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Abstract

This paper gathers the supplementary material to D’Haultfoeuille et al. (2017). First,

we provide in Section 1 a set of sufficient conditions for the independence at infinity

assumption (Assumption 3) and the admissible rates of convergence of the quantile index

(Assumption 6). We consider in Section 2 two situations not covered by the assumptions in

D’Haultfoeuille et al. (2017), namely measurement errors on the outcome and exogenous

selection, and provide conditions for consistency in such cases. Section 3 outlines the

theoretical arguments underlying the construction of our data-driven method for choosing

the quantile index τn. The proofs of the results in this supplement are collected in Section

4. Finally, Section 5 gathers technical lemmas used in the proofs of the main results in

the paper.

Notation

We use the same notation as in D’Haultfoeuille et al. (2017). We also use some notation

related to extreme value theory. A function F is regularly varying at x ∈ {0,+∞} with index

α ∈ [−∞,+∞], and we write F ∈ RVα(x), if for any t > 0, limu→x F (tu)/F (u) = tα, with

the understanding that t∞ =∞ if t > 1 and = 0 if 1 > t > 0 (and similarly for α = −∞). F

is slowly varying (resp. rapidly varying) at x if F ∈ RV0(x) (resp. F ∈ RV+∞(x)).
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1 Identification and convergence rates: sufficient conditions

Throughout this section, we assume the location-scale model:

Y ∗ = ψ(X) + σ(X)η,

where η ⊥⊥ X. Under this model specification, Assumption 1 implies that σ(·) is a function of

X−1. Assumption 5(ii) holds automatically. In the following, we maintain Assumptions 2, 4,

5(i), and 5(iii). We then verify the key assumption concerning the identification, i.e. Assump-

tion 3, under primitive conditions. We also characterize sequences τn satisfying Assumption

6 under such conditions, thus allowing us to derive rates of convergence of β̂1.

1.1 Independence at infinity

To get a better sense of Assumption 3, we discuss it below in the context of a threshold

crossing selection model described below.1

Assumption 7. (i) D = 1{φ(X) − ν ≥ 0} with (η, ν) ⊥⊥ X, (ii) infx∈Supp(X) Fν(φ(x)) =

v > 0, (iii) Fη and Fν are continuous and strictly increasing and the copula C of (−η, ν) is

differentiable with respect to its first argument.

The first condition defines the selection model as a standard threshold crossing model. Impor-

tantly however, we do not add any instrument in this selection equation. The second condition

ensures that x 7→ P (D = 1|X = x) is bounded below by a positive number. Note that this

condition will typically hold if none of the covariates has a large support, which is precisely the

type of situation we are interested in. In this context, Proposition 1.1 provides a restriction on

C ensuring that Assumption 3 is satisfied. Hereafter, let fC(τ) = supu≤τ,v∈[v,1] |∂1C(u, v)−1|.

Proposition 1.1. Suppose that Assumptions 2 and 7 hold, and

lim
τ→0

fC(τ) = 0. (1.1)

Then Assumption 3 is satisfied.

The key idea is that selection becomes independent of the covariates for large values of the

outcome if selection is endogenous enough, in the sense that (−η, ν) satisfies (1.1). To un-

derstand this condition better, it is useful to consider two extreme cases. In the perfect

dependence case such that ν = −η, then ∂1C(u, v) = 1 for all u < v, so that (1.1) actually

1Our identification strategy is also natural in the context of the generalized Roy model (Heckman & Vytlacil,
2007). We refer the reader to D’Haultfoeuille et al. (2014) for a detailed discussion on this question.
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holds exactly for small values of τ . On the other hand, when ν and −η are independent,

∂1C(u, v) = v, and fC(τ) = 1 − v, which is positive except in the degenerate case where

D = 1 almost surely. In between these two extreme cases, Table 1 provides examples of cop-

ulas that satisfy this constraint. It underlines that Assumption 3 may be satisfied even if the

dependence between −η and ν is very weak. Importantly, it holds for all Gaussian copulas

with positive dependence. It also holds for Archimedean copulas under a restriction on the

behavior of the generator Ψ around 0. This restriction holds for instance for the Clayton

copula, for which Ψ(u) = (u−θ − 1)/θ, provided that θ > 0. The Gumbel family is another

popular Archimedean family of copulas that satisfies the required restriction on Ψ, given a

restriction on the parameter θ.

Restriction
Copula family ensuring (1.1)

Gaussian C(u, v; ρ) ρ > 0

Archimedean C(u, v; Ψ) = Ψ−1(Ψ(u) + Ψ(v)) limu→0 Ψ(u) = +∞,

Ψ is C1 and RVα(0) with α ∈ (0,+∞]

Gumbel Ψ(u; θ) = (− log(u))θ θ > 1

Table 1: Examples of copulas satisfying (1.1).

1.2 Convergence rate

The next theorem concerns about the convergence rate of β̂1.

Proposition 1.2. Suppose that Assumptions 1, 2, 4, 5, and 7 hold. Then there exists τn

satisfying Assumption 6 such that the rates of convergence of β̂1 is polynomial if for some

a > 0, fC(τ) = o(τa) as τ → 0.

We show that if, for some a > 0,

fC(τ) = o(τa), (1.2)

then a polynomial rate of convergence, faster than n(a−α)/(2a+1) for any α ∈ (0, a), is possible.

Table 2 below provides examples of copulas of (ν,−η) satisfying the latter condition (see

Subsection 4.3 for its verification in each case). It is worth noting that for the last two copulas

considered in the table, we actually establish that fC(τ) tends to zero exponentially fast in τ .

In such situations, (1.2) holds for all a, and it is possible to achieve a rate of convergence for

β̂1 that is faster than n1/2−α for any α ∈ (0, 1/2). In other words, an adequate choice of τn

can make the rate of convergence arbitrarily close to the standard parametric root-n rate. In

3



all cases, the general idea is that if the tail dependence between η and ν is strong, which can

be interpreted as a strong form of endogenous selection, then B(.) is small. It follows that a

large τn is admissible, resulting in fast convergence rates.

Restriction
Copula family ensuring (1.2)

Gaussian C(u, v; ρ) ρ > 0

Clayton C(u, v; θ) = max ([u−θ + v−θ − 1]−1/θ, 0) θ > 0

Rotated Gumbel-Barnett C(u, v; θ) = u− u(1− v) exp(−θ log(u) log(1− v)) θ ∈ (0, 1]

C(u, v; θ) = (1 + [(u−1 − 1)θ + (v−1 − 1)θ]1/θ)−1 θ > 1

C(u, v; θ) = (1 + [(u−1/θ − 1)θ + (v−1/θ − 1)θ]1/θ)−θ θ ≥ 1

C(u, v; θ) = θ/ log(exp(θ/u) + exp(θ/v)− exp(θ)) θ > 0

C(u, v; θ) = [log(exp(u−θ) + exp(v−θ)− e)]−1/θ θ > 0

Table 2: Examples of copulas leading to a polynomial rate of convergence.

2 Extensions

We address in this section two potentially important concerns, namely measurement errors

on the outcome variable and exogenous selection.

2.1 Measurement errors on Y ∗

Consider the pure location model:

Y ∗ = X ′1β1 +X ′−1β−1 + ε, ε ⊥⊥ X.

