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Abstract

In this supplement, we first consider extensions of the model that are only briefly
mentioned in the main paper. Second, we present Monte Carlo simulations and discuss
numerical aspects of the estimation algorithm. Third, we display additional material on
the application. Finally, we prove the convergence of the algorithm for the extension of
the model to unobserved groups.

1 Extensions

1.1 Additional details on the case with unobserved groups

1.1.1 Motivation

We first discuss examples where price discrimination is done across groups that are unobserved

by the econometrician. Note that we keep the same condition on price observability, namely

Assumption 3. A first example is when both aggregate data on sales and survey data where

both consumers’ characteristics and transaction prices are observed. In many cases, and in

particular when J is large, the sample size is not large enough to construct accurate estimates

of market shares. It is then preferable to rely on aggregate level data to estimate the demand.

On the other hand, the survey data allow one to observe some transaction prices, so that

Assumption 3 holds in this setting, with p̃j = p
dj
j .

A canonical example is when the econometrician has data from consumer surveys (e.g. Kan-

tar Worldpanel for data on grocery items from supermarkets) in markets with spatial price

discrimination. The sample is never large enough to observe transaction prices for all the

products and the geographical areas to estimate precisely the market shares (sdj )d=1,...,nD
for

all j. The common practice consists in aggregating demand at the national level and using

the average price by item/supermarket brand. Instead, we suggest to rely on the same data
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but to apply our methodology to account for unobserved spatial price discrimination. We also

refer to Miller and Osborne (2014), who estimate a different model from ours in the case of

spatial price discrimination in the U.S. cement industry.

This methodology also constitutes an alternative strategy to model the airline industry, which

shares common features with the previous example. Specifically, price dispersion for a given

flight is important, and the prices of the alternative flights available at the moment of the

purchase are not observable.1 One may be reluctant to define ex ante consumer groups in this

example, contrary to the one above where groups naturally correspond to geographical areas,

but we can avoid this issue by simply using maximal prices or average prices for p̃j , instead

of pdjj .

Another example where our methodology applies is when only data on total revenue and

total quantities are available. To consider a very popular example in empirical industrial

organization, supermarket scanner data typically report weekly revenues and units sold for

all grocery items. The corresponding average prices then hide temporary promotions. Einav

et al. (2010) document these discrepancies by comparing such prices obtained from retailers

to those from a panel of consumers. In this set-up, the groups of consumers are defined by the

day of the week when they make their purchase. The weekly sales and revenues for product

j allow one to construct sj and the sales-weighted average price p̃j over the week. Because

the demand is heterogeneous across the different days of the week, supermarkets may have

an incentive to use temporary sales in order to price discriminate. Warner and Barsky (1995)

analyze daily prices for a broad subset of consumer goods and find significantly lower prices

during the weekend.

Another class of examples where we could use total revenues and quantities is the enter-

tainment industry. Different prices are generally set for the same movie, concert or show,

depending on some specified characteristics of the purchaser (age, professional activity, family

size...). Considering for instance the demand for movies, available data typically consist in

weekly revenues and the number of seats sold for a given movie (see, e.g. Einav, 2007; de Roos

and McKenzie, 2014).

1.1.2 Convergence of the algorithm

We consider here the convergence of the sequence (pn)n∈N, defined by p0 = p̃j and pn+1 =

Ms(ξ,θ),θ(pn), towards p(ξ, θ) (the notation here is the same as in Section 3.4.2). This conver-

gence holds when each firm sells only one product and when, roughly speaking, there is not too

much heterogeneity between groups.2 This condition is related to the one we impose in Theo-
1To deal with these issues Berry and Jia (2010) consider all tickets with different prices to be different

products, while Ciliberto and Williams (2014) aggregate tickets at the route level and use the average prices.
2The case of multiproduct firms is left for future research. It may be dealt with the approach proposed by

Nocke and Schutz (2018).
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rem 1, namely that the heterogeneity on price sensitivity is small. Here, we impose that θ lies

in a neighborhood of Θ0, where Θ0 = {(α0, ..., α0, β0, ..., β0), α0 ∈ A, β0 ∈ B}, A and B being

compact sets included in (0,∞) and Rk respectively. We also impose that ξ ∈ K = [ξ, ξ]J ,

with ξ > −∞ and

ξ ≤ − ln(2)− inf
(x,c̃,α,β)∈Supp(X,c)×A×B

[x′β + c̃α].

We show in the proof of Theorem 2 that this last restriction implies that market shares are

always smaller than 1/3, a restriction that is assumed by Aksoy-Pierson et al. (2013) when

studying the related question of the uniqueness of price equilibria.

Theorem 2. Suppose that Assumptions 2-4 hold, fj is 1-Lipschitz for all j and firms sell only

one product. Then there exists a neighborhood Θ1 of Θ0 such that for all (θ, ξ) ∈ Θ1 ×K, the

sequence (pn)n∈N defined by p0 = p̃j and pn+1 = Ms(ξ,θ),θ(pn) converges towards p(ξ, θ), the

unique solution of Equation (13).

The proof is displayed in Section 4. Theorem 2 does not directly apply to the case where

observed prices are sales-weighted average prices, p̃j =
∑

d(s
d
j/sj)p

d
j . This is because the sdj

are unobserved here, so fj is unknown by the econometrician. However, we can still apply the

algorithm developed above. In this context,

Md
s,θ,j(p) = p̃j −

1

αd(1−
∑

k∈Jj s
d
k(p, ξ(p, s, θ), θ))

+
1

sj

nD∑
d′=1

sdj (p, ξ(p, s, θ)

αd′(1−
∑

k∈Jj s
d′
k (p, ξ(p, s, θ), θ))

,

which is known by the econometrician. Hence, we can define the sequence (pn)n∈N as above.

Even though the proof of Theorem 2 does not easily extend to this case, simulations suggest

that a similar result should hold in this case. For a similar DGP as the one presented in

Section 2.1 below, we consider 100 values of θ and for each, 50 starting points p0. For all

the values of θ, the algorithm converged to the same vector of prices. We refer to Section 2.6

below for more details.

1.2 Discrimination based on unobserved individual characteristics, with
proxy variables

We now consider an alternative to the previous extension, still in the case where the market

shares sdj are unknown. Specifically, we show that it is possible to apply the methodology

in Section 3.2 as long as a proxy for the variable D used by the seller to price discriminate

is available. Suppose that we observe a discrete variable D̃ such that (i) (ζi, ε
d
ij) ⊥⊥ D̃ and

(ii) the matrix P, which typical (d, d̃) term is P (D = d|D̃ = d̃), has rank nD. Condition

(i) is an exclusion restriction which imposes that consumers do not differ systematically in

their taste across categories of D̃, once we control for D. Condition (ii) is similar to the

standard relevance condition in instrumental variable models and basically imposes that the

3



proxy variable D̃ is related to D. Let Yi denote the product choice of consumer i. Under the

first condition, we have

P (Yi = j|D̃i = d̃) =

nD∑
d=1

P
(
Di = d|D̃i = d̃

)
P (Yi = j|Di = d, D̃i = d)

=

nD∑
d=1

P
(
Di = d|D̃i = d̃

)
sdj .

Then, letting sj = (s1
j , ..., s

nD
j )′, s̃j = (P (Yi = j|D̃i = 1), ..., P (Yi = j|D̃i = n

D̃
))′, we have,

for all j = 1, ..., J ,

s̃j = Psj

Because P has rank nD, this equation in sj admits a unique solution. This implies that sj is

identified. We can then apply the methodology above, using these market shares.

As an example of this proxy variable approach, consider a scenario where the econometrician

observes the buyers’ professions while sellers price discriminate based on buyers’ income. In

this context, we observe market shares of products by professional activity. The rank condi-

tion means that we know the probability of belonging to an income class conditional on the

professional activity. From this probability matrix, we are able to compute market shares of

products by income class. The exclusion restriction imposes that the differences in preferences

across professional activities only reflect the differences across income classes.

1.3 Other supply-side models and moment conditions

So far, we have considered the standard set-up where firms and retailers are integrated and

prices are fixed through a Bertrand competition. Our methodology generalizes straightfor-

wardly to different supply models and competitive settings. In particular, it applies directly

to models with collusion or vertical relations. In the latter case, our method constitutes

the first step of the analysis, where the margins of the retailers are recovered. The second

step corresponds to the modeling of vertical relations, and can incorporate any kind of verti-

cal arrangement (bargaining, non-linear pricing...). Third-degree price discrimination on the

downstream market only matters for the value of margins and the profits of the retailers.

Related to this, since it is necessary to specify the nature of competition and pricing conduct,

we can include moments corresponding to the supply side as in the standard BLP model.

To do so, a relationship between marginal costs and cost shifter variables should be posited.

Adding supply-side moment conditions can improve the accuracy of estimation.
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1.4 Combination of micro and macro data

In addition to market shares and product characteristics, we may observe, through survey

data, additional information on purchasers. Berry et al. (2004) explain how such data can be

used to improve the estimators, by including additional moments based on these data in the

GMM program. This idea extends naturally to our context.

An interesting special case is when transaction prices are observed. Note that observing

transaction prices is not sufficient to apply the usual BLP model, because we still do not

observe counterfactual prices, i.e. the prices of the products that consumers did not purchase.

On the other hand, transaction prices can be helpful in our model for at least two purposes.

First, they can help defining the demographic group variable D. Our model implies that the

transaction prices of product j are identical within each group d. Hence, some candidates

for D can be rejected on this ground. Similarly, in our extension to unobserved groups, our

model implies that there are no more than nD different transaction prices for each product.

Transaction prices can therefore be useful to provide a lower bound on nD.

Second, observed transaction prices can be used to construct moment conditions aiming at

improving estimation, in the same spirit as Berry et al. (2004). We may consider for in-

stance covariances between transaction prices and the characteristics of the products or the

purchasers. The idea is then to match the model-based covariances with their empirical coun-

terparts. Another possibility is to use additional information on the overall distribution of

transaction prices or discounts. Additional conditions then take the form of differences be-

tween model-based moments of the price distribution and their empirical counterparts.

1.5 Other functional forms on price effects

In our main setting, we have implicitly considered, following common practice, that indirect

utilities depend linearly on disposable income. Namely, these utilities were supposed to depend

on αi(yi − pj), where yi denotes the income before purchase. αiyi can then be removed, as

it is constant across alternatives. To incorporate, for example, credit constraints as in BLP,

the indirect utility may rather depend on αi ln(yi− pj). With such a specification, consumers

cannot choose to buy products with prices above their annual income. Let us suppose, more

generally, that the utility depends on disposable income through q(yi − pj , αi) where q is a

function known by the econometrician while αi|Di = d ∼ N (αd, σ2d
α ) with (αd, σ2d

α ) unknown.

Our methodology also applies to this setting. In such a case, one has to include entirely

q(yi − pj , αi) into µdj (Ei, ζi, p
d
j ), with yi as one component of Ei. But Equations (8) and (10)

remain unchanged. The only difference is that the terms entering into Ωd are now different

from Equation (9). But other than that, the construction of the moment conditions follows

exactly the same methodology.
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2 Monte Carlo simulations

2.1 Data Generating Process

We construct 200 different datasets for T = 25 markets, J = 24 products and nD = 4

demographic groups. For each market and product, we construct the vectors of observed

characteristics Xjt = (1, X1jt), unobserved characteristics ξdjt, observed cost shifters Wjt =

(W1jt,W2jt,W3jt) and unobserved cost shifters ωjt. The marginal cost of product j in market

t then satisfies

cjt = 0.7 + 0.7X1jt +W1jt +W2jt +W3jt + ωjt. (17)

We suppose that X1jt,W1jt,W2jt,W3jt, ωjt and ξdjt are mutually independent. X1jt ∼ U [1, 2],

Wkjt ∼ U [0, 1](k = 1, 2, 3) while ξdjt and ωjt are two normal variables N (0, 0.1). The pa-

rameters of preferences are summarized in Table 1. Groups of consumers differ in their price

sensitivity. Group 1 is the less price sensitive group, but does not have the highest utility of

holding a car nor the highest valuation for the exogenous characteristic (the valuation is set

to 1.5, versus 2 for the three other groups). As in our application, the unobserved hetero-

geneity parameter σp is identical for the four demographic groups. Finally, we assume that

the market includes 4 firms, each of them producing 6 products. Once we solve for prices and

market shares (sdjt, p
d
jt)d=1,2,3,4, we define for each product the posted price p̃jt as the maximal

price across demographic groups. We use product characteristics, cost shifters and functions

of other product characteristics as instruments for the estimation.

