
nP
[
hτ,β̂(τ) − hτ,β(τ)

]
= Gn

[
hτ,β̂(τ) − hτ,β(τ)

]
+ Gnhτ,β(τ) + oP (1),

uniformly over τ . Moreover, by the intermediate value theorem,
√
nP
[
hτ,β̂(τ) − hτ,β(τ)

]
= E

[
fY |X(X ′(tτ β̂(τ) + (1− tτ )β(τ))|X)XX ′

]√
n
(
β̂(τ)− β(τ)

)
.

for some random tτ ∈ [0, 1]. Now, by uniform consistency of β̂(τ) and continuity of fY |X(.|x),

sup
τ∈(0,1)

∣∣∣fY |X(X ′(tτ β̂(τ) + (1− tτ )β(τ))|X)− fY |X(X ′(tτ β̂(τ) + (1− tτ )β(τ))|X)
∣∣∣ P−→ 0.
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Because fY |X(.|x) is bounded and S(X) is compact, Theorem 2.20 in van der Vaart (2000)
implies that √

nP
[
hτ,β̂(τ) − hτ,β(τ)

]
=
(
J−1
τ + oP (1)

)√
n
(
β̂(τ)− β(τ)

)
,

where the oP (1) is uniform over τ .

Next, remark that H = H1 + H2, with H1 = {(x, y) 7→ xτ, τ ∈ [0, 1]} and H2 = {(x, y) 7→
−x1{y− x′β ≤ 0}, β ∈ B}. The sets H1 and {(x, y) 7→ y− x′β}, β ∈ B} are Donsker as subsets
of vector spaces (see van der Vaart, 2000, Example 19.17). Still by Example 19.17 in van der
Vaart, 2000, this imlies that H2, and then also H, is Donsker. Besides,

P
∥∥∥hτ,β̂(τ) − hτ,β(τ)

∥∥∥2

1
= E

[
‖X‖2

1

∣∣∣1{Y ≤ X ′β̂(τ)} − 1{Y ≤ X ′β̂(τ)}
∣∣∣2]

≤ C2E
[∣∣∣FY |X(X ′β̂(τ))− FY |X(X ′β(τ))

∣∣∣]
≤ K ′ sup

(y,x)

fY |X(y|x)
∥∥∥β̂(τ)− β(τ)

∥∥∥
1
.

Hence, supτ∈(0,1) P
∥∥∥hτ,β̂(τ) − hτ,β(τ)

∥∥∥2

1

P−→ 0. Then, following the proof of Theorem 19.26 of
van der Vaart (2000), we get, uniformly over τ ,

Gn

[
hτ,β̂(τ) − hτ,β(τ)

]
P−→ 0.

For all τ ∈ (0, 1), the smallest eigenvalue of J−1
τ is greater than the one of cE[XX ′]. It is thus

bounded away from 0, uniformly over τ . This, combined with the boundedness of S(X) and
what precedes, yields

sup
x,τ

∣∣∣x′JτGn

[
hτ,β̂(τ) − hτ,β(τ)

]∣∣∣ P−→ 0.

Equation (79) follows.

2. We prove the result for F̂−1 only. By the Cramer-Wold device, a similar reasoning applies for
Ĝ. By the stability properties of Donsker classes (see, e.g.,van der Vaart, 2000, Example 19.18),
it is easy to see that the set of functions

{(d, g, t, x, y) 7→ 1{d = d̃, g = g̃, t = t̃}x̃′Jτ (y − 1{y − x′β ≤ 0}), (x̃, τ, β) ∈ S(X)× (0, 1)×B}

is Donsker, for any (d̃, g̃, t̃) ∈ {0, 1}3. Hence,

1√
n

∑
i∈I

x′JτXi (τ − 1{Yi −X ′iβ(τ) ≤ 0}) =⇒ G,

where the convergence is in the space of continuous process on (0, 1) × S(X) and G denotes a
continuous gaussian process. Part 1 and, e.g. Theorem 18.10-(iv) of van der Vaart (2000) then
imply the result �
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