Suppose that Y ∗ is measured with errors by Ỹ = Y ∗ + η, with η independent of (D,X, ε).

Fix ν ∈ (0, 1) and let M and y be such that P (η ≤ M) ≥ 1− ν and P (D = 1|X,Y ∗ = y′) ∈
[h(1− ν), h(1 + ν)] for all y′ ≥ y. Then

P (D = 1|X, Ỹ = y +M) =

∫
P (D = 1|X,Y ∗ = y +M − u)fη(u)du

∈ [h(1− ν)2, h(1 + (1 + 1/h)ν)].

Because ν was arbitrary, this shows that limy→∞ P (D = 1|X, Ỹ = y) = h. Hence, indepen-
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dence at the limit still holds with Ỹ instead of Y ∗. Second,

Q
Ỹ |X(τ |X) = X ′1β1 +X ′−1β−1 +Qε+η(τ).

Thus, the model is the same as the one on Y ∗, except on the intercept. Hence, at least in a

pure location model, our framework is insensitive to classical measurement errors on Y ∗.2

It is also instructive to investigate the effect of measurement errors on the asymptotic variance.

Whether the variance of our estimator is more affected than the variance of a traditional

quantile regression (QR) estimator really depends on the distributions of ε and η. To see this,

consider a simple set-up where D = 1 and Y ∗ = X ′1β1+ε. We abstract from the selection issue

in this example in order to focus on the comparison of the impact of measurement errors on

the variance of extremal QR vs. usual QR estimators. Let us denote by β̂1
1(τ) the estimator

obtained with a QR of order τ of Y ∗ on X1, i.e. when the outcome variable is measured

without error. The second one, denoted by β̂2
1(τ), is obtained with a QR of order τ of Ỹ on

X1. Finally, we define R(τ) as the ratio of the asymptotic standard error of β̂2
1(τ) to that of

β̂1
1(τ). It is easy to show that

R(τ) =
fε(Qε(τ))

fε+η(Qε+η(τ))
.

This result holds for a fixed τ , but a similar statement holds for any intermediate order

sequence τn → 0, with the understanding that in this case, R(τn) is the ratio of the normal-

izing factor of β̂2
1(τn) to that of β̂1

1(τn). Specifically, R(τn) = Nn(β̂2
1(τn))/Nn(β̂1

1(τn)), with

Nn(β̂k1 (τn)) such that (β̂k1 (τn)− β1)/Nn(β̂k1 (τn))
d−→ N (0, 1) for k = 1, 2.

Whether R(τ) increases as we move away from the middle of the distribution, i.e. as |τ −1/2|
increases, depends on the distributions of ε and η. For instance, τ 7→ R(τ) is constant

when both ε and η are drawn from a standard normal distribution. Next, the left panel in

Figure 1 below shows the case where ε follows a standard normal distribution, and η follows a

standard Laplace distribution of density fη(u) = exp(−|u|)/2. In this specific case, the ratio

R(τ) increases at the tails. However, the right panel of Figure 1 shows that the situation is

reversed when ε follows a standard Laplace distribution, while η follows a standard normal

distribution. In this latter case, the effect of the measurement error is large in the middle of

the distribution, but becomes negligible in the tails (i.e. for |1/2− τ | → 1/2).

2In our more general model where Qε|X(τ |X) is linear in X−1, we have, under the same assumptions on
the measurement error, QỸ |X(τ |X) = X ′1β1 + qτ (X−1) for some unknown function qτ (.). This is a partially
linear model. Though probably technically involved, we conjecture that a sieve version of our estimator of β1,
accounting for possible nonlinearities in X−1, would still be consistent and asymptotically normal.
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Figure 1: τ 7→ R(τ) (dark line) for two pairs of distributions on ε and η.

2.2 Exogenous selection

When selection is conditionally exogenous, D ⊥⊥ Y ∗|X, Assumption 2 is violated unless we

also have D ⊥⊥ X. However, under some tail conditions on ε, our estimator can still be

consistent, because Equation (2.2) in the main paper may still be satisfied. To illustrate this,

suppose for simplicity that X = X1 and ε ∼ N (β0, σ
2). Then, for τ small enough, we have

P (−Y ≤ y|X = x) = P (D = 1, X ′β1 + ε ≥ −y|X = x)

= P (D = 1|X = x)P (−ε ≤ y + x′β1).

This implies that

Q−Y |X(τ |x) = −x′1β1 − β0 + σΦ−1(τ/P (D = 1|X = x)).

Now, standard normal quantiles satisfy Φ−1(τ) = −(2 ln(1/τ))1/2 + o(1) as τ → 0. Hence, by

a Taylor expansion, we get

Q−Y |X(τ |x) = −x′1β1 − β0 − σ[2 ln(1/τ) + 2 ln(P (D = 1|X = x))]1/2 + o(1)

= −x′1β1 − β0 − σ[2 ln(1/τ)]1/2 + o(1).

Thus, Equation (2.2) in the main paper still holds, with β0(τ) = −β0 − σ[2 ln(1/τ)]1/2. The

intuition here is that the propensity score P (D = 1|X = x) does not play any role in this

context, because it affects the conditional quantile of −Y |X only through the quantile function
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of the error term, and the latter varies very little in the tail.

We confirm this through simulations, by considering almost the same model as in the simu-

lation section, but with exogenous selection:

Y ∗ = 0.2X1 + 0.4X2 + 0.5X3 + (1− 0.1X2 − 0.5X3)ε,

D = 1
{

0.6 + 0.3X1 + 0.2X2 +X2
3 + η ≥ 0

}
,

(2.1)

where ε and η are two independent standard normal variables. As can be seen in Table 3

below, the performance of our estimator are not far from those of the OLS estimator on

the subsample {i : Di = 1}, though this latter is the maximum likelihood estimator in this

context, and is therefore asymptotically efficient.3

The result above is not specific to the normal distribution. The same reasoning applies with

for instance Weibull distributions W(a, b) satisfying b > 1. We conjecture that it should hold

more generally if E[exp(bmax(0, ε)δ)] < +∞ for some b > 0 and δ > 1. On the other hand,

it does not hold if we only impose E[exp(bmax(0, ε)] < +∞. To see this, suppose again

that X = X1, P (D = 1|X) = exp(α + X ′γ) (with α + X ′γ ≤ 0) and ε follows a Laplace

distribution. Then, for all (x, y) such that y + x′β1 ≤ 0,

P (−Y ≤ y|X = x) = P (D = 1, x′β1 + ε ≥ −y|X = x) =
exp(α+ x′γ)

2
exp(y + x′β1).

Thus, for τ small enough, Q−Y |X(τ |X) = ln(2τ) − α −X ′(β1 + γ), and the coefficient of an

extremal quantile regression identifies β1 + γ instead of β1. However, for more usual selection

equations, the bias may be small in practice. To illustrate this, we ran a set of simulations

based on (2.1), but with ε drawn from a Laplace distribution. It turns out that in such a

case, the estimator actually performs very well in finite samples, even better than the OLS

for the sample size n = 1, 000 that we consider here (see again Table 3).