Proportion Intercept X1 Price
Group 1 0.3 -1 1.5 -1.5
Group 2 0.3 -0.5 2 -2
Group 3 0.2 -0.1 2 -2.5
Group 4 0.2 -0.5 2 -3
σp 0.4

Table 1: Parameters of preferences in the Monte Carlo simulations.

2.2 Numerical Aspects

We use the following method to compute the GMM estimator. First, to approximate the

aggregate market shares, we use 300 symmetric normal draws for each demographic group

and market. We rely on Knitro derivative-based algorithm for minimization. Our initial

values for the price sensitivity parameters are the estimates obtained with the simple logit

model, while we use random draws from a uniform distribution U [−1/2, 1/2] for the value of

the random coefficient σp. As suggested by Dubé et al. (2012) and Knittel and Metaxoglou

(2014), we set a tight tolerance (10−12) to solve numerically for the mean utilities and prices,

while the tolerance levels are 10−6 for the parameters and 10−4 for the objective function. In

6



the application where J is much larger, we use 1,000 Halton draws rather than 300 and rely

on a tolerance of 10−6 for both the parameters and the objective function. Finally, we follow

Nevo (2000) by setting the value of the objective function to a high value when the parameters

imply non-defined values for δ or p.

We first investigate the convergence of our algorithm for one synthetic dataset generated

using the DGP described before. For that purpose, we compute the Lipschitz coefficient of

the function gθ for θ at its true value, except σp that varies in {0, 0.1, ..., 1}. The value of

the Lipschitz coefficient is 0 when σp is set to 0. Then, for all values equal or below 0.9, we

obtain Lipschitz coefficients that are increasing but remain lower than 0.798. Conversely, when

σp = 1 the Lipschitz coefficient becomes greater than 1, indicating that the algorithm may

have problems to converge. This is consistent with Theorem 1: for σp close enough to zero,

the algorithm is k-Lipschitz, with k < 1, but it may not be when σp is large. Note however

that the system of equations may still be invertible in (δ, p). Given the values of the price

sensitivities, a value of 1 for σp means that for some groups, more than 6% of the population

have a positive price parameter, which implies that optimal prices may go to infinity.

We then evaluate the performances of our algorithm at the true parameter θ0, by starting from

50 different initial values of prices equal to R × p̃j , where R ∼ U [0.25, 1]. As expected, the

algorithm always converges to the true value of the transaction prices. Besides, convergence

occurs very quickly, in 13 or 14 iterations. We compute, at each iteration of the price-loop, the

average and maximal absolute differences between the true prices and those obtained by the

algorithm, across all products. We then take the average of these mean and maximal absolute

differences over the 50 initial draws. The results, displayed in Table 2, show that the sequence

of vectors of prices converges very quickly to the true vector.

Iteration 1 2 3 4 5 6 7
Mean 0.7313 0.0144 0.0004 1.38×10−5 5.18×10−7 2.65×10−8 1.77×10−9

Maximum 2.7729 0.0631 0.0029 1.9×10−4 1.62×10−5 1.48×10−6 1.41×10−7

Reading notes: “mean” and “maximum” are the mean and maximal absolute difference between the true
prices and those obtained by the algorithm across all products. The figures are averages over the 50
simulations. The average true price here is 3.91, with a range of [2.24; 5.99].

Table 2: Mean and maximal price differences across iterations.

We further check that the algorithm converges for values of the parameters different from θ0,

starting this time from the same initial price vectors, pd = p̃. We draw 50 different vectors

of parameters from U [θ0/2, 3θ0/2) and investigate potential convergence issues. On the 50

different values of θ, 7 values do not lead to convergence as they imply a failure in the price-

loop, with some prices tending to infinity. These cases of convergence failure do not cause

any trouble for the estimation since the objective function is set to a high value whenever the

price-loop does not converge. In practice, our algorithm always comes back to regions of the
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parameter space where the price-loop converges. Over the 43 draws of θ for which convergence

occurs, the price-loop converges in 28 iterations on average, with a minimum of 8 iterations

and a maximum of 312 iterations. Our algorithm converges in 2.3 seconds on average.

Finally, following Knittel and Metaxoglou (2014), we carefully check the sensitivity of the

estimation method to the initial values and the minimization algorithm. Regarding the effect

of initial values, we draw 50 different initial values of θ = (σp, (αd)d=1,...,4). Specifically, σp

is drawn from a U [0, 1/2] and αd is drawn from U [αd/2, 3αd/2]. The estimation converges to

the same parameter values in all these 50 cases. This indicates that even if the algorithm fails

to converge for some values of the parameters, as indicated above, the global minimization

algorithm does not display any problem of convergence. Roughly speaking, during the opti-

mization, the parameter values for which the price-loop does not converge are discarded since

they are associated to high values of the objective function.

Regarding the choice of the minimization algorithm, we try a derivative-free minimization

algorithm (namely the Neader-Mealde simplex) instead of Knitro. This algorithm does not

perform as well as Knitro both in terms of convergence and in terms of the time spent in

optimization. Specifically, we estimated the model using 50 different initial values and find

that in 26% of the simulations, the objective function at the minimum obtained with the

simplex is more than 1% higher than when using Knitro. Moreover, in the 74% remaining

cases, the objective function with the simplex is never lower than with Knitro. Finally, the

simplex is on average 7% slower than Knitro.

2.3 Simulation results

The Monte Carlo simulation results are displayed in Table 3. As in the application, we estimate

separately the demand and supply parameters, using moment conditions from the demand and

supply sides, respectively. The estimation algorithm converges for every replication, and the

GMM accurately estimates both demand and supply parameters. The pivot groups are exactly

guessed and the estimated discounts are very close to the true underlying discounts. To get a

sense of the computational burden of our estimation method, we also estimate the standard

BLP model on the same simulated data. The standard BLP estimator is around 70 times

quicker than the discriminatory model, with an average number of iterations 6 times smaller.

This is partly due to the fact that for the standard BLP we optimize over σp only, while for our

model, we optimize over (α1, ..., α4, σp). Nevertheless, the computation time of our estimator

remains decent because (i) it is possible to parallelize the computationally intensive part of

the estimation algorithm and (ii) the contraction based on Newton’s method converges more

quickly than BLP’s contraction.
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True Estimators
Mean Std. dev.

Price sensitivity
Group 1 -1.5 -1.5 0.032
Group 2 -2 -2 0.04
Group 3 -2.5 -2.5 0.057
Group 4 -3 -3 0.067
sigma (σp) 0.4 0.4 0.021
Intercept
Group 1 -1 -1 0.083
Group 2 -0.5 -0.51 0.098
Group 3 -1 -1.01 0.118
Group 4 -0.5 -0.51 0.139
Exogenous characteristic
Group 1 1.5 1.5 0.016
Group 2 2 2 0.015
Group 3 2 2 0.017
Group 4 2 2 0.016
Marginal cost equation
Intercept 0.7 0.7 0.03
X1 0.7 0.7 0.015
W1 1 1 0.017
W2 1 1 0.017
W3 1 1 0.016
Average discount (in %)
Group 1 0 0 0
Group 2 7.28 7.26 0.26
Group 3 11.13 11.12 0.251
Group 4 13.69 13.66 0.236
% pivot well predicted 100
% simulations converging 100
Average number of iterations 30
Time (sec) 214
Test
Average κ̂ 1
Standard deviation of κ̂ 0.16
% accept discrimination model 99.5
Reading notes: the results were obtained over 200 simulations. “Time” is the
optimization time in seconds using our preferred starting point and on our desktop
computer using 6 parallel workers (Intelr CoreTM, 6-Core Xeon E5, 3.5 GHz, 16Gb
RAM). “% simulations converging” is the percentage of simulations for which our
algorithm converged.

Table 3: Simulation results.

We also implement the test of the model and accept the discrimination model 99.5% of the

time. Finally, we investigate the performance of the test under uniform pricing. We run

200 Monte Carlo simulations generated using the same DGP as above except that firms set

uniform prices. Under this model, the right uniform pricing model is accepted 99.5% of the

time.
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2.4 Effects of ignoring price discrimination

We finally investigate the bias from ignoring price discrimination and compute the relative

errors in estimated parameters and economic variables when the econometrician uses other

prices instead of the true transaction prices. We consider the three examples of observed prices

satisfying Assumption 3 discussed in the paper: maximal prices, (sales-weighted) average

prices and one price observed for each product. As explained in the paper, ignoring price

discrimination results in bias in the estimators because using the observed prices instead of

the true prices constitutes a non-classical measurement error problem. The results of Table 4

quantify this bias.

The price sensitivity parameters always display substantial bias, with relative errors ranging

between -6.4% and -11.2%, depending on the prices used and the group of consumers. The

errors in the parameter of heterogeneity in price sensitivity σp lie between -19.2% and -17.4%

of the true value. The intercept, which represents the utility of buying a product relative to

choosing the outside good, displays very large bias from -115% to almost 70%. The signs of

the bias vary with the group and the prices observed but we obtain similar bias when using

average prices and one transaction price. The coefficients for the non-price characteristic are

estimated with a very small bias under the first scenario while under the second and third

models, the bias is of around -3% for all the groups of consumers. The parameters of the

marginal cost equation are also estimated with large bias for the intercept, and smaller errors

for the cost shifters.

Ignoring price discrimination has also large effects on economic variables because those are

direct functions of prices and parameters. We see indeed that price elasticities, mean consumer

surplus, average mark-ups and marginal costs are estimated with large errors when using the

observed prices instead of the true prices. Errors in price elasticities are between -6.8% and

7.7%. As expected, these errors are rather small for the pivot group (Group 1) when we use

maximal prices but the biases are large for the other groups and under Specifications (2) and

(3). Again, errors in average surplus are small for the group for which prices are observed.

On the other hand, the bias in average consumer surplus reaches 13.3% for the most price

sensitive group in Specification (3). Biases in the estimated mark-ups are also substantial. We

underestimate the mark-up for Group 1 and overestimate the mark-ups of all the other groups.

