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Abstract

The notion of completeness between two random elements has been considered

recently to provide identification in nonparametric instrumental problems. This con-

dition is quite abstract, however, and characterizations have been obtained only in

special cases. This paper considers a nonparametric model between the two vari-

ables with an additive separability and a large support condition. In this framework,

different versions of completeness are obtained, depending on which regularity condi-

tions are imposed. This result enables to establish identification in an instrumental

nonparametric regression with limited endogenous regressor, a case where the control

variate approach breaks down.
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1 Introduction

Let X and Z denote two random elements. X will be said to be complete for Z if, for all

measurable real functions h such that E[|h(X)|] < +∞,(
E[h(X)|Z] = 0 a.s.

)
=⇒

(
h(X) = 0 a.s.

)
. (1.1)

X will be bounded complete (resp. P-complete) for Z if the same holds for any bounded h

(resp. for any h bounded by a polynomial).1 Completeness is equivalent to the injectivity

of the conditional expectation operator. Thus, not surprisingly, it has appeared to be a

key identifying condition in nonparametric instrumental problems. Applications include

nonparametric instrumental regression under additive separability (see Newey and Powell,

2003, Darolles et al., 2002 and Blundell et al., 2007),2 local instrumental variables (see

Florens et al., 2003) and nonclassical measurement error problems (see Chen and Hu, 2006

and Hu and Schennach, 2008).3

This dependence condition is quite abstract though, and a characterization or at least

sufficient conditions on the joint distribution of (X,Z) are desirable. Newey and Powell

(2003) address the finite support and exponential families cases, but results are still lacking

to properly define completeness in terms of dependence between the two variables. The

aim of this paper is to go one step in this direction by considering a nonparametric model

on (X,Z) for which an additive separability and a large support condition hold. Building

on the results of Mattner (1992, 1993) on the completeness of location families, I show

that different versions of completeness can be obtained, depending on which regularity

conditions are imposed on the error term. Bounded and P-completeness only require
1This terminology is in analogy with the notion of complete statistic (see e. g. Lehmann and Scheffé,

1947). Recall that a statistic T is said to be complete (resp. bounded complete) for a statistical model
(Pθ)θ∈Θ if for all h (resp. all bounded h), Eθ[h(T )] = 0 for all θ ∈ Θ implies that h(T ) = 0 a.s. Thus, Z
plays the role of θ in equation (1.1). Note also that (1.1) is sometimes referred to as a strong identification
condition (see e. g. Florens et al., 1990).

2Chernozhukov and Hansen (2005) also rely on a condition which is close to bounded completeness(see
their assumption L∗

1) for the identification of quantile treatment effects with instrumental variables.
3Indeed, assumption 2.4 of Chen and Hu (2006) and assumption 2 of Hu and Schennach (2008) are

equivalent, under technical conditions, to a completeness condition.
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mild assumptions, whereas completeness is restrictive. This contrast between the different

kinds of completeness is in line with previous results of the statistical literature (see e.g.

Hoeffding, 1977, Lehmann, 1986, and Mattner, 1993) and has also been acknowledged by

Chernozhukov and Hansen (2005) and Blundell et al. (2007).

Implications for the nonparametric instrumental regressions are also examined. Recent

analyses of such models (see e.g. Imbens and Newey, 2006 and Florens et al., 2007) have

relied on a control variate approach rather than on a completeness assumption. Conditions

for identification are indeed easier to obtain, and the additivity structure of the model

can be relaxed. On the other hand, a strict monotonicity assumption is required, which

rules out usual models with limited endogenous regressors. The previous result enables to

prove the identification of the structural function in a triangular system of simultaneous

equations under, roughly, an additive decomposition and a large support condition on

the instrumental equation, but without any strict monotonicity condition. This shows

that actually, the completeness approach may be more fruitful than the control variate

one in some circumstances. Since different versions of completeness provides different

identification results, there also appears to be a trade-off in the identification of such

models between the regularity condition imposed on the error term of the instrumental

equation and the hypothesis on the structural function.

The paper is organized as follows. The main results are given in section two. Section

three examines the consequence of these results on the identification of nonparametric

instrumental regression. Section four concludes, and the proofs are deferred to section five.

2 Main results

In the sequel, X and Z belong to Rp and Rq respectively, with p ≤ q. X and Z may

share elements in common, and we let W denote these common elements, W ∈ Rr. For

instance, in an instrumental nonparametric regression (see e.g. Newey and Powell, 2003),

W corresponds to the exogenous components of X. The remaining elements of X and Z are
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called respectively X0 and Z0, so that X = (X0,W ) and Z = (Z0,W ). In this framework,

we will say that X is complete (resp. bounded, P -complete) for Z if (1.1) holds for all h

such that, for PW− almost all w, h(., w) is integrable with respect to PX0 (resp. bounded,

bounded by a polynomial). In the sequel, we suppose that there exists maps µ1 and ν1,

from respectively Rp−r and Rq to Rp−r, such that

X0 = µ1(ν1(Z) + ε1), (2.1)

and we consider the following assumptions.

A1. Z0 ⊥⊥ ε1 |W .

A2. For PW -almost all w, the measure of ν1(Z0, w) is continuous with respect to the

Lebesgue measure and its support is Rp−r.

A3. For PW -almost all w, ε1 admits a continuous density fε1|W (., w).

Assumption A1 is a conditional independence hypothesis. Because mean-independence

can always be achieved by a proper normalization,4 A1 actually strengthens this mean-

independence into independence. Note that if µ1 is known, this assumption is testable in

the data in general.

A2 is a continuity and large support condition. It may hold as soon as Z has one continu-

ous component. The large support condition is restrictive but widespread in the literature

(see e.g. Manski, 1988, or Lewbel, 2000). Moreover, only ν1(Z), not necessarily Z, should

satisfy this condition. This means that p − r regressors with large support may be suffi-

cient. This assumption, however, may be too strong, and we consider below alternative

assumptions (see proposition 2.3). Lastly, A3 restricts the analysis to the case of a con-

tinuous residual. The continuity condition on its density is satisfied by all usual densities

with infinite support.5

Despite the apparently strong assumption of an additive decomposition into independent

terms, the function µ1 in (2.1) enables to encompass many nonlinear models, beyond the
4Indeed, if we let ν̃1(Z) = ν1(Z) + E(ε1|Z) and ε̃1 = ε1 − E(ε1|Z