3To be precise, the OLS estimator is the MLE of the conditional model of Y ∗|D = 1, X, not of the full
model (Y ∗, D)|X.
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Normal errors Laplace errors
Extremal OLS Extremal OLS

Bias 0.070 0 0.060 0
Std. dev. 0.113 0.092 0.068 0.094

RMSE 0.133 0.092 0.091 0.094

Note: Results for β1 = 0.2, n = 1, 000 and using 280 simu-
lations. The true bias of the OLS estimator is equal to 0 in
this setting.

Table 3: Simulation results under exogenous selection (Extremal and OLS estimator of β1)

3 Details on the data-driven τn

We provide in this section a rationale for the construction of the data-driven τn detailed in

Section 2.3. We study for that purpose the asymptotic behavior of β̂1 for sequences τn that

do not satisfy Assumption 6 (iii), but only
√
nτnB(τn) = O(1). We show that in this case,

β̂1 has an asymptotic bias. Then we relate this bias with the asymptotic behavior of the

test statistic TJ(τn), and show how this can be used to select a quantile index for which the

asymptotic bias is small.

First, recall that

µ(τ) =
E
[
(τ − 1{X ′β(τ) ≤ Y })X

]
τ

.

As shown in the proof of Theorem 2.2, µ(τ) is the core component of the bias induced by the

fact that (2.2) in the main paper holds only up to a o(1) term. Note that B(τ) in Assumption 6

is an upper bound of ||µ(τ)||. Then, under Assumption 6(iii),
√
τnnµ(τn)→ 0, which implies

that the asymptotic bias vanishes. In what follows, we derive the asymptotic bias of our

estimator β̂1 as a function of µ(τ) and propose a subsampling method to choose τ such that

this bias is small.

First, by applying the convexity lemma and the same arguments as in the end of the proof of

Theorem 1 in Pollard (1991), we obtain, as in (B.7) in the main paper but more generally, as

long as τn satisfies Assumption 6(i) and (ii) and
√
τnnµ(τn) = O(1),

Ẑn = −Q−1
H

1√
n

n∑
i=1

Mn,i(τn)−Q−1
H

√
τnnµ(τn) + oP (1).

The first term on the right-hand side converges in distribution to N (0,Ω0). But if
√
τnnµ(τn)

is not negligible, the second term induces an asymptotic bias on Ẑ and thus on β̂1.

To detect whether such a bias is large for a given τ , and thus select τ appropriately, we
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consider a very similar minimum distance statistic as the one used in Theorem 2.3. Define

Mn,i(τ) as in the proof of Theorem 2.2 and let Ψ = [Id1 , 0d1×(d−d1)], where 0d1×d−d1 denotes

the zero matrix of size d1 × d− d1. Then define

Z̃n(τ) = −[(1/`1)− 1/`2]−1/2Ω̂−1ΨQ−1
H

n∑
i=1

Mn,i(τ)/
√
n

bn(τ) = −[(1/`1)− 1/`2]−1/2Ω̂−1/2ΨQ−1
H

√
τn
(√

`1µ(`1τ)−
√
`2µ(`2τ)

)
.

Then, reasoning as in the proof of Theorem 2.3, we obtain

[(1/`1)− 1/`2]−1/2Ω̂−1/2(β̂1(`2τ)− β̂1(`1τ)) = Z̃n(τ) + bn(τ).

Hence,

TJ(τ) =
∥∥∥Z̃n(τ) + bn(τ)

∥∥∥2
.

Z̃n(τn) tends to a standard normal multivariate distribution under Assumption 6(i) and (ii).

Thus, if bn(τn)
p−→ b, the test statistic on the left-hand side converges to a non-central chi-

squared distribution, with d1 degrees of freedom and noncentrality parameter ‖b‖2. As a

result, if
√
τnnµ(τn)→ 0, then b = 0 and the median of TJ(τn) is asymptotically the median

Md1 of a χ2(d1). But if
√
τnnµ(τn)→ c 6= 0, the asymptotic bias b will not vanish in general,

and the difference between the median of TJ(τn) and Md1 will generally be asymptotically

different from zero. Following this idea, we estimate the difference between the two medians

and use it as a proxy for the asymptotic bias of β̂1. As indicated in the text, we rely for that

purpose on subsampling.
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4 Proofs of the results in the supplement

4.1 Proof of Proposition 1.1

We verify Assumption 3 with h = 1. By Assumption 7 and because fC(τ) → 0, we have, as

y →∞,

|P (D = 1|X = x, Y ∗ = y)− 1| =
∣∣∣∣P (Fν(ν) ≤ Fν(φ(x))|F−η(−η) = F−η

(
ψ(x)− y
σ(x)

))
− 1

∣∣∣∣
=

∣∣∣∣∂1C

[
F−η

(
ψ(x)− y
σ(x)

)
, Fν(φ(x))

]
− 1

∣∣∣∣
≤ sup
v∈[v,1]

∣∣∣∣∂1C

[
F−η

(
ψ(x)− y
σ(x)

)
, v

]
− 1

∣∣∣∣
−→ 0.

4.2 Proof of Proposition 1.2

Let x = [1, x′]′, we have

B(τ) ≤ sup
x∈Supp(X)

||x|| sup
x∈Supp(X),t≥1−τ

|P (D = 1|X = x, FY ∗|X(Y ∗|x) = t)− 1|

= sup
x∈Supp(X)

||x|| sup
x∈Supp(X),u≤τ

|P (ν ≤ φ(x)|F−η(−η) = u)− 1|

= sup
x∈Supp(X)

||x|| sup
x∈Supp(X),u≤τ

|P (Fν(ν) ≤ Fν(φ(x))|F−η(−η) = u)− 1|

≤ sup
x∈Supp(X)

||x|| fC(τ),

where the second inequality follows from fC(τ) = supu≤τ,v∈[v,1] |∂1C(u, v)− 1|.

Now, since fC(τ) = o(τa) for some a > 0, let τn = n−1/(2a+1). Then τn → 0 and nτn → ∞.

Because B(τ) = o(τa), we also have

√
τnnB(τn) = na/(2a+1)o

(
n−a/(2a+1)

)
= o(1).

Hence, this choice of τn satisfies Assumption 6. Besides, by Lemma 5.2, f−η(Q−η(τn)) ∼
τnL(n) for n large enough and L(·) some slowly varying function. Then the convergence λn

is ,
√
nτnLn = na/(2a+1)L(n).

This ensures that β̂1 has a polynomial rate of convergence. With such a τn, the rate of

convergence of β̂1 is faster than n(a−α)/(2a+1), for any α > 0, which is also polynomial.
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4.3 Verification of (1.1) and (1.2) for several copulas

Case 1: Gaussian copula with ρ > 0. We just check (1.2), which is stronger than (1.1). We

have, after some algebra,

1− ∂1Cρ(u, v)

=1− 1

ϕ(Φ−1(u))

∫ Φ−1(v)

−∞

1

2π
√

1− ρ2
exp(−(Φ−1(u)2 − 2ρΦ−1(u)s+ s2)/[2(1− ρ2)])ds

=1− e−(1−ρ2)Φ−1(u)2/[2(1−ρ2)]

√
2πϕ(Φ−1(u))

∫ Φ−1(v)

−∞

1√
(2π)1− ρ2

exp
(
−(s− ρΦ−1(u))2/[2(1− ρ2)]

)
ds

=Φ

(
ρΦ−1(u)− Φ−1(v)√

1− ρ2

)
.