The bias goes up to 78% for the most price sensitive group in Specification (3). Finally, the

errors in estimated marginal costs are very small when the econometrician uses the average

prices or one transaction price but they reach almost 6% when using the maximal prices. At

the end, those simulation results show that the errors on variables of interest can be large and

quite unpredictable as they depend on the consumer group and the prices used to estimate

the demand.
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(1) (2) (3)
p̃ = maxd p

d p̃ =
∑
sdφdpd∑
sdφd p̃ = pdj

Price sensitivities
α1 -6.4 -8.5 -7.8
α2 -8.3 -10.4 -9.9
α3 -8.8 -11 -10.2
α4 -8.9 -11.2 -10.4
σp -19.2 -17.6 -17.4
Intercept
β1
I 24.8 50.5 50.9
β2
I -0.8 66.9 69.8
β3
I -29.4 12.1 13.5
β4
I -115 -14.7 -11.3

Product characteristic
β1
X -0.1 -3.5 -3.7
β2
X -0.1 -3.4 -3.6
β3
X 1.2 -2.9 -3.2
β4
X 2 -3.1 -3.4

Cost equation
γI 18.5 -5.6 -8.2
γX 5.6 1.7 1.4
γ1 0 1.9 2.1
γ2 0 1.9 2.1
γ3 0.1 2 2.2
Price elasticities
ε1 0.2 -6 -6.8
ε2 2.5 -3.8 -4.6
ε3 5.9 -0.6 -1.5
ε4 7.7 1.2 0.3
Mean consumer surplus
group 1 0.7 1.7 5
group 2 6.4 7.6 10
group 3 9.5 11 12.5
group 4 10.4 12.2 13.3
Average mark-up
group 1 -19.2 -14 -13
group 2 8.3 15.3 16.6
group 3 35.7 44.5 46.2
group 4 65.6 76.3 78.3
Marginal cost 5.8 0.2 -0.3
Reading notes: All values are in %. Relative bias in parameter estimates are
computed as the difference between the average estimated parameters and
the true parameters divided by the true parameters. Bias in average price
elasticities, mark-ups and consumer surplus are computed as the relative
difference in the average variable over products, markets and simulations.
We use the DGP presented in Section 2.1. The first column corresponds
to the case where we observe the maximal prices. The second column
corresponds to the case where only average prices are observed while in
the third column only one transaction price is observed and it is drawn
randomly using the sales as probability weights.

Table 4: Relative bias in the estimated parameters when ignoring price dis-
crimination.
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2.5 The logit and nested logit cases

We explore the computational aspects of the GMM in the logit and nested logit cases, for

which we optimize on (α1, ..., αnD) and (α1, ..., αnD , σ1, ..., σnD), respectively. We consider

nearly the same DGP as in Section 2.1. The utilities and marginal costs are set in the same

way, except that because nD varies hereafter, the coefficients of the characteristics are fixed

in a slightly different manner. Specifically, the intercept and the coefficient of the non-price

characteristic are equal to -0.75 and 2 for all groups, while the price sensitivity coefficient is

set on an equally spaced grid ending at -1.5 and with a width of -0.5 (e.g., -3, -2.5, -2 and -1.5

with 4 demographic groups). As in Section 2.1, we consider 25 markets on which 4 firms sell

6 products each. In the nested logit, we consider 8 products per nest, and fix the coefficient of

correlation of products within segment σd = 0.5 for each group d. We then make the number

of firms vary from 4 to 16. Hence, the number of nests varies as we change the number of

firms. We suppose that the econometrician does not observe transaction prices pdj but only

the list prices, which are supposed to satisfy p̃j = max(p1
j , ..., p

nD
j ). Finally, we use product

characteristics, cost shifters and the sums of the characteristics of the other products of the

firm as instruments for the estimation. In the nested logit, we also rely on the additional

instrumental variables defined as the sum of the characteristics of the other products in the

segment.

To minimize the GMM function, we first have to choose a starting point. In both the logit

and nested logit models, we choose the 2SLS estimator of that model, supposing that the

transaction prices are equal to p̃. Regarding the minimization itself, we use the BFGS quasi-

newton algorithm. This choice may seem surprising, given that the objective function is not

differentiable everywhere because of the maximum function appearing in the price equation.

However, the algorithm works very well in practice and is much faster than the simplex

algorithm. Such a good behavior is documented in the optimization literature, see e.g. Lewis

and Overton (2013). To assess whether the algorithm converges to the global minimum, we

draw randomly, for each simulation, 10 other initial points. We then consider to have reached

the global minimum if for our preferred estimator, based on the initial 2SLS estimator, the

value function is smaller or equal to the minimum of these other 10 optimizations, with a

tolerance of 10−3.

Table 5 reports the computational aspects of the optimization: the average time (in seconds)

to compute our estimator based on the 2SLS starting point, and the proportion of simulations

for which this estimator reaches the global minimum of the value function. The algorithm

always converges. Moreover, in the vast majority of the simulations the estimator is the global

minimum of the objective function according to the criterion above. Table 5 also reports

the statistical properties of our GMM estimator. As expected, the root mean squared error

(RMSE) decreases with the number of products in both models. We also observe that the
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estimator of α is more imprecise in the nested logit than in the logit model. Note however that

α/(1−σ), which is the main term of price elasticities, is much better estimated, with a RMSE

comparable to the RMSE of α in the logit model. Intuitively, it is difficult to disentangle the

effect of prices (α) from the effect of intra-group log market shares (σ) in the nested logit

model, because the projections of these two variables on instruments are strongly correlated.

nD = 2 nD = 4
Time % reaching RMSE Time % reaching RMSE

Model J (sec) global min. α σ (sec) global min. α σ

Logit 24 0.014 100 0.02 – 0.29 100 0.03 –
48 0.017 100 0.016 – 0.33 100 0.024 –
96 0.022 100 0.012 – 0.39 100 0.016 –

Nested 24 1.4 100 0.53 0.16 9.3 95.5 0.24 0.062
logit 48 2.1 100 0.41 0.12 14 97.5 0.19 0.05

96 7.0 100 0.27 0.08 190 99.5 0.17 0.042
Reading notes: 200 simulations for each setting. “Time” is the optimization time in seconds on our
desktop computer (Intelr CoreTM, i3-4160, 3.6 GHz, 8Gb RAM) and using our preferred starting
point. “% reaching global min.” is the percentage of simulations for which the estimator reaches the
global minimum of the value function. We display the average root mean squared errors (RMSE) of
α̂d and σ̂d across the different demographic groups d.

Table 5: Computational and statistical aspects of the GMM optimization
for the logit and nested logit models.

2.6 Algorithm and simulations in the case of unobserved groups

We consider, for the model with unobserved groups studied in Section 3.4.2, an algorithm

similar to the one developed for the model with observed groups. Namely, for each value of

the vector of parameters θ, we compute p(ξ, θ) as the limit of the sequence pn+1 = Ms,θ(pn),

through the following steps:

1. Start from initial values for pd0, for each group d. We can use the observed prices p̃ or

previous transaction prices obtained for another θ.

2. Given the current vector of transaction prices pdn, invert Equation (12) to compute ξn,

using the algorithm of Lee and Seo (2016). Compute the corresponding market shares

sdj (p
d
n, ξn, θ), for all (j, d).

3. Compute pdn+1 using Equation (14).

4. Repeat steps 2 and 3 until convergence of prices.

We evaluate the computational and statistical properties of our GMM estimator in this case

through 200 Monte Carlo simulations. We generate market equilibrium for T = 50 markets

with J = 48 products offered by 4 firms, each of them offering 12 products. As in the

13



DGP of the simulations for the main model (see Section 2.1), the product characteristics

are Xjt = (1, X1jt) and the cost shifters are (Xjt,W1jt,W2jt,W3jt). However, in this model

the unobserved characteristics ξjt are not group-specific. All the variables follow the same

distributions as before. We consider 4 groups of consumers that differ only in their price

sensitivity parameter, and set αd = (−1,−1.5,−2,−2.5). The preference for holding a car

is set to β0 = −6 and the preference for the characteristic X1 is set to β1 = 3.5. For each

product, we suppose to observe the maximal price over the 4 consumer groups.

The proportion φdt of each group varies across markets and is such that φdt ∼ U(0.1, 0.3) for

d = 1, 2, 3 and φ4
t = 1−

∑3
d=1 φ

d. Though we could include the proportions φd in the vector of

parameters θ, we assume here that they are known. This is the case when the econometrician

knows the groups that are used for price discrimination and their proportion in the population,

but does not observe their specific demand (e.g. male/female in our application, if there is

price discrimination with respect to gender).

We estimate the model using demand-side moments only. We use an approximation of optimal

instruments that follows Reynaert and Verboven (2014). We compute them using a numerical

approximation of the Jacobian evaluated at the true parameter values. Finally, we use a

tolerance of 10−16 in the inner loop where we compute ξn and a tolerance of 10−12 in the

outer loop where we compute p(ξ, θ).

The simulation results are displayed in Table 6. As with the main model, and consistent with

the result of Theorem 2, our algorithm always converges. Perhaps surprisingly, the average

time to compute the estimator is much smaller than with the main model (27 seconds versus

214 seconds, see Table 3 above), despite a much larger average number of iterations (148

versus 31). This is because we have to perform the inner loop, where we compute ξn for given

prices, only once rather than nD times in the main model. Also, the optimization is faster

because the dimension of θ is smaller than with the main model (dim(θ) = 6 versus 18). The

estimator displays good performances and the average discounts are very precisely estimated.
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True Estimation
Mean Std. dev.

Price sensitivity
Group 1 -1 -1 0.006
Group 2 -1.5 -1.5 0.01
Group 3 -2 -2 0.032
Group 4 -2.5 -2.5 0.055
Exogenous characteristics
β0 -6 -6 0.028
β1 3.5 3.5 0.008
Mean objective function value 1.6×10−5

% simulations converging 100
Number of iterations 148
Time (sec) 27
Average discount
Group 1 0 0 0
Group 2 9.44 9.45 0.16
Group 3 13.65 13.64 0.22
Group 4 16.06 16.05 0.18
Reading notes: Mean and standard deviations of parameters for the
converging replications of the 200 simulations. “Std. dev.” stands
for the standard deviation across simulations. “% simulations con-
verging” is the percentage of simulations for which our algorithm
converged. “Time” is the optimization time in seconds using our pre-
ferred starting point and on our desktop computer using 6 parallel
workers (Intelr CoreTM, 6-Core Xeon E5, 3.5 GHz, 16Gb RAM).

Table 6: Simulation results for the model with unobserved groups.

As discussed in Section 3.4.2 of the main paper, Theorem 2 does not cover the case where

average prices are observed. We nevertheless investigate through simulations whether our

algorithm converges in this case. Using one synthetic dataset generated from the DGP de-

scribed above, we assume that only the sales-weighted average prices are observed instead of

maximal prices. We check that our algorithm still solves the system of equation in (ξ, p). For

this, we draw 100 different values of (αd)d=1,...,nD
from U(αd/2, 3αd/2) and compute prices

using p0,d
j = p̃j as initial prices. We then compare these prices with those we obtain using 50

different sets of initial prices. Specifically, we draw independently across d and j the p0,d
j , with

p0,d
j ∼ U [1/2p̃j , 2p̃j ]. For each of the 100 different values of (αd)d=1,...,nD

, we find that the 50

initial vectors of prices always lead to the same prices. This strongly suggests that Theorem

2 also applies to the case where average prices are observed.

3 Additional material on the application

3.1 Additional details on data

The dataset we use was provided from the association of French automobile manufacturers

(CCFA, Comité des Constructeurs Français d’Automobiles). Each year, we observe about one
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million vehicles registered and their main attributes: brand, model, fuel type, fuel efficiency,

car-body style, number of doors, horsepower, cylinder capacity and weight. These character-

istics have been complemented with fuel prices to compute the cost of driving (in euros for

100 kilometers). We define a product as a brand, model, segment, car-body style and fuel

type. This results in a total of 3,205 products for the six years. Following BLP, we assume

that each of these years corresponds to a different market. As often, we do not observe the

automobile options such as air conditioning, audio systems or metallic paint that are chosen

by the purchasers. If the cost of the options is included in the marginal cost of the cars, our

assumption that the marginal costs are constant across demographic groups could be violated.

Rich purchasers may indeed purchase more of these options, for instance. Options choice can

however be considered independent of car choices, as long as the same options are available

to all products. We can then safely ignore option costs and option choices in our analysis.