Thus, because ρ > 0,

sup
v∈[v,1],u≤τ

1− ∂1Cρ(u, v) = Φ

(
ρΦ−1(τ)− Φ−1(v)√

1− ρ2

)
.

Now, as x→ −∞, we have Φ(x) ∼ −ϕ(x)/x. Because for any K > 0, exp(−Kx2) ≤ −1/x ≤ 1

for x small enough, we have ϕ(x/σ) ≤ Φ(x) ≤ ϕ(x) for any 0 < σ < 1. This also implies that

Φ−1(τ) ≤ σϕ−1(τ), for τ small enough and with ϕ−1 the inverse of ϕ on (−∞, 0]. Similarly,

for any m > 0, there exists σ > 1 such that for any x small enough, ϕ(x + m) ≤ ϕ(x/σ).

Combining these inequalities, we obtain, for any K < ρ/
√

1− ρ2,

fC(τ) ≤ ϕ(Kϕ−1(τ)) = K ′ϕ(Φ−1(τ))K
2 ≤
√

2π
K2−1

τK
2
.

The result follows.

Case 2: Archimedean copulas with limu→0 Ψ(u) = +∞ and Ψ ∈ RVα(0) with α ∈ (0,+∞].

Because Ψ is decreasing, we have, by Proposition 0.8 of Resnick (1987), Ψ−1 ∈ RV1/α(∞).

As a result, for all v ∈ [v, 1],

u ≥ C(u, v) ≥ Ψ−1(Ψ(u) + Ψ(v)) ∼ Ψ−1(Ψ(u)) = u as u→ 0.

In other words,

lim
u→0

sup
v∈[v,1]

|C(u, v)/u− 1| = 0.
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This implies that

sup
v∈[v,1]

∣∣∣∣ Ψ′(u)

Ψ′(C(u, v))
− 1

∣∣∣∣ =

∣∣∣∣ Ψ′(u)

Ψ′(l(u)u)
− 1

∣∣∣∣ . (4.1)

for some function l(.) tending to one as u → 0. Now, by Proposition 0.7 of Resnick (1987),

Ψ′ ∈ RVα−1(0). This implies that the left-hand side of (4.1) tends to 0. (1.1) follows by

remarking that ∂1C(u, v) = Ψ′(u)/Ψ′ ◦ C(u, v).

Case 3: Gumbel copulas with θ > 1. Some algebra yields

∂1C(u, v) =
1

1 + Ψ(v; θ)/Ψ(u; θ)

C(u, v) logC(u, v)

u log u
.

Now, by the fact that x log(x) is decreasing when x is close to 0 and C(u, v) ≤ u, we have

C(u, v) logC(u, v) ≥ u log(u), i.e. C(u,v) logC(u,v)
u log u ≤ 1. Because v 7→ C(u, v) is increasing,

C(u, v) logC(u, v) ≤ C(u, v) logC(u, v). Furthermore, 0 ≤ Ψ(v, θ) ≤ Ψ(v, θ). Therefore, we

have

sup
v∈[v,1]

|∂1C(u, v)− 1|

≤ sup
v∈[v,1]

(∣∣∣∣C(u, v) logC(u, v)

u log u
− 1

∣∣∣∣+

∣∣∣∣∂1C(u, v)− C(u, v) logC(u, v)

u log u

∣∣∣∣)
≤ sup
v∈[v,1]

(
1− C(u, v) logC(u, v)

u log u

)
+ sup
v∈[v,1]

(
Ψ(v, θ)

Ψ(v, θ) + Ψ(u, θ)

)
C(u, v) logC(u, v)

u log u

≤(1− C(u, v) logC(u, v)

u log u
) +

Ψ(v, θ)

Ψ(v, θ) + Ψ(u, θ)

Ψ(u, θ) → ∞ as u → 0, so the second term also converges 0. Therefore, to prove (1.1), it

suffices to show that C(u, v) ∼ u. We have, for θ > 1,

C(u, v) = exp

[
−
(

(− log u)θ + (− log v)θ
)1/θ

]

= exp

log u

(
1 +

(
− log v

− log u

)θ)1/θ


= exp

[
log u+

(− log v)θ

θ(− log u)θ−1
+ o

(
1

(− log u)θ−1

)]
∼ u.
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Case 4: Clayton copula with θ > 0. We obtain in this case

1− ∂1C(u, v; θ) ≤ Kuθ
(

1

vθ
− 1

)

Hence, fC(τ) ≤ K ′τ θ, where K ′ = K
(

1
vθ
− 1
)

. (1.2) follows.

Case 5: Rotated Gumbel-Barnett copula with θ ∈ (0, 1]. We have

1− ∂1C(u, v; θ) = (1− v) exp(−θ log(u) log(1− v))(1− θ log(1−P )) ≤ O
(
u−θ log(1−v)

)
(4.2)

It follows that (1.2) holds.

Case 6: C(u, v; θ) = (1 + [(u−1 − 1)θ + (v−1 − 1)θ]1/θ)−1 with θ > 1 . In this case,

1− ∂1C(u, v; θ) = 1−
(

1

u+ [(1− u)θ + uθ(v−1 − 1)θ]1/θ

)2
[

1 +

(
v−1 − 1

u−1 − 1

)θ]1/θ−1

≤ Ku.

(1.2) follows.

Case 7: C(u, v; θ) = (1 + [(u−1/θ − 1)θ + (v−1/θ − 1)θ]1/θ)−θ with θ ≥ 1. We have

∂1C(u, v; θ) = 1−
(
u1/θ + [(1− u1/θ)θ + u(v−1/θ − 1)θ]1/θ

)−θ−1

1 +

(
v−

1
θ − 1

u−
1
θ − 1

)θ1/θ−1

≤ Ku1/θ,

which implies (1.2).

Case 8: C(u, v; θ) = θ/ log(exp(θ/u) + exp(θ/v)− exp(θ)) with θ > 0. We have

1− ∂1C(u, v; θ)

= 1− 1/(1 + log(1 + (exp(θ/v)− exp(θ)) exp(−θ/u)))2 1

1 + (exp(θ/v)− exp(θ)) exp(−θ/u)

≤ K exp(−θ/u).

Thus Condition (1.2) is easily satisfied. In this case, any polynomial rate slower than the

parametric rate is in fact possible.
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Case 9: C(u, v; θ) = [log(exp(u−θ) + exp(v−θ)− e)]−1/θ with θ > 0. Start from

1− ∂1C(u, v; θ) = 1−
[
1 + uθ log

(
1 +

exp(v−θ)− e
exp(u−θ)

)]−1/θ−1
1

1 + exp(v−θ)−e
exp(u−θ)

≤ K1u
θ log

(
1 + [exp(v−θ)− e] exp(−u−θ)

)
+K2 exp(−u−θ)

≤ K exp(−u−θ).

Therefore, Condition (1.2) is easily satisfied and once more, any polynomial rate slower than

parametric rate is possible.

5 Technical lemmas used in the main proofs

Lemma 5.1. For any random variable V such that sup(Supp(V )) = +∞, E exp(bmax(0, V )) <

∞ and V is in the attraction domain of generalized extreme value distributions,

1. SV is rapidly varying at its upper tail;

2. If, in addition, exp(V ) is in the attraction domain of generalized extreme value distri-

butions and FV has a positive derivative on [A,+∞) for some B, Q−V (eτ) − Q−V (τ)

is bounded.

Proof. We first show that V is rapidly varying at its upper tail. Because sup(Supp(V )) =∞,

SV is not in the attraction domain of type III extreme value distributions (see Resnick, 1987,

Proposition 1.13). Suppose SV is not rapidly varying. Then, SV is not either in the attraction

domain of type I extreme value distribution (See Resnick, 1987, Exercise 1.1.9). So SV is in

the attraction domain of type II extreme value distribution, i.e. SV ∈ RV−ξ−1(+∞) with

extreme value index ξ > 0. We also have

Sexp(V )(tx)

Sexp(V )(x)
=
SV (u(x) log(x))

SV (log(x))
(5.1)

where u(x) = log(t)+log(x)
log(x) → 1 as x→ +∞. Because SV ∈ RV−ξ−1(+∞), the right-hand side

of Equation (5.1) converges to 1, for any t. However, Lemma 2.1 of D’Haultfoeuille & Maurel

(2013) shows that, given E exp(bmax(0, V )) <∞ for some b > 0, x 7→ Sexp(V )(tx)/Sexp(V )(x)

does not tend to one unless t = 1. Therefore, we have reached a contradiction, which proves

the first point.

Next, since exp(V ) is in the attraction domain of generalized extreme value distributions, it

can be only regularly varying or rapidly varying. In both cases, for any l′ > 1, there exists a
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constant δ > 0 such that, for all y sufficiently large,

Sexp(V )(y)

Sexp(V )(l′y)
≥ 1 + δ.

Denote l′ = exp(l) and y = exp(z), we have

SV (l + z) = Sexp(V )(l
′y) ≤

Sexp(V )(y)

1 + δ
=
SV (z)

1 + δ
.

This implies, for l > 0,

F−V (−l − z) ≤ F−V (−z)
1 + δ

.

Let −z = Q−V (τ) for τ sufficiently small. Because F−V (−z) = τ since FV has a positive

derivative on [A,+∞),

F−V (−l +Q−V (τ)) ≤ τ

1 + δ
.

Thus,

Q−V (τ)−Q−V (τ/(1 + δ)) ≤ l.

Since V is rapidly varying at its upper tail,
Q−V (τ)−Q−V (τ/(1+δ))
Q−V (eτ)−Q−V (τ) → log(1 + δ), as τ → 0.

Therefore, for τ sufficiently small, 0 < Q−V (eτ)−Q−V (τ) < 2l/(log(1 + δ)).

Lemma 5.2. Suppose that Assumptions 2 and 5 hold. Then, as τ → 0,

Q−U |X(eτ |x)−Q−U |X(τ |x) ∼ H(x−1)(Q−η(eτ)−Q−η(τ)) (5.2)

uniformly in x ∈ Supp(X). Moreover, as τ → 0,

Q′−η(τ) ∼ Q−η(eτ)−Q−η(τ)

τ
. (5.3)

Finally, there exists M ∈ (0,∞) such that for all τ small enough and all x ∈ Supp(X),

f−U |X(Q−U (τ |x−1)|x) ≤Mf−η(Q−η(τ)). (5.4)

Proof. 1. Equivalence (5.2).

We first show that, uniformly in x ∈ Supp(X),

Q−U |X(τ |x)−Q−η(τ)H(x−1)

Q−η(eτ)−Q−η(τ)
→ 0. (5.5)
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Since (2.4) holds uniformly in x, for any sequences zn →∞ and xn → x0, we have

F−η(−zn/H(x−1n))

F−U |X(−zn|xn)
→ 1.

Let −zn = Q−U |X(τn|xn) for some arbitrary sequence τn → 0, then we have

F−η(Q−U |X(τn|xn)/H(x−1n))

τn
→ 1.

In addition, let sn =
Q−U|X(τn|xn)−H(x−1n)Q−η(τn)

H(x−1n)a(τn) and a(τ) = Q−η(eτ)−Q−η(τ), then

F−η(Q−U |X(τn|xn)/H(x−1n))

τn
=
F−η(Q−η(τn) + sna(τn))

τn
→ 1. (5.6)

Next, SU |X is in the attraction domain of type I extreme value distribution. Thus, by Propo-

sition 0.10 in Resnick (1987), SU |X(z|x) is Γ-varying, i.e. for fixed x, there exists an auxiliary

function fx such that as z →∞,

SU |X(z + fx(z)t|x)

SU |X(z|x)
→ et.

In addition, fx(z) is slowly varying in z by Proposition 0.12 of Resnick (1987). So z(1 +

fx(z)t/z)→∞ and
SU |X(z + fx(z)t|x)

Sη(z/H(x−1) + fx(z)t/H(x−1))
→ 1.

We also have SU |X(z|x)/Sη(z/H(x−1))→ 1. So

Sη(z/H(x−1) + fx(z)t/H(x−1))

Sη(z/H(x−1))
→ et.

Let z′ = z/H(x−1) and f ′(z′) = fx(H(x−1)z′)/H(x−1), then we have

Sη(z
′ +R′(z′)t)

Sη(z′)
→ et,

i.e. Sη is Γ-varying. By Proposition 0.10 in Resnick (1987) again, it means that Sη is in the

attraction domain of type I extreme value distribution and thus Q−η is Π-varying, i.e.

Q−η(tτ)−Q−η(τ)

Q−η(eτ)−Q−η(τ)
→ log(t) (5.7)

as τ → 0, locally uniformly in t. Invert both sides, by Proposition 0.1 in Resnick (1987) and
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the fact that F−η(Q−η(τ) + sa(τ)) is monotone increasing in s, we have

F−η(Q−η(τ) + sa(τ))

τ
→ es

locally uniformly in s. This and (5.6) imply that any convergent subsequence of sn has limit

zero, which means sn → 0. Last, since H(x−1) is bounded away from zero uniformly in

x ∈ Supp(X), we have

Q−U |X(τn|xn)−H(x−1n)Q−η(τn)

a(τn)
→ 0.

Since xn and τn are arbitrary, we have, as τ → 0,

Q−U |X(τ |x)−H(x−1)Q−η(τ)

a(τ)
→ 0

uniformly in x ∈ Supp(X).

Given (5.5), (5.2) holds uniformly in x ∈ Supp(X) because

Q−U |X(eτ |x)−Q−U |X(τ |x)

Q−η(eτ)−Q−η(τ)

=
Q−U |X(eτ |x)−Q−η(eτ)H(x−1)

Q−η(eτ)−Q−η(τ)
+H(x−1) +

H(x−1)Q−U |X(τ)−Q−η(τ |x)

Q−η(eτ)−Q−η(τ)

→ H(x−1).

2. Equivalence (5.3).

Because τ 7→ −Q−η(τ) is Π-varying with auxiliary function τ 7→ Q−η(eτ)−Q−η(τ), we have

Q−η(bτ)−Q−η(aτ)

Q−η(eτ)−Q−η(τ)
→ log(b)− log(a). (5.8)

By monotonicity of Q′−η,

Q′−η(bτ)τ(b− a)

Q−η(eτ)−Q−η(τ)
≥ Q−η(bτ)−Q−η(aτ)

Q−η(eτ)−Q−η(τ)
≥

Q′−η(aτ)τ(b− a)

Q−η(eτ)−Q−η(τ)
,

for any b > a > 0. Therefore, using (5.8),

lim sup
τ→0

Q′−η(aτ)τ

Q−η(eτ)−Q−η(τ)
≤ log(b)− log(a)

b− a
.