We use data from the French national institute of statistics (Insee) to obtain individuals’

expected income. There are over 36,000 municipalities in France and the three largest cities,

are split into smaller units. The heterogeneity in the median income across municipalities is

therefore quite large. We choose 27,000 euros per year as the threshold for income since it

roughly corresponds to the median yearly income in France in 2008. Note that we do not

observe the owner’s gender in our database. Even if we did, it would be hard to use it since

the owner and the buyer can be different persons. Also, many couples are likely to buy their

car together. Nevertheless, we check below that our results are robust to price discrimination

with respect to gender.

Table 7 presents the proportion of each consumer group in the population and the average

characteristics of the new cars purchased by these groups. We find significant heterogeneity

across these groups. On average, the medium age, high income class purchases more expensive

vehicles. They also choose larger and more powerful cars. Young purchasers are more inter-

ested in smaller cars (lighter and with three doors) whereas station wagons are more popular

among the medium age class. The highest age group purchases lighter vehicles than medium

age classes, but these vehicles are on average less fuel efficient.
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Group Freq. Price Fuel HP Weight Three Station
cost doors wagon

A < 40, I < 27,000 15.7% 19,803 6.2 5.7 1182 19.0% 9.7%
A < 40, I ≥ 27, 000 11.5% 20,911 6.5 6 1221 16.8% 12.9%
A ∈ [40,59], I < 27,000 16.3% 21,521 6.5 6.1 1231 14.3% 12.7%
A ∈ [40,59], I ≥ 27, 000 22.3% 21,739 6.8 6.2 1236 14.8% 13.1%
A ≥ 60, I < 27,000 20.8% 20,117 6.9 5.9 1194 11.4% 8.9%
A ≥ 60, I ≥ 27, 000 13.2% 20,831 7 6 1219 10.9% 10.5%
Reading notes: “A” represents the age and “I” the income. Fuel cost is the cost of
driving 100 kilometers. Price and fuel cost are in constant 2008 euros. “HP” stands
for horsepower, weight is in kilograms.

Table 7: Average characteristics of new cars purchased by the different con-
sumer groups.

It is crucial for our approach that buyers cannot lie about their individual characteristics. This

rules out any geographical arbitrage, namely that some consumers buy the car in another

municipality because discounts are higher. We believe that this assumption is reasonable

in this context since buyers have incentives to buy a new car at a close dealer to minimize

transportation costs and take advantage of the after-sale services and guarantees.

The dataset does not contain any information on the distribution network, and thus the

distribution part is not modeled in this application. We make the traditional assumption that

manufacturers have only exclusive dealers and are perfectly integrated. As detailed in Nurski

and Verboven (2016), exclusive dealing is prevalent in most European countries, with 70%

of car dealers being exclusive to one brand in Europe. As discussed above, adding vertical

relations between manufacturers and dealers is possible, provided that dealers compete à la

Bertrand in the downstream market.

3.2 Correction for null market shares

When defining the groups of consumers, we face a trade-off between realism (it is likely that

firms discriminate along several dimensions) and accuracy of the observed proportion of sales

ŝdj as estimators of the true market shares sdj . The six groups that we consider are large

enough to avoid in most cases the problem of too many zero sales (see Table 8). Yet, rather

than discarding those products, we replace the proportion of sales by a predictor of sdj that

minimizes the asymptotic bias, namely ŝdj =
nd
j+0.5

Nd , ndj denoting the number of sales of product

j in group d and Nd the number of potential buyers with characteristics d.
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Group Frequency of null sale
Age < 40, Income < 27,000 11.6%
Age < 40, Income ≥ 27, 000 10.3%
Age ∈ [40,59], Income < 27,000 7.5%
Age ∈ [40,59], Income ≥ 27, 000 4%
Age ≥ 60, Income < 27,000 7.8%
Age ≥ 60, Income ≥ 27, 000 7.6%

Table 8: Fraction of products with null market shares in the final sample.

The idea of the correction is to consider simple estimators of sdj of the form (ndj + c)/Nd, and

fix c such that ln((ndj + c)/Nd) is asymptotically unbiased. The reason we are looking for

such a c is that ln(sdj ) plays an important role at least in the logit or nested logit models.

With an unbiased estimator of ln(sdj ), we can estimate consistently and as usually the demand

parameters. However, in our framework where individuals choose independently from each

others, so that ndj ∼ Binomial(Nd, s
d
j ), it is well-known that only polynomials of sdj of degree

at most Nd can be estimated without bias. Our aim is then to find instead an estimator that

is asymptotically unbiased at the first order.

For that purpose, we consider an asymptotic approximation where sj is small but λdj ≡ Nds
d
j →

∞. Let Zdj = (ndj − λdj )/
√
λdj . A second-order Taylor expansion of (ndj + c)/Nd around sdj

yields

√
λdj

[
ln((ndj + c)/Nd)− ln

(
sdj

)]
= Zdj +

c√
λdj

−
sd2
j

2s̃d2
j

1√
λdj

Zdj +
c√
λdj

2

,

where s̃dj is between (ndj + c)/Nd and sdj . The first order term, Zdj , is asymptotically standard

normal and thus asymptotically centered. Now, considering the second-order term,

√
λdj

{√
λdj

[
ln((ndj + c)/Nd)− ln

(
sdj

)]
− Zdj

}
= c−

sd2
j

2s̃d2
j

Zdj +
c√
λdj

2

.

Moreover, sd2
j /s̃

d2
j

P−→ 1 and

(
Zdj + c√

λdj

)2
L−→ χ2

1. Hence,

√
λdj

{√
λdj

[
ln((ndj + c)/Nd)− ln

(
sdj

)]
− Zdj

}
L−→ c− 1

2
χ2

1.

Choosing c = 0.5 therefore ensures that this second-order term is asymptotically centered

around 0.

We examine the robustness of the estimation results to the correction of the null shares

adopted. We re-estimate the nested logit model using the Laplace transformation of the
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market share equation used by Gandhi et al. (2013). This correction replaces the market

share by:

s̃dj =
Ndŝdj + 1

Nd + J + 1
.

As Table 16 in Section 3.4.1 below suggests, the estimation results are robust to the choice

of a correction to deal with products with null market shares. The estimated parameters are

very close using the two alternative corrections. As a consequence, subsequent results (not

displayed here) on, e.g., discounts, are also close under the the two correction methods.

3.3 Additional results

3.3.1 Differences with the uniform pricing model

We first present additional results on the difference between our model and the standard BLP.

We display in Table 9 the relative differences between the main parameters of preferences.

More specifically, we compute (θunif − θdisc)/θdisc, where θunif represents the vector of pa-

rameters estimated under the standard model and θdisc the vector of parameters estimated

with our price discrimination model. We observe that for all the groups except for the pivot

group, the price sensitivities are underestimated with the standard BLP model. Conversely,

the price sensitivity of the pivot group is overestimated. We also overestimate the importance

of within group heterogeneity in price sensitivities. The coefficients of the intercept are under-

estimated for all the groups except the pivot group for which the difference in the parameters

is very small (-1%). The differences in the preference for horsepower are very large and posi-

tive, except for the group of old consumers with low income. Errors in the sensitivity to fuel

cost can be up to 10.5%. The preferences for car models with three doors display also large

differences, whereas we obtain similar estimates for the parameters of preference for station

wagon cars.

Age < 40 Age ∈ [40,59] Age ≥ 60
I = L I = H I = L I = H I = L I = H

Price -5.4 -4 -7.9 -5.7 -8.5 18.1
Std. dev. (σp) 8.2
Intercept -13.5 -9.6 -10.7 -7.7 -11.7 -1
Horsepower 44.7 49.8 21 20.5 -0.6 128.3
Fuel cost 10.5 10.1 5.4 3.7 1.6 5
Weight -14.4 -11.9 -14.9 -11.7 -18.5 12.5
Three doors -44.1 -364.9 28.4 11.7 -2.5 14.9
Stat. Wagon -1.5 -0.1 -3.6 -0.7 -3.6 10.7
Reading notes: All values are in % of the estimated parameters under
the price discrimination model, (θunif − θdisc)/θdisc.

Table 9: Relative difference in estimated parameters between the uniform
and the price discrimination models.
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Figure 1 displays the distribution of the difference in estimated marginal costs between the two

models. We compute here the relative difference (ĉunifj − ĉdiscj )/ĉdiscj , where ĉunif stands for

the marginal cost of product j implied by the uniform pricing model and ĉdiscj the one implied

by the price discrimination model. The costs are always overestimated in the uniform pricing

model, with an average relative difference of 9.5%. The relative cost difference even exceeds

18% for 2.9% of the products. These differences stem from the fact that, in the uniform

pricing model, the marginal costs are deduced from the difference between the posted prices

and the average mark-ups. In contrast, in the price discrimination model, the marginal costs

are equal to the difference between the posted prices and the mark-ups of the pivot group.

The pivot group mark-ups are higher than the average mark-ups estimated in the standard

model, resulting in lower marginal costs. Ultimately, the errors in the estimation of marginal

costs translate into errors in counterfactual simulation exercises.
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Figure 1: Distribution of the relative difference between estimated marginal
costs.

3.3.2 Additional results on discounts

Figure 2 displays the resulting distribution of discounts across products for those having a

discount lower than 20% (which represent 98% of the products). The corresponding average

discount, averaged by product rather than by consumers, is equal to 9.6%, with some hetero-
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geneity. For 10% of the products, the average discount is smaller than 6.7%, while for the

10% most discounted cars, the rebate is larger than 11.9%, and it even exceeds 32% for 1% of

the cars. To understand better the source of this heterogeneity, we regress these discounts on

the characteristics of the cars. The results are displayed in Table 10. Discounts increase with

the list price and horsepower but decrease with weight and fuel cost. These results reflect

both the differences in sales between consumer groups (e.g. products mostly sold to the pivot

group tend to have a small average discount) and differences in the pricing strategy. Results

with basked-weighted discounts are however similar, showing in particular that it is profitable

for firms to offer large discounts for their most expensive cars.
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Figure 2: Distribution of estimated discounts across products.
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Variable Parameter Std-err
Intercept 13.59∗∗ 2.4
List price 3.99 7.94
Horsepower 2.63∗∗ 0.83
Fuel cost -2.78∗∗ 0.39
Weight -8.98 13.7
Three doors 0.77 0.47
Station wagon 0.26∗∗ 0.09
Executive -6.21 7.7
Small Family -2.57∗ 1.25
Large Family -4.83 5.98
Small MPV -1.34∗∗ 0.4
Large MPV -1.65 1.01
Sports -4.56 4.06
Allroad -1.88 1.43
R2 0.65
Reading notes: the standard-errors are robust to
heteroscedasticity and account for the first-step
errors in the estimated discounts. Significance lev-
els: †: 10%, ∗: 5%, ∗∗: 1%.

Table 10: Regression of average product discount on cars characteristics.