17



Letting b ↓ a, we obtain

lim sup
τ→0

Q′−η(aτ)τ

Q−η(eτ)−Q−η(τ)
≤ 1

a
,

for any a > 0. Similarly, we obtain from the other inequality

lim inf
τ→0

Q′−η(bτ)τ

Q−η(eτ)−Q−η(τ)
≥ 1

b
,

for any b > 0. By letting a = b = 1, we finally obtain (5.3).

3. Inequality (5.4)

From the previous proof, we have, for b > a > 0,

Q′−U |X(bτ |x)τ(b− a) ≥ Q−U |X(bτ |x)−Q−U |X(aτ |x)

and

Q′−η(aτ)τ(b− a) ≤ Q−η(bτ)−Q−η(aτ).

In addition, by the uniform equivalence in (5.2), there exists M independent of x and some

τ0 small enough, such that when τ ≤ τ0,

Q−U |X(bτ |x)−Q−U |X(aτ |x) ≥ 1

M

(
Q−η(bτ)−Q−η(aτ)

)
.

Therefore, for τ ≤ τ0 and any b > a > 0,

f−U |X(Q−U |X(bτ |x)|x) ≤Mf−η(Q−η(aτ)).

Let a = 1 and b ↓ 1, we finally obtain Inequality (5.4).

Lemma 5.3. Suppose that Assumptions 2–5 hold and let Ŭ = Y −X1β1 −X ′−1β−1,r. Then,

for all x ∈ Supp(X),

lim
τ→0

∣∣∣∣∣Q−Ŭ |X(τ |x)−Q−U |X(τ/h|x)

Q−U |X(eτ |x)−Q−U |X(τ |x)

∣∣∣∣∣ = 0, (5.9)

f−Ŭ |X

(
Q−Ŭ |X(τ |x)

)
∼ hf−η(Q−η(τ/h))/H(x−1). (5.10)

Proof. For the first point, fix ∆ ∈ (0, h) and remark first that by (5.8),

lim
τ→0

Q−η(lτ)−Q−η(τ)

Q−η(eτ)−Q−η(τ)
= log(l)
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for all l > 0. Then

Q−η(τ/(h−∆))−Q−η(τ/(h+ ∆))

Q−η(eτ)−Q−η(τ)

=
Q−η(τ/(h−∆))−Q−η(τ/(h+ ∆))

Q−η(eτ)−Q−η(τ)

/Q−η(eτ)−Q−η(τ)

Q−η(eτ)−Q−η(τ)

→ log(
h+ ∆

h−∆
).

Besides, by definition of the quantiles of −Ŭ |X = x, we have, for all τ small enough,

τ ≤ P (−Ŭ ≤ Q−Ŭ |X(τ |x)|X = x)

= P (Y ≥ x1β1 + x′−1β−1,r +QŬ |X(1− τ |x)|X = x)

= P (Y ∗ ≥ x1β1 + x′−1β−1,r +QŬ |X(1− τ |x), D = 1|X = x)

=

∫ ∞
x1β1+x′−1β−1,r+QŬ|X(1−τ |x)

P (D = 1|Y ∗ = y,X = x)dP Y
∗|X=x(y).

For τ small enough, P (D = 1|Y ∗ = y,X = x) ∈ [h−∆, h+ ∆] for all y > x1β1 + x′−1β−1,r +

QŬ |X(1− τ |x). Thus,

τ ≤ (h+ ∆)P
[
−U ≤ Q−Ŭ |X(τ |x)

]
.

Similarly, using τ ≥ P (−Ŭ < −QŬ |X(τ |x)|X = x),

τ ≥ (h−∆)P
[
−U ≤ Q−Ŭ |X(τ |x)

]
.

Then, by definition of the quantiles of −U ,

Q−U |X(τ/(h+ ∆)|x) ≤ Q−Ŭ |X(τ |x) ≤ Q−U |X(τ/(h−∆)|x).

This implies

lim sup
τ

∣∣∣∣∣Q−Ŭ |X(τ |x)−Q−U |X(τ/h|x)

Q−U |X(eτ |x)−Q−U |X(τ |x)

∣∣∣∣∣
≤ lim sup

τ

max
(
Q−U |X(τ/(h−∆)|x)−Q−U |X(τ/h|x), Q−U |X(τ/h|x)−Q−U |X(τ/(h+ ∆)|x)

)
Q−U |X(eτ |x)−Q−U |X(τ |x)

≤ lim sup
τ

Q−U |X(τ/(h−∆)|x)−Q−U |X(τ/(h+ ∆)|x)

Q−U |X(eτ |x)−Q−U |X(τ |x)
. (5.11)
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By (5.2),

Q−U |X(τ/(h−∆)|x)−Q−U |X(τ/(h+ ∆)|x) ∼ H(x−1)

(
Q−η(τ/(h−∆))−Q−η(τ/(h+ ∆))

)
and

Q−U |X(eτ |x)−Q−U |X(τ |x) ∼ H(x−1)

(
Q−η(eτ)−Q−η(τ)

)
.

So following (5.11), we have

lim sup
τ

∣∣∣∣∣Q−Ŭ |X(τ |x)−Q−U |X(τ/h|x)

Q−U |X(eτ |x)−Q−U |X(τ |x)

∣∣∣∣∣
≤ lim sup

τ

Q−U |X(τ/(h−∆)|x)−Q−U |X(τ/(h+ ∆)|x)

H(x−1)

(
Q−η(τ/(h−∆))−Q−η(τ/(h+ ∆))

) × Q−η(τ/(h−∆))−Q−η(τ/(h+ ∆))

Q−η(eτ)−Q−η(τ)

×
H(x−1)

(
Q−η(eτ)−Q−η(τ)

)
Q−U |X(eτ |x)−Q−U |X(τ |x)

= log(h+ ∆)− log(h−∆).

By letting ∆ tend to 0, the left-hand side tends to zero. The first result follows.

Now let us turn to the last result. We first show that for any fixed x, Q−Ŭ |X(τ |x) is Π−varying.

We have

Q−Ŭ |X(eτ |x)−Q−Ŭ |X(τ |x)

Q−η(eτ)−Q−η(τ)

=
Q−Ŭ |X(eτ |x)−Q−U |X(eτ/h|x)

Q−η(eτ)−Q−η(τ)
−
Q−Ŭ |X(τ |x)−Q−U |X(τ/h|x)

Q−η(eτ)−Q−η(τ)

+
Q−U |X(eτ/h|x)−Q−U |X(τ/h|x)

Q−η(eτ)−Q−η(τ)

By the first result of this lemma, the first and second term converge to zero. By (5.2),

Q−U |X(eτ/h|x)−Q−U |X(τ/h|x)

Q−η(eτ)−Q−η(τ)
∼H(x−1)

Q−η(eτ/h)−Q−η(τ/h)

Q−η(eτ)−Q−η(τ)
∼ H(x−1).