3.3.3 Importance of third-degree price discrimination for firms and consumers

If third-degree price discrimination is always profitable for a monopoly seller, this may not

be the case in an oligopoly, because price discrimination may reinforce competition among

firms. Under certain conditions, all firms may actually be worse off than if they could commit

to a uniform pricing strategy (Holmes, 1989; Corts, 1998). The effect on consumers is also

ambiguous since for some groups of consumers, some products may turn out to be cheaper

without price discrimination. We investigate here the effect of price discrimination on firms

and consumers by simulating, using our estimates of the model with price discrimination, the

counterfactual prices and profits that would occur in equilibrium if firms could commit to set

a single price for all the consumer groups.
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Profits with price Profits without price Gains from
Manufacturer discrimination discrimination discrimination
PSA 1036.42 998.76 3.77%
RENAULT 691.42 665.92 3.83%
VOLKSWAGEN 340.13 341.11 -0.29%
FORD 170.24 165.27 3.01%
TOYOTA 162.78 158.3 2.83%
DAIMLER 156.53 144.76 8.13%
B.M.W. 137.31 132.87 3.34%
GM 113.08 112.25 0.74%
FIAT 86.27 85.3 1.14%
SUZUKI 52 51.77 0.43%
NISSAN 48.77 47.86 1.91%
HYUNDAI 46.38 45.68 1.53%
HONDA 29.62 28.62 3.48%
MAZDA 18.94 18.8 0.76%
CHRYSLER 16.1 15.94 0.99%
MITSUBISHI 9.89 9.67 2.28%
PORSCHE 8.82 9.32 -5.35%
SUBARU 1.85 1.88 -1.5%
SSANGYONG 1.79 1.83 -1.91%
ROVER 0.05 0.05 1.9%
Total industry 3128.39 3035.95 3.05%
Reading notes: Profits are annual profits for the year 2007 in millions of euros. The
gains from price discrimination represent the profits gains or losses of switching
from the uniform pricing equilibrium to the price discrimination equilibrium.

Table 11: Gains and losses from price discrimination by brand.

Results on firms’ profits are displayed in Table 11. Gains from price discrimination are rather

small but heterogeneous. We observe that if price discrimination is profitable for most of

the manufacturers, it makes 4 out of the 20 manufacturers worse off. The gains associated

to price discrimination are particularly high for brands that commercialize powerful vehicles,

such as Daimler group (that sells Mercedes, Dodge and Smart), with an increase of its profits

by 8.1%. This makes sense, given that higher prices and horsepowers are associated to higher

discounts or, put it another way, more price discrimination. Price discrimination appears

to be also more profitable than average for the two French manufacturers (+3.77%, +3.83%

for respectively PSA group (Peugeot and Citroen) and Renault group (Renault and Dacia).

Conversely, Porsche is the manufacturer that is the most hurt by price discrimination since its

profits are reduced by 5.4%. The total gains from price discrimination are rather small but

significant, the industry profits increasing by 3.05% with price discrimination.

We also investigate the impact of price discrimination on consumers. In Table 12, we compute

the average price differences between the uniform and the discriminatory prices for each group

of consumers and report the number of products for which the discriminatory price is lower

than the uniform one (see Column 2). We also compute average surplus for each group of

consumers under the two price equilibria (see Columns 5-7). For the young groups, all products

are more expensive under uniform pricing, and price discrimination makes them save around

700 euros. The situation is more contrasted for the 40-59 and 60+ groups. In particular,
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all prices are lower under uniform pricing for the 60+ group. Consumers in this group save

on average the substantial amount of 1,900 euros. Overall, price discrimination is hardly

beneficial for consumers as it increases the global average individual surplus by only 0.31%.

Again, this average impact hides heterogeneous effects. The group experiencing the highest

welfare gain is the group of young consumers with low income (+3.9%), while the pivot group

is, not surprisingly, the one that suffers the most from price discrimination (-2.8%).

Group of consumers #{j : pdj < Average gain in purchases Average surplus ∆ surplus
puniform
j } S-weights B-weights Disc. Unif. (in %)

Age < 40, I = L 571 679 825 12,760 12,279 3.92
Age < 40, I = H 569 501 593 14,439 14,098 2.42
Age ∈ [40,59], I = L 553 350 371 14,714 14,477 1.64
Age ∈ [40,59], I = H 292 54 63 18,650 18,599 0.28
Age ≥ 60, I = L 483 240 190 15,367 15,200 1.1
Age ≥ 60, I = H 0 -1,857 -1,912 33,753 34,734 -2.82
Average 412 41 63 18,140 18,085 0.31
Reading notes: the second column indicates how many products (among the 571) have lower prices
under price discrimination. “S-weights” denotes the sales-weighted average while “B-weights” are those
obtained by using the same artificial basket of cars for all groups. Average surplus are in euros. The
last column measures the variation of average consumers’ surplus due to price discrimination.

Table 12: Gains of price discrimination for groups of consumers.

For the total welfare, computed by simply summing manufacturers profits and consumers

surplus, we find a net benefit of price discrimination of 301 million euros. Consumers gain 209

million euros, while the manufacturers make extra profits of 92 million euros.

3.3.4 Comparison of our results with other evidence

In addition to the comparison with BdF transaction price data, we confront our results to

a survey conducted by the French credit company, Cetelem (L’Observatoire Cetelem, 2013).

First, it reveals that in 2012, 87% of the purchasers benefited from a discount from their car

dealers, which is exactly what we estimate with our model (86.8%). Interestingly, a quarter of

them also indicated that they did not even need to negotiate to obtain a rebate, which may be

seen as evidence of price discrimination rather than a true bargaining process. Furthermore,

for 68% of individuals negotiating the car price, the average discount was around 11%. This

result is comparable to our average on the whole population (9.6%), and is very close to the

average discount we obtain on individuals below 60 years old (11.3%). Interestingly, the latter

population also represents around two third of the whole population. We were unable to find

precise statistics on the dispersion of discounts, but we can report some anecdotal evidence.

For example, when searching online using the keywords “how much discount for new car ” (in

French), the first website listed states that “discounts are generally between 5% and 20%”.3

The fourth website associated to the same key words search is a forum asking the question of
3See http://www.choisir-sa-voiture.com/concessionnaire/meilleur-prix-voiture.php. We per-

formed this search in November 2014 using Google search engine.
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how much discount one can expect to obtain on the purchase of a new car. One reply states

that discounts do not exceed 20%, while another mentions an average discount of 6%.4 Our

estimations are overall consistent with these figures.

A recent study by Kaul et al. (2016) investigates the effect of the scrapping policy on the

magnitude of discounts in Germany, using data collected from a sample of dealers. The study

first reveals that some consumers do not obtain any discounts (see their Table 2 with summary

statistics on discounts). When excluding demonstration cars and sales to employees, which

are typically much more discounted, they obtain an average discount of 14%. This magnitude

is broadly consistent with our estimate, though somewhat higher. Their study focuses on

the period 2007-2010, which corresponds to the beginning of the economic crisis. If posted

prices did not adjust immediately, it is likely that car dealers reacted to this adverse economic

climate by reducing their margins and increasing the discounts. In their regression analysis,

they also find a positive link between discounts and posted prices, which is in line with the

results displayed in Table 10 above.

In 2000, the UK Competition Commission investigated the competitiveness of the UK new

car market and gathered data on average discounts by brand and segment (UK Competition

Commission, 2000). The dataset is very reliable since it was collected directly from dealers.

The report reveals that the average discount lies between 7.5% and 8%, also broadly in line

with our estimated average discount. Once more, the difference may stem from differences

between the two markets and the periods under consideration. This report also refers to a

consumer survey conducted in 1995 asking automobile purchasers whether or not they obtained

a discount over the posted price. This survey reveals that 17% of purchasers paid the posted

price whereas 37% bargained and obtained a discount and 29% were automatically offered a

discount. This figure of 17% is close to our estimation of 13%. Furthermore, the fact that

some purchasers were “automatically offered a discount” corroborates our assumption that

discounts are used as a tool to price discriminate because the posted price is not optimal for

some consumers.

A direct comparison of the distribution of discounts we estimate and evidence on the U.S.

market is more complicated. The two countries differ in particular in the characteristics of the

retailing sector. In the U.S., dealers are all independent from the manufacturers, as opposed

to France where only 10% of dealers are independent. Therefore, the pricing model we rely

on seems less credible for the U.S. car market and we can then expect more spatial dispersion

and price negotiation in the U.S. Despite these differences, Busse et al. (2012) report that

the rebates represent on average 9.6% of the transaction prices, which is once more consistent

with our estimated discounts.

Finally, few papers correlate the magnitude of discounts to age and income. Harless and Hoffer
4See http://forum.hardware.fr/hfr/Discussions/Auto-Moto/negocier-voiture-concession-sujet_

15899_1.htm.
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(2002) and Chandra et al. (2017) analyze price discrimination with respect to age and gender

on the U.S. car market using dealer margins (see also Langer, 2016, focusing on discrimination

by gender and marital status using transaction prices from survey data). They both report

a positive correlation between the margins and purchasers’ age. In the web appendix of the

2012 version of her paper, Langer documents significant price discrimination with respect to

income, the high income groups of consumers (for both men and women) are associated with

higher margins. These two results are in line with our findings on the estimated discounts and

mark-up rates.

3.4 Robustness checks

3.4.1 Nested logit model

We consider here the nested logit model as an alternative to the random coefficient model.

We show that our results are basically confirmed with this specification. The nested logit

approach requires to define a segmentation of the market in homogeneous groups of products.

Our segmentation, based on the main use of the vehicle, is close to the one of The European

New Car Assessment Program one (Euro NCAP). Table 13 displays the 8 segments that we

consider and their market shares over the period. Note in particular that sports cars include

all convertible cars as well as vehicles with a high ratio horsepower/weight, whereas the small

multi-purpose vehicle segment (MPV) includes small vans such as Renault Kangoo. The entire

classification is presented in Table 14.

Market shares Market shares
Segment (in %) Segment (in %)
Supermini 45.14 Small MPV 17.56
Executive 1.17 Large MPV 1.07
Small Family 17.01 Sports cars 5.11
Large Family 8.67 Allroad 4.77

Table 13: Segments and their market shares.
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(1) (2) (3)
Uniform model Discrimination model Discrimination model
Our correction Our correction Gandhi et al. correction