Therefore
Q−Ŭ |X(eτ |x)−Q−Ŭ |X(τ |x)

Q−η(eτ)−Q−η(τ)
∼ H(x−1).
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Then

Q−Ŭ |X(lτ |x)−Q−Ŭ |X(τ |x)

Q−Ŭ |X(eτ |x)−Q−Ŭ |X(τ |x)

=
Q−Ŭ |X(lτ |x)−Q−Ŭ |X(τ |x)

Q−η(lτ)−Q−η(τ)
× Q−η(eτ)−Q−η(τ)

Q−Ŭ |X(eτ |x)−Q−Ŭ |X(τ |x)
× Q−η(lτ)−Q−η(τ)

Q−η(eτ)−Q−η(τ)

→ ln(l),

which proves that Q−Ŭ |X(.|x) is Π−varying. Now, remark that for y small enough,

P (−Ŭ ≤ y|X = x) = P (−Y + x1β1 + x′−1β−1,r ≤ y|X = x)

= P (Y ∗ ≥ −y + x1β1 + x′−1β−1,r, D = 1|X = x)

= P (−U ≤ y|D = 1, X = x)P (D = 1|X = x).

Therefore, f−Ŭ |X(y|X = x) = f−U |X,D=1(y|x)P (D = 1|X = x). This equality, combined with

Assumption 5(iii) and the fact that X is bounded, ensures that the pdf of −Ŭ |X is monotone

increasing at the lower tail. As a result, Q′−Ŭ |X(.|x) is decreasing at the lower tail and we

have, by the same reasoning as in Lemma 5.2,

Q−Ŭ |X(τ |x)′ ∼
(Q−Ŭ |X(eτ |x)−Q−Ŭ |X(τ |x))

τ
. (5.12)

Combining Equations (5.3) and (5.12), we obtain

f−Ŭ |X

(
Q−Ŭ |X(τ |x)

)
f−η(Q−η(τ/h))

=
Q−η(τ/h)′

Q−Ŭ |X(τ |x)′
∼ h(Q−η(eτ)−Q−η(τ))

Q−Ŭ |X(eτ |x)−Q−Ŭ |X(τ |x)
∼ h

H(x−1)
.

This proves the second result of the lemma.

Lemma 5.4. Suppose that Assumptions 1–6 hold and let Λn(z, τ) be defined as in (B.1).

Then

Λn(z, τn)
p−→ 1

2
z′QHz.

The same result holds for its bootstrap counterpart Λ∗n(z, τn).

Proof. By Lemma 9.6 in Chernozhukov (2005), the variance of Λn(z, τ) converges to 0. Thus
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it suffices to prove that E[Λn(z, τn)]→ 1
2z
′QHz. Let us define, for any (s, t) ∈ R2,

m(s, t) =


1 if 0 < s ≤ t,
−1 if t ≤ s < 0,

0 otherwise.

We have

E [Λn(z, τn)]

=
λn√
τnn

nE

[∫ (z1+X′z2)/λn

0
1{−Ŭ −Q−U |X(τn/h|X) ≤ s} − 1{−Ŭ −Q−U |X(τn/h|X) ≤ 0}ds

]

=
n
√
τnn

E

[∫ z1+X′z2

0
1{−Ŭ −Q−U |X(τn/h|X) ≤ s/λn} − 1{−Ŭ −Q−U |X(τn/h|X) ≤ 0}ds

]

= nE

[∫ z1+X′z2

0

F−Ŭ |X(−Q−U |X(τn/h|X) + s/λn)− F−Ŭ |X(−Q−U |X(τn/h|X))
√
τnn

ds

]

= E

[∫ +∞

−∞
m(s, z1 +X ′z2)s

nf−Ŭ |X
[
−Q−U |X(τn/h|X) + Vs

]
λn
√
τnn

ds

]
, (5.13)

where for each s, Vs is a random variable satisfying Vs ∈ [0, s/λn]. Let

Un(s) = m(s, z1 +X ′z2)s
nf−Ŭ |X

[
−Q−U |X(τn/h|X) + Vs

]
λn
√
τnn

.

We first show that

Un(s)
p−→ m(s, z1 +X ′z2)s

H(X−1)
. (5.14)

By Lemma 5.2 and 5.3,

1/λn =

√
τnQ

′
−η(τn/h)
√
nh

∼Q−η(eτn)−Q−η(τn)
√
nτn

∼
Q−U |X(eτn|X)−Q−U |X(τn|X)

H(X−1)
√
nτn

.

Thus Vs = oP (Q−U |X(eτn|X)−Q−U |X(τn|X)). Moreover, by Lemma 5.3,

Q−U |X(τn/h|X)−Q−Ŭ |X(τn|X) = oP (Q−U |X(eτn|X)−Q−U |X(τn|X)).
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Then, following the same argument as Chernozhukov (2005) after his Equation (9.57),

f−Ŭ |X
[
Q−U |X(τn/h|X) + Vs

]
f−Ŭ |X

(
Q−Ŭ |X(τn|x)

)
=

f−Ŭ |X

[
Q−Ŭ |X(τn|X) + (Q−U |X(τn/h|X)−Q−Ŭ |X(τn|X)) + Vs

]
f−Ŭ |X

(
Q−Ŭ |X(τn|x)

)
p−→ 1. (5.15)

Besides, by Lemma 5.3,

f−Ŭ |X

(
Q−Ŭ |X(τn|X)

)
∼ hf−η(Q−η(τn/h))/H(X−1) =

λn
H(X−1)

√
τn
n
. (5.16)

This implies that (5.14) holds.

Next, we prove that for n sufficiently large,

|Un(s)| ≤ U(s), with E

(∫ ∞
−∞

U(s)ds

)
<∞. (5.17)

We bound |Un(s)| for |s| ≤ |z1 +X ′z2|, since m(s, z1 +X ′z2) = 0 otherwise.

First, because X is bounded and λn → ∞, supx∈Supp(X)
|z1+X′z2|

λn
→ 0. Thus, for any |s| ≤

|z1 +X ′z2|, and n sufficiently large,

P

(
Y ∈

(
γ(1− τn/h) +X ′β(1− τn/h), γ(1− τn/h) +X ′β(1− τn/h) + s/λn

]
, D = 0

)
≤ P

(
0 ∈

(
γ(1− τn/h) +X ′β(1− τn/h), γ(1− τn/h) +X ′β(1− τn/h) + s/λn

])
≤ 1

{
sup

x∈Supp(X)
P (Y ∗ ≤ |s|/λn|X = x) ≥ 1− τn/h

}
= 0.

Hence, by definition of Y and Y ∗,{
Y ∈

(
γ(1− τn/h) +X ′β(1− τn/h), γ(1− τn/h) +X ′β(1− τn/h) + s/λn

]}
=

{
Y ∗ ∈

(
γ(1− τn/h) +X ′β(1− τn/h), γ(1− τn/h) +X ′β(1− τn/h) + s/λn

]
, D = 1

}
⊂

{
Y ∗ ∈

(
γ(1− τn/h) +X ′β(1− τn/h), γ(1− τn/h) +X ′β(1− τn/h) + s/λn

]}
.
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Taking conditional expectations, this implies that for any |s| ≤ |z1 +X ′z2| and n sufficiently

large,

|s|
λn
f−Ŭ |X

[
Q−U |X(τn/h) + Vs|x

]
≤

∣∣∣∣F−U |X (Q−U |X(τn/h|x) +
s

λn
|x
)
− F−U

(
Q−U |X(τn/h|x)|x

)∣∣∣∣ .
By the mean value theorem,∣∣∣∣F−U |X (Q−U |X(τn/h|x) +

s

λn
|x
)
− F−U

(
Q−U |X(τn/h|x)|x

)∣∣∣∣
=
|s|
λn
f−U |X

(
Q−U |X(τn/h|x) + V ′s |x

)
, (5.18)

where V ′s ∈ [0, s/λn]. Because s is bounded for all |s| ≤ |z1 + x′z2| and all x ∈ Supp(X),

|V ′s | ≤ K/λn. Now, by Lemma 5.2, there exists a constant c1 > 0 independent of x, such that

for n sufficiently large,

Q′−η(τn/h) ≤ c1h

τn

(
Q−η(eτn/h)−Q−η(τn/h)

)
.

By (5.2), for n sufficiently large, there exists a constant M ′ independent of n and x such that

Q−U |X(eτn/h|x)−Q−U |X(τn/h|x) ≥M ′
(
Q−η(eτn/h)−Q−η(τ/h)

)
.

Combining the above two inequalities, we have, for any x ∈ Supp(X),

λn
[
Q−U |X(eτn/h|x)−Q−U |X(τn/h|x)

]
=

√
nhQ−U |X(eτn/h|x)−Q−U |X(τn/h|x)

√
τnQ′−η(τn/h)

≥
√
nτn

Q−U |X(eτn/h|x)−Q−U |X(τn/h|x)

c1

(
Q−η(eτn/h)−Q−η(τn/h)

)
≥

M ′
√
nτn

c1

→ ∞.

Hence, for n sufficiently large,

Q−U |X(eτn/h|X) ≥ Q−U |X(τn/h|X) +
K

λn
≥ Q−U |X(τn/h|X) + V ′s .
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Plugging this inequality in (5.18) and using the monotonicity of f−U |X , we obtain

f−Ŭ |X
[
Q−U |X(τn/h|X) + Vs|X

]
≤ f−U |X

(
Q−U |X(eτn/h|X)|X

)
.

Then by (5.4) in Lemma 5.2, we get

|Un(s)| ≤ |s|M1{|s| ≤ |z1 +X ′z2|}
nf−η (Q−η(eτn/h))

λn
√
τnn

.

Finally, by Lemma 5.2 and (5.8),

nf−η (Q−η(eτn/h))

λn
√
τnn

=
f−η (Q−η(eτn/h))

hf−η (Q−η(τn/h))

∼ Q−η(eτn/h)−Q−η(τn/h)

h[Q−η(e2τn/h)−Q−η(eτn/h)]

→ 1

h
.

Since the left-hand side admits a limit, it is bounded by a constant K > 0. Hence, we finally

have, for n sufficiently large, |Un(s)| ≤ U(s) with

U(s) = KM |s|1{|s| ≤ |z1 +X ′z2|}

which satisfies (5.17). Then, by Fubini’s theorem, E
(∫ +∞
−∞ Un(s)ds

)
=
∫ +∞
−∞ E (Un(s)) ds.

Second, since E(U(s)) < +∞, the sequence (Un(s))n is asymptotically uniformly integrable.

Together with (5.14), this implies, by Theorem 2.20 in van der Vaart (2000), that E(Un(s))→
E[m(s, z1 +X ′z2)s/H(X−1)]. As a result,

E [Λn(z, τn)]→ E

[
1

H(X−1)

∫ z1+X′z2

0
sds

]
=

1

2
z′QHz.

Finally, we turn to the bootstrap counterpart Λ∗n(z, τ) of Λn(z, τ), which satisfies, for all

z = (z1, z
′
2)′ ∈ R× Rd,

Λ∗n(z, τ) =
λn√
τn

n∑
i=1

wn,i

∫ (z1+X′iz2)/λn

0

[
1{−Yi + γ(1− τ/h) +X ′iβ(1− τ/h) ≤ s}

− 1{−Yi + γ(1− τ/h) +X ′iβ(1− τ/h) ≤ 0}
]
ds.
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First,

E [Λ∗n(z, τ)] = E [E(Λ∗n(z, τ)|{wn,i}ni=1)]

= E

{ n∑
i=1

wn,iE

[
λn√
τn

∫ (z1+X′iz2)/λn

0

[
1{γ(1− τ/h) +X ′iβ(1− τ/h) ≤ s+ Yi}

−1{γ(1− τ/h) +X ′iβ(1− τ/h) ≤ Yi}
]
ds

]}
=

1

n
E

{
n∑
i=1

wn,iE [Λn(z, τ)]

}
= E [Λn(z, τ)]

→ 1

2
zQ′Hz.

Next, we show that V (Λ∗n(z, τ))→ 0. To see this, we note that by variance decomposition,

V (Λ∗n(z, τ)) = E [V (Λ∗n(z, τ)|{wn,i}ni=1)] + V [E (Λ∗n(z, τ)|{wn,i}ni=1)]

= E

[ n∑
i=1

w2
n,i

λ2
n

τn
V

(∫ (z1+X′iz2)/λn

0

[
1{γ(1− τ/h) +X ′iβ(1− τ/h) ≤ s+ Yi}

−1{γ(1− τ/h) +X ′iβ(1− τ/h) ≤ Yi}
]
ds

)]
+ V

[
1

n

n∑
i=1

wn,iE (Λn(z, τ))

]

= (1− 1

n
)V (Λn(z, τ)) + 0

→ 0.

26



References

Chernozhukov, V. 2005. Extremal Quantile Regression. The Annals of Statistics, 33(2), pp.

806–839.

D’Haultfoeuille, X., & Maurel, A. 2013. Another Look at the Identification at Infinity of

Sample Selection Models. Econometric Theory, 29(1), 213–224.

D’Haultfoeuille, X., Maurel, A., & Zhang, Y. 2014. Extremal Quantile Regressions for Selec-

tion Models and the Black-White Wage Gap. NBER Working Paper No. 20257.

D’Haultfoeuille, X., Maurel, A., & Zhang, Y. 2017. Extremal Quantile Regressions for Selec-

tion Models and the Black-White Wage Gap. Working Paper.

Heckman, J.J., & Vytlacil, E.J. 2007. Econometric evaluation of social programs, Part II. In:

Heckman, J.J., & Leamer, E.E. (eds), Handbook of Econometrics, vol. 6B. Elsevier.

Pollard, D. 1991. Asymptotics for Least Absolute Deviation Regression Estimators. Econo-

metric Theory, 7(2), pp. 186–199.

Resnick, S. 1987. Extreme values, regular variation, and point processes. New York: Springer-

Verlag.

van der Vaart, A. W. 2000. Asymptotic Statistics. Cambridge Series in Statistical and Prob-

abilistic Mathematics.

27


	Identification and convergence rates: sufficient conditions
	Independence at infinity
	Convergence rate

	Extensions
	Measurement errors on Y*
	Exogenous selection

	Details on the data-driven n
	Proofs of the results in the supplement
	Proof of Proposition 1.1
	Proof of Proposition 1.2
	Verification of (1.1) and (1.2) for several copulas

	Technical lemmas used in the main proofs