Parameter Std-err Parameter Std-err Parameter Std-err
Price sensitivity
Age < 40, I = L -2.66∗∗ 0.061 -2.66∗∗ 0.061 -2.5∗∗ 0.058
Age < 40, I = H -2.52∗∗ 0.06 -2.51∗∗ 0.06 -2.36∗∗ 0.058
Age ∈ [40,59], I = L -2.21∗∗ 0.051 -2.21∗∗ 0.052 -2.08∗∗ 0.049
Age ∈ [40,59], I = H -2.13∗∗ 0.053 -2.12∗∗ 0.053 -1.98∗∗ 0.048
Age ≥ 60, I = L -1.93∗∗ 0.066 -1.95∗∗ 0.065 -1.77∗∗ 0.06
Age ≥ 60, I = H -1.77∗∗ 0.07 -1.81∗∗ 0.067 -1.81∗∗ 0.063
Intra-segment correlation
Age < 40, I = L 0.17∗∗ 0.039 0.18∗∗ 0.04 0.11∗∗ 0.039
Age < 40, I = H 0.29∗∗ 0.042 0.3∗∗ 0.042 0.22∗∗ 0.041
Age ∈ [40,59], I = L 0.21∗∗ 0.034 0.23∗∗ 0.034 0.17∗∗ 0.033
Age ∈ [40,59], I = H 0.28∗∗ 0.04 0.3∗∗ 0.04 0.19∗∗ 0.039
Intercept
Age < 40, I = L -6.53∗∗ 0.256 -7.08∗∗ 0.255 -7.5∗∗ 0.245
Age < 40, I = H -6.47∗∗ 0.268 -7.06∗∗ 0.262 -7.44∗∗ 0.252
Age ∈ [40,59], I = L -6.96∗∗ 0.245 -7.26∗∗ 0.243 -7.59∗∗ 0.233
Age ∈ [40,59], I = H -6.54∗∗ 0.265 -6.88∗∗ 0.255 -7.41∗∗ 0.237
Age ≥ 60, I = L -7.86∗∗ 0.313 -7.94∗∗ 0.296 -7.89∗∗ 0.287
Age ≥ 60, I = H -8.2∗∗ 0.317 -8.21∗∗ 0.301 -8.29∗∗ 0.291
Horsepower
Age < 40, I = L 5.74∗∗ 0.221 5.74∗∗ 0.219 5.38∗∗ 0.207
Age < 40, I = H 5.15∗∗ 0.198 5.13∗∗ 0.196 4.82∗∗ 0.188
Age ∈ [40,59], I = L 4.25∗∗ 0.18 4.25∗∗ 0.178 4∗∗ 0.169
Age ∈ [40,59], I = H 3.92∗∗ 0.171 3.91∗∗ 0.17 3.59∗∗ 0.162
Age ≥ 60, I = L 2.88∗∗ 0.228 2.95∗∗ 0.225 2.57∗∗ 0.213
Age ≥ 60, I = H 2.44∗∗ 0.228 2.55∗∗ 0.227 2.71∗∗ 0.205
Fuel cost
Age < 40, I = L -6.04∗∗ 0.242 -5.99∗∗ 0.243 -5.85∗∗ 0.226
Age < 40, I = H -4.86∗∗ 0.217 -4.82∗∗ 0.216 -4.76∗∗ 0.204
Age ∈ [40,59], I = L -5.07∗∗ 0.2 -4.99∗∗ 0.199 -4.94∗∗ 0.188
Age ∈ [40,59], I = H -4.15∗∗ 0.186 -4.1∗∗ 0.184 -4.23∗∗ 0.183
Age ≥ 60, I = L -4.15∗∗ 0.184 -4.18∗∗ 0.183 -3.83∗∗ 0.17
Age ≥ 60, I = H -3.51∗∗ 0.18 -3.54∗∗ 0.178 -3.46∗∗ 0.167
Weight
Age < 40, I = L 4.13∗∗ 0.243 4.08∗∗ 0.243 4∗∗ 0.231
Age < 40, I = H 4.03∗∗ 0.242 3.99∗∗ 0.242 3.9∗∗ 0.231
Age ∈ [40,59], I = L 4.18∗∗ 0.23 4.12∗∗ 0.23 4.03∗∗ 0.22
Age ∈ [40,59], I = H 3.87∗∗ 0.231 3.82∗∗ 0.232 3.86∗∗ 0.217
Age ≥ 60, I = L 3.49∗∗ 0.249 3.53∗∗ 0.248 3.19∗∗ 0.237
Age ≥ 60, I = H 3.52∗∗ 0.252 3.58∗∗ 0.249 3.49∗∗ 0.239
Three doors
Age < 40, I = L -0.08 0.178 -0.09 0.176 -0.05 0.173
Age < 40, I = H -0.25 0.167 -0.25 0.166 -0.21 0.163
Age ∈ [40,59], I = L -0.22 0.172 -0.22 0.17 -0.19 0.167
Age ∈ [40,59], I = H -0.35∗ 0.169 -0.35∗ 0.167 -0.31† 0.168
Age ≥ 60, I = L -0.6∗∗ 0.187 -0.61∗∗ 0.186 -0.56∗∗ 0.178
Age ≥ 60, I = H -0.65∗∗ 0.184 -0.66∗∗ 0.184 -0.64∗∗ 0.175
Station wagon
Age < 40, I = L -0.6∗∗ 0.127 -0.59∗∗ 0.126 -0.6∗∗ 0.123
Age < 40, I = H -0.42∗∗ 0.121 -0.41∗∗ 0.12 -0.43∗∗ 0.117
Age ∈ [40,59], I = L -0.45∗∗ 0.121 -0.44∗∗ 0.12 -0.46∗∗ 0.117
Age ∈ [40,59], I = H -0.47∗∗ 0.121 -0.45∗∗ 0.12 -0.51∗∗ 0.119
Age ≥ 60, I = L -0.7∗∗ 0.126 -0.7∗∗ 0.126 -0.65∗∗ 0.119
Age ≥ 60, I = H -0.67∗∗ 0.125 -0.68∗∗ 0.125 -0.65∗∗ 0.119
Reading notes: Standard-errors are robust to heteroscedasticity and computed using the stan-
dard formula for GMM. Significance levels: †: 10%, ∗: 5%, ∗∗: 1%.

Table 16: Estimation of parameters: nested logit model with uniform pricing
and price discrimination, with our correction and Gandhi et al.’s correction
of market shares.

The estimated parameters are generally similar to the ones for the random coefficient models

presented in the paper. Note that for two groups (the old purchasers with low and high
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income), we obtain negative intra-segment correlations whereas this parameter should belong

to [0, 1]. Thus, we constrain these two parameters to be equal to zero in the estimation, which

amounts to consider the logit specification for these two groups of consumers.

We then present the same results as those given in Tables 2 and 4 of the main paper and

Figures 1 and 2 and Table 10 of this supplement, but for the nested logit specification. Table

17 first shows that the average price elasticities are very similar to those obtained with the

random coefficients model. Under price discrimination, they range from -6.4 to -3.7, almost

identical to the range [-6.4, -3.9] that we obtain with the random coefficient model. Here

again, older people are much less price sensitive than the other groups. Perhaps surprisingly,

on the other hand, high-income individuals below 60 appear to be more price sensitive than

the low-income ones, both under price discrimination and uniform pricing. The pivot group

is nevertheless still the older, high-income group of consumers.

Group of Price elasticity Average mark-up Average surplus
consumers Disc. Unif. Disc. Unif. Disc. Unif.
Age < 40, I = L -5.54 -6.23 22.1 22.3 585 585
Age < 40, I = H -6.39 -7.24 19.9 21.5 663 662
Age ∈ [40,59], I = L -5.52 -5.94 23 21.6 631 631
Age ∈ [40,59], I = H -5.8 -6.32 22.5 21.6 998 996
Age ≤ 60, I = L -3.83 -3.87 30.9 23.6 836 848
Age ≤ 60, I = H -3.77 -3.68 31.7 22.9 1245 1275
Average -5.1 -5.49 25.2 22.3 873 879

Table 17: Comparison of average price elasticities for the nested logit models
with uniform pricing and unobserved price discrimination.

We also observe that the model without price discrimination overestimates price elasticities

for all groups except the pivot and always overestimates the marginal costs as Figure 3 shows.

The average difference in marginal costs is 11.6%, with important heterogeneity. In particular,

the difference exceeds 20% for 12.9% of the products.
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Figure 3: Distribution of the relative difference between estimated costs(
ĉunif−ĉdisc

ĉdisc

)
under the nested logit specification.

Turning to the discounts, we obtain again that the youngest purchasers obtain the highest

discounts, though such discounts are on average higher for the high income young purchasers.

Interestingly, the oldest individuals with low income get a very small discount in average

(2.6%) compared to an average of 10.3% with the random coefficient model. The average

discount is nevertheless very close to the one obtained with the random coefficient model.

Average discount (in % of posted price) Average gross discount (in euros)
Group of consumers Sales-weighted Basket-weighted Sales-weighted Basket-weighted
Age < 40, I = L 13.96 13.62 2,447 2,473
Age < 40, I = H 14.71 14.9 2691 2,706
Age ∈ [40,59], I = L 10.76 11.04 1,994 2,005
Age ∈ [40,59], I = H 11.37 11.61 2,111 2,111
Age ≥ 60, I = L 2.59 2.5 458 453
Age ≥ 60, I = H 0 0 0 0
Average 8.74 8.79 1,590 1,596
Reading notes: the “basket-weighted” discounts are obtained by using the same artificial basket of
cars for all groups.

Table 18: Average discount by group of consumers for the nested logit model.

Finally, we display in Figure 4 the distribution of average discounts over car models. Both the
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average (7.2%) and the standard deviation (3.7%) are lower than the figures obtained with

the random coefficient model (9.6% and 4.7%, respectively). For 10% of the cars the discount

exceeds 17.6% (versus 13.9% unfder the random coefficient model). Finally, the regression of

the discounts on cars’ characteristics shows, as before, that large fuel costs and heavy vehicles

are associated with lower discounts, while horsepower is associated to greater discounts. On

the other hand, the list price has a negative rather than positive effect on discounts in this

specification, no longer in lines with the results of Kaul et al. (2016).

0 2 4 6 8 10 12 14 16 18
Average discount by product (in %)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Fr
eq

ue
nc

y

Figure 4: Distribution of estimated discounts for the nested logit model.
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Variable Parameter Std-err
Intercept 18.06∗∗ 2.07
Posted price -1.36∗∗ 0.18
Horsepower 2.3∗∗ 0.35
Fuel cost -2.34∗∗ 0.32
Weight -3.25∗∗ 0.45
Three doors 0.71∗∗ 0.13
Station wagon 0.22∗∗ 0.08
Executive -3.65∗∗ 0.44
Small Family -3.24∗∗ 0.41
Large Family -4.25∗∗ 0.5
Small MPV -2.68∗∗ 0.34
Large MPV -1.85∗∗ 0.3
Sports -3.22∗∗ 0.41
Allroad -2.16∗∗ 0.32
R2 0.76
Reading notes: The regression includes segment
dummies. Standard-errors are robust to het-
eroscedasticity and account for the first-step er-
rors in the estimated discounts. Significance
levels: †: 10%, ∗: 5%, ∗∗: 1%.

Table 19: Regression of average product discount on car characteristics.

3.4.2 Other sources of price dispersion

There are other sources of price dispersion, apart from third-degree price discrimination, that

we have not taken into account because of data limitation. While we discuss in detail below

these other sources, we first provide a rough assessment of the importance of third-degree price

discrimination in the overall dispersion of new car prices. For that purpose, we compute the

variance of log transaction prices observed in the BdF survey. We then compare it with the

variance of log posted prices observed in the CCFA database, restricting ourselves to the same

subset of cars as in BdF (defined by brand, model and fuel type). Finally, we also compute

the variance of log transaction prices estimated with our model, still for the same subset of

cars. If third-degree price discrimination was the only reason for price dispersion, we would

expect this latter variance to be equal to the variance obtained in BdF, and larger than the

variance of list prices. The results are displayed in Table 20. While posted prices account for

80% of the variance of log transaction prices observed in BdF, our transaction prices account

for 86.6% of this variance. In other words, third-degree price discrimination is able to capture

around one third (33.4%) of the unexplained variance of observed log transaction prices in

BdF.
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V
(
ln(pBdF )

)
V (ln(p̃Y )) V

(
ln(pDY )

)
0.121 0.097 0.105

Reading notes: p̃Y (resp. pDY ) corresponds to the
list price (resp. transaction price estimated with our
model) associated to the consumer’s choice of car Y .

Table 20: Variance of observed log transaction prices (ln(pBdF ), log posted
prices (ln(p̃Y )) and log estimated transaction prices ln(pDY ).

Temporary promotions Temporary promotions such as manufacturer rebates constitute

another source of price dispersion. With exhaustive data on such promotions, we could take

them into account in our model by modifying accordingly the list prices. While we are not

aware of any such exhaustive data, we obtained data on rebates for a subset of cars from the

consumer price index department of Insee. We have monthly data on temporary promotions

for a sample of around 200 cars, 97 model names and 23 brands over the period 2004-2006. We

match this dataset with monthly sales data from CCFA (2003-2006) on the brand and model

name, the fuel type and annual average price. When available in the promotion dataset, we

also use the cylinder capacity, the horsepower and the body style. We match each car model ×
fuel type from the promotion data to its nearest neighbor in the CCFA dataset using the sum

of the squared difference between the following standardized variables: horsepower, cylinder

capacity and price. At the end, we obtain an unbalanced panel of 194 cars over 36 months.

We find that the level of promotions is rather small compared to our estimated average dis-

counts. The average sales weighted rebate is e666, which represents 3.2% of the average

posted price. This is 3 times lower than our estimated average discount (2,023 euros). We

also find that temporary rebates do not display important seasonality patterns. They tend

to be the largest in March (e200 more than the average) and in July (e127 more than the

average) and the lowest in May (e152 less than the average) and April (e123 less than the

average). Finally, we investigate whether promotional activity is driven by low past sales.

For that purpose, we regress the temporary promotion on the sales in the past three months

using different fixed effects. In Specification (1) of Table 21, we control for the month and the

year while in Specification (2) we use the date (month × year) as control. In Specification

(3) we control for the month, the year and the model name. Finally in Specification (4) we

add car model age dummies as controls. In the first two specifications only the sales three

month before appear to be positively correlated with very low levels of statistical significance.

However the sales at the past periods do not seem to drive the magnitude of promotions.
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(1) (2) (3) (4)
Estimate Std err Estimate Std err Estimate Std err Estimate Std err

Sales t-1 -0.008 0.121 -0.003 0.122 -0.165 0.103 -0.153 0.101
Sales t-2 0 0.141 -0.02 0.143 -0.043 0.117 -0.038 0.114
Sales t-3 0.216† 0.11 0.224∗ 0.111 0.015 0.093 0.047 0.091

Month, year FE X
Month × year FE X
Month, year, model FE X
Month, year, model, X
model age FE

Reading notes: Significance levels: †: 10% ∗: 5% ∗∗: 1%. The model age fixed effects in
Specification (4) include every age dummy from 1 to 6 and the reference are the models older than 6
year-old. All the specifications estimated using 3,548 observations.

Table 21: Regression of the rebate on past sales and some controls.

Price discrimination with respect to unobserved characteristics Additional price

dispersion may come from other demographic characteristics that we do not observe but that

are used to price discriminate within the groups we consider. Gender, race but also education

(as a proxy of negotiation skills) are omitted from our analysis because we do not have those

data. One may in particular be worried of our omission of gender, since there has been

evidence of price discrimination against women in the U.S. (i.e. they pay more for the same

car), though recent results point towards a reduction of those differences over time (see, e.g.

Chandra et al., 2017).

We therefore check the robustness of our results to price discrimination with respect to gen-

der, in addition to age and income. For that purpose, we use our estimated parameters of

demand and marginal costs and modify the primitives by introducing some discrete unob-

served heterogeneity within groups. Specifically, we consider that each group of consumers

is equally composed of men and women, and that men have higher price sensitivities than

women. We use our estimates for the price sensitivities of women and then calibrate the men

price sensitivities so that the average transaction price for men is e250 lower. The value of

the average price difference is inspired by Langer (2016), who finds a difference of $250 using

transaction price data. All other parameters of preference are assumed to be identical for men

and women. We then solve for the new market equilibrium using this new set of parameters.

We then analyze how neglecting the gender in this setting affects the main results (see Table

22). The differences in mark-ups and price elasticities are quite small, in particular the total

average mark-up and price elasticity differ by 0.1 to 0.2 points. As expected, the average

discount is underestimated, but not by much since price discrimination with respect to gender

is very small compared to price discrimination with respect to the six groups we consider.

Additionally, the mean absolute relative error in the estimated marginal costs is very small

(0.24%) and the price sensitivity parameters we obtain are a convex combination of the men’s

and women’s parameters.
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Average discount (%) Average mark-up (%) Average price elasticity
Group True Estimated True Estimated True Estimated
Age < 40, I = H 13.6 12.2 19.6 18 -6.86 -6.22
Age ∈ [40,59], I = L 12.7 11.5 20.2 18.7 -6.53 -6.02
Age ∈ [40,59], I = H 8.9 9.7 18.1 20.3 -5.02 -5.55
Age ≥ 60, I = L 11.6 10.5 22 20.5 -6.02 -5.55
Age ≥ 60, I = H 0.9 0 26.1 28.5 -3.77 -3.93
Average 10.4 9.8 20.5 20.4 -5.8 -5.63
Reading notes: “True” stands for the model with the calibrated parameters for the gender. “Estimated”
stands for the estimated parameters in the model that neglects price discrimination on gender.

Table 22: Effect of neglecting the gender on discounts, mark-ups and price
elasticities.

Price negotiation Price negotiation could be another cause of price dispersion, as shown

by, e.g., Scott Morton et al. (2011). However, to the extent that there is no search cost,

price negotiation can be modeled similarly as price discrimination with respect to unobserved

characteristics (see Huang, 2016, for such an approach). These characteristics would include,

e.g., patience or bargaining disutility. Sellers would then discriminate between, say, patient and

impatient consumers, offering lower prices to patient consumers. In such a set-up, our model

would capture the benefit of negotiation net of the negotiation cost (in monetary terms). Now,

search costs may matter as well. Scott Morton et al. (2011) report that in the U.S. consumers

in the lowest search cost quartile pay on average 1.3% less than those in the highest quartile.

This is significant but smaller than the magnitude of our discounts. Search costs may also

be lower in France than in the U.S., since dealers are more spatially concentrated, with one

dealer every 110 square kilometer versus one every 580 square kilometer in the U.S.

Spatial price dispersion While we allow for price variation between different municipal-

ities through the segmentation in 6 consumer groups, we neglect price variation that could

occur because of differences in competition intensity between local markets (see Albuquerque

and Bronnenberg, 2012; Murry and Zhou, 2017, for papers using local prices). Moreover,

even under perfect integration between manufacturers and dealers, price variation may arise

because of variations in marginal costs across dealers. These variations, which would violate

Assumption 2, could be the consequence of heterogeneity in local production factors (e.g.,

labor or real estate cost).

To check how such heterogeneous local costs affect the robustness of our estimates, we collected

estate costs for a sample of 1,395 municipalities through notary data in 2017.5 We then

compute the average estate prices for each demographic group as ρ̄d =
∑

m q
d
mρm/

∑
m q

d
m

with qdm the number of car sales in the municipality m from purchasers of group d and ρm

is the average estate price in municipality m). According to the National Automobile Dealer
5Municipalities were drawn without replacement from the database of all French municipalities, with prob-

ability proportional to their size.
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Association in the U.S. the estate cost represents on average $961 per car in 2009, which

corresponds to e689 using the average exchange rate for 2009.6 We use this figure to compute

the average additional cost of estate by demographic group taking the pivot group as the

reference. Average estate prices and incremental costs are displayed in the first two columns

of Table 23. We then simulate the new market shares and prices in market equilibrium

with heterogeneous marginal costs and estimate a model that neglects the cost heterogeneity.

Results, presented in Table 23, show that the effect of neglecting such cost heterogeneity is

very small. Whereas the average discounts differ by 1.4 points, average mark-ups and price

elasticities are almost identical. Furthermore, neglecting such cost heterogeneity affects mainly

the coefficients of the intercept.

Estate Additional Discount (%) Mark-up (%) Price elasticity
Group price cost True Est. True Est. True Est.
Age < 40, I = L 2,871 -337 15.3 13.4 17.6 17.2 -6.28 -6.42
Age < 40, I = H 4,622 35 11.8 12 17.8 17.8 -6.19 -6.18
Age ∈ [40,59], I = L 2,315 -455 14 11.5 19.2 18.7 -5.86 -6.01
Age ∈ [40,59], I = H 3,843 -131 10.3 9.6 20.4 20.2 -5.5 -5.54
Age ≥ 60, I = L 2,529 -410 12.9 10.5 21.1 20.5 -5.42 -5.55
Age ≥ 60, I = H 4,459 0 0 0 28.2 28.3 -3.94 -3.94
Average 3,247 -257 11.1 9.7 20.6 20.3 -5.54 -5.62
Reading notes: Estate prices are in euros per square meter for houses. “True” corresponds to
the values calibrated with heterogeneous costs. “Est.” corresponds to the values estimated when
neglecting the cost heterogeneity.

Table 23: Effect of neglecting cost differences across consumer groups.

Trade-in and financing The existence of multiple components such as the trade-in of an

old car or the purchase of a financing plan occurring at the same time as the car purchase

can be source of further unobserved price heterogeneity within consumer groups. Some indi-

viduals may use their old car as trade-in, while some others may prefer to keep it or sell it

themselves. This leads to an opportunity for the sellers to use the trade-in value to further

price discriminate within groups. The characteristics of these ancillary transactions are rarely

recorded but the purchase price of a trade-in car and the loan rate can be used by car sellers

to do price discrimination. Therefore, even if we observed no price dispersion in transaction

prices, sellers could still price discriminate through the trade-in value and the financing loan

rate.

Furthermore, to the extent that both operations enter additively in the sellers’ profit function,

the introduction of the trade-in is equivalent, from the seller’s point of view, to a constant

marginal cost difference between the transactions with trade-in and those without. This in

turns violates Assumption 2 of identical costs, but this time the cost difference is within each

group of consumers.
6See nada.org/dealershipfinancialprofile/.

36



To investigate the robustness of our results to neglecting the trade-in of an old car, we generate

the equilibrium prices and market shares of a model based on our parameter estimates, but

with a fraction of buyers selling their used cars in each of the 6 consumers groups. We use

the fraction of transactions that involved a trade-in observed on BdF within each age class.7

We obtain that 80%, 76% and 83% of transactions involve the trade-in of an old car for

respectively the young, middle age and old purchasers. We then set the resale value of the

car to e3,000, which is approximately the median trade-in value observed in BdF. This resale

value is added to the utility associated to the outside option which implies that the outside

option has a greater value for the subgroup of traders than for the subgroup of non-traders.

Finally, we set the margin of the seller on the traded car to be e500.

Using this DGP, we estimate our model again, neglecting the trade-in. Table 24 shows that

the estimated price parameters are almost identical to the true parameters. The coefficients

of the intercept are overestimated. This could be expected, as it is more profitable to sell to

consumers with a trade-in car. This translates, when neglecting the trade-in, into larger mean

utilities of holding a car. On the other hand, the average mark-ups and price elasticities are

very close to their true values (see Table 25).

Estimated “True”
Group Parameter Std. error Parameter Std. error
Price parameters
Age < 40, I = L -4.84∗∗ 0.117 -4.83∗∗ 0.12
Age < 40, I = H -4.52∗∗ 0.116 -4.52∗∗ 0.119
Age ∈ [40,59], I = L -4.32∗∗ 0.115 -4.32∗∗ 0.118
Age ∈ [40,59], I = H -3.96∗∗ 0.114 -3.96∗∗ 0.116
Age ≥ 60, I = L -4.22∗∗ 0.131 -4.21∗∗ 0.133
Age ≥ 60, I = H -3.06∗∗ 0.13 -3.05∗∗ 0.134
σp 0.99∗∗ 0.083 0.98∗∗ 0.086
Intercept
Age < 40, I = L -6.03∗∗ 0.207 -6.24∗∗ 0.208
Age < 40, I = H -6.72∗∗ 0.206 -6.92∗∗ 0.207
Age ∈ [40,59], I = L -6.67∗∗ 0.206 -6.85∗∗ 0.208
Age ∈ [40,59], I = H -6.73∗∗ 0.205 -6.9∗∗ 0.207
Age ≥ 60, I = L -6.29∗∗ 0.225 -6.48∗∗ 0.226
Age ≥ 60, I = H -6.17∗∗ 0.274 -6.31∗∗ 0.282
Reading notes: “Estimated” stands for the estimated parameters in the model
that neglects the trade-in of an old car. “True” stands for the model with a
fraction of individuals with trade-ins.

Table 24: Effect of neglecting the trade-in part of the transaction on the
price parameters and the coefficients of the intercept.

7Since we do not have this information by income class, we use the same fraction for each income subcate-
gory.
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Average mark-up (%) Average price elasticity
Group “True” Estimated “True” Estimated
Age < 40, I = L 17.8 17.2 -6.26 -6.41
Age < 40, I = H 18.4 17.8 -6.06 -6.2
Age ∈ [40,59], I = L 19.2 18.7 -5.87 -6
Age ∈ [40,59], I = H 20.8 20.2 -5.43 -5.54
Age ≥ 60, I = L 21.1 20.5 -5.41 -5.55
Age ≥ 60, I = H 28.8 28.1 -3.88 -3.97
Average 20.9 20.3 -5.5 -5.63
Reading notes: “True” stands for the model with the calibrated parameters
for the model with trade-in. “Estimated” stands for the estimated parameters
in the model that neglects the trade-in part the transaction. For the groups
with trade-in cars, mark-ups include the margin on the trade-ins while price
elasticities are calculated using the price gross of the trade-in resale value.

Table 25: Effect of neglecting the trade-in part of the transaction on average
mark-ups and price elasticities.

4 Proof of Theorem 2

In the following, we let Θ = {(α1, ..., αnD , β1, ..., βnD) ∈ AnD ×BnD} and Π =
∏J
j=1[cj ,+∞).

The proof is divided in five steps. We first bound market shares under our assumption on ξ.

Then we show that the solution p(ξ, θ) of the first-order conditions defined by Equation (13)

is indeed well-defined (i.e., the system admits a unique solution) and regular. Existence and

uniqueness are well-known in such a context (e.g. Caplin and Nalebuff, 1991) but we prove

them for completeness. Third, we show that for any θ0 ∈ Θ0, p(ξ, θ0) is an attractive fixed

point of Ms(ξ,θ0),θ0 . Fourth, we prove that Ms(ξ,θ),θ is a contraction on a neighborhood of

p(ξ, θ0), for well chosen (ξ, θ). Finally, we prove the convergence of (pn)n∈N towards p(ξ, θ).

1. maxj s
d
j (p, ξ, θ)/s

d
0(p, ξ, θ) ≤ 1/2 and maxj s

d
j (p, ξ, θ) < 1/3 for all (p, ξ, θ) ∈ Π×K ×Θ.

First, for all (d, j, ξ, p, θ), we have

ln(sdj (p, ξ, θ)/s
d
0(p, ξ, θ)) = pαd +X ′jβ

d + ξj .

The restriction ξ ∈ K then implies

ln(sdj (p, ξ, θ)/s
d
0(p, ξ, θ)) ≤ − ln 2.

Hence, sdj (p, ξ, θ)/s
d
0(p, ξ, θ) ≤ 1/2, which implies that maxj sj(p, ξ, θ) < 1/3 for all (p, ξ, θ) ∈

Π×K ×Θ.

2. p(ξ, θ) is well defined, C1 and is a fixed point of Ms(ξ,θ),θ.

First, consider the function R = (R1, ..., RJ) defined on Π by Rj(p) = cj − 1/(αd(1 −
sdj (p, ξ, θ))). For simplicity, we first let the dependence of R in d and θ ∈ Θ implicit here.

Let us consider the convex compact set C =
∏J
j=1[cj , pj ], with pj > cj − 3/[2αd]. By Step 1,
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sdj (p, ξ, θ) < 1/3 for all j = 1, ..., J . Therefore, for all p ∈ C, Rj(p) ≤ cj − 3/[2αd] and thus,

R(p) ∈ C. Then, by Brouwer’s theorem, R admits at least one fixed point on C ⊂ Π, implying

that (13) has at least one solution on Π.

To prove that this solution is unique, let Q(p) = p−R(p) be defined on Π. We have

∂Qj
∂pk

(p) = 1{j = k} −
sdj (p, ξ, θ)(1{j = k} − sdk(p, ξ, θ))

(1− sdj (p, ξ, θ))2
.

By Step 1, sdj (p, ξ, θ) < 1/2. Therefore, ∂Qj/∂pj > 0. Also,

∑
k 6=j

∣∣∣∣∂Qj∂pk
(p)

∣∣∣∣ =
sdj (p, ξ, θ)(1− s0(p, ξ, θ)− sdj (p, ξ, θ))

(1− sdj (p, ξ, θ))2

<
(1− 2sdj (p, ξ, θ))(1− sdj (p, ξ, θ))

(1− sdj (p, ξ, θ))2

<
∂Qj
∂pj

(p),

where we have used in the last inequality sdj (p, ξ, θ) < 1− 2sdj (p, ξ, θ), again by Step 1. Thus,

the Jacobian matrix of Q is diagonally dominant with positive diagonal elements. Hence, it

is a P -matrix (see Example 2.3 in Gale and Nikaido, 1965). By Gale and Nikaido’s Theorem

4, Q is injective on Π. Hence, there is a unique solution to Q(p) = 0, implying that p(ξ, θ) is

well-defined.

Now, letting the dependence in (ξ, θ) explicit in Q, we have Q(p(ξ, θ), ξ, θ) = 0. Moreover,

Q(., ., .) is C1 and the matrix of (i, j) term [∂Qi/∂pj(p, ξ, θ)] is invertible by what precedes.

Hence, by the implicit function theorem, p(., .) is also C1.

Finally, p(ξ, θ) satisfies Equation (13). Therefore, by Assumption 3,

p̃j(ξ, θ) = fj(p
1
j (ξ, θ), ..., p

nD
j (ξ, θ))

= cj + fj

(
1

α1(1− s1
j (p, ξ, θ))

, ...,
1

αnD(1− snD
j (p, ξ, θ))

)

= pdj (ξ, θ)−
1

αd(1− sdj (p, ξ, θ))
+ fj

(
1

α1(1− s1
j (p, ξ, θ))

, ...,
1

αnD(1− snD
j (p, ξ, θ))

)
.

Moreover, ξ(p(ξ, θ), s(ξ, θ), θ) = ξ. Thus, by definition of Ms,θ, p(ξ, θ) is a fixed point of

Ms(ξ,θ),θ.

3. p(ξ, θ0) = p0 is a fixed point of Ms(ξ,θ0),θ0.

First, for all θ0 ∈ Θ0, Equation (13) is the same for all d and admits a unique solution.
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Therefore, pdj (ξ, θ0) does not depend on d. Then, by Assumption 3, we have, for all ξ,

fj

(
1

α1(1− s1
j (p, ξ, θ))

, ...,
1

αnD(1− snD
j (p, ξ, θ))

)
=

1

αd(1−
∑

k∈Jfj
sdk(p, ξ.θ))

.

This implies that pdj (ξ, θ0) = p̃dj . Hence, by definition of p0, p(ξ, θ0) = p0.

4. For all well-chosen θ, ξ, Ms(ξ,θ),θ is a contraction on a neighborhood of p(ξ, θ0).

Let us define

qd,d
′

j,θ (p) =
1

αd′(1− sd′j (p, ξ(p, s(ξ, θ), θ), θ))
− 1

αd(1− sdj (p, ξ(p, s(ξ, θ), θ), θ))
.

By the same argument as in Step 1 of the proof of Theorem 1, it suffices to show that for all

θ in the neighborhood of θ0 ∈ Θ0 and for all j, d, d′, the function qd,d
′

j,θ (.) is a contraction on a

neighborhood of p(ξ, θ0). The result holds if we show that for appropriate θ, p,

∑
`,d′′

∣∣∣∣∣∂q
d,d′

j,θ

∂pd
′′
`

(p)

∣∣∣∣∣ < 1.

We first show the inequality for θ = θ0 and p = p̃. Here, we crucially rely on the fact that for

all j, d, d′,

sdj (p̃, ξ, θ0) = sd
′
j (p̃, ξ, θ0) = sj(ξ, θ0),

where sj(ξ, θ0) is the j-th coordinate of s(ξ, θ0). This implies in particular that for all j, k, d, d′,

∂sdj
∂ξk

(p̃, s(ξ, θ0), θ0) =
∂sd

′
j

∂ξk
(p̃, s(ξ, θ0), θ0).

This also implies that ξ(., s(ξ, θ0), θ0) is symmetric in pdk and pd′k , so that

∂ξj

∂pdk
(p̃, s(ξ, θ0), θ0) =

∂ξj

∂pd
′
k

(p̃, s(ξ, θ0), θ0).

Therefore, all derivative terms related to ξ(p, s(ξ, θ), θ) in ∂qd,d
′

j,θ0
/∂pd

′
` simplify, and we get

∂qd,d
′

j,θ0

∂pd
′
`

(p̃) =
sdj (p̃, ξ, θ0)(1{j = `} − s`(ξ, θ0))

(1− sdj (p̃, ξ, θ0))2
,
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and similarly, ∂qd,d
′

j,θ0
/∂pd

′
` (p̃) = −∂qd,d

′

j,θ0
/∂pd

′
` (p̃). Thus,

∑
`,d′′

∣∣∣∣∣∂q
d,d′

j,θ0

∂pd
′′
`

(p̃)

∣∣∣∣∣ =
2sdj (p̃, ξ, θ0)

(1− sdj (p̃, ξ, θ0))2
[2(1− sdj (p̃, ξ, θ0))− sd0(p̃, ξ, θ0)].

The right-hand side is strictly smaller than 1 if and only if

sdj (p̃, ξ, θ0)(6− 2sd0(p̃, ξ, θ0)− 5sdj (p̃, ξ, θ0)) < 1. (18)

By Step 1, −2sd0(p̃, ξ, θ0) ≤ −4sdj (p̃, ξ, θ0). Moreover, x 7→ x(6 − 9x) reaches its maximum 1

at x = 1/3. Because sdj (p̃, ξ, θ0) < 1/3 by Step 1 again, (18) holds.

Now, given the definition of qd,d
′

j,θ (.), it suffices to show that (p, θ) 7→ ξ(p, s, θ) is C1. The

function (p, ξ, θ) 7→ s(p, ξ, θ) is smooth, s(p, ., θ) is injective (Berry, 1994) and the Jacobian

matrix ∂s/∂ξ(p, ξ, θ) is diagonally dominant and therefore invertible. Thus, by the inverse

function theorem, (p, θ) 7→ ξ(p, s, θ) is C1.

5. There exists Θ1 neighborhood of Θ0 such that for all (ξ, θ) ∈ K × Θ1, (pn)n∈N

converges towards p(ξ, θ).

First, by what precedes, there exists C < 1 and a neighborhood V1 ⊂ Θ of θ0 and r > 0 such

that for all (p, p′) ∈ B(p0, r)
2,

‖Ms(ξ,θ),θ(p)−Ms(ξ,θ),θ(p
′)‖ ≤ C‖p− p′‖. (19)

Second, p(., .) is C1 by Step 2. Moreover, for all ξ ∈ K, p(ξ, θ0) = p0. Hence,

‖p(ξ, θ)− p0‖ = ‖p(ξ, θ)− p(ξ, θ0)‖ ≤
[

max
(ξ′,θ′)∈K×Θ

‖∂p/∂θ(ξ′, θ′)‖
]
‖θ − θ0‖,

and there exists a neighborhood V2 ⊂ Θ of θ0 such that for all (ξ, θ) ∈ K×V2, ‖p(ξ, θ)−p0‖ ≤
r/2.

Then, for all (ξ, θ) ∈ K×V1∩V2, we prove by induction that pn ∈ B(p0, r) and ‖pn−p(ξ, θ)‖ ≤
(r/2)Cn. The result holds for n = 0 by what precedes. Suppose that it holds for n. Then,

because pn ∈ B(p0, r), by Equation (19),

‖pn+1 − p(ξ, θ)‖ = ‖Ms(ξ,θ),θ(pn)−Ms(ξ,θ),θ(p(ξ, θ))‖

≤ C‖pn − p(ξ, θ)‖

≤ (r/2)Cn+1.

Moreover, by the triangular inequality, ‖pn+1 − p0‖ ≤ (r/2)Cn+1 + r/2 ≤ r. Hence, pn+1 ∈
B(p0, r) and the result holds for n+ 1. Therefore, it holds for all n, which shows that (pn)n∈N

converges towards p(ξ, θ).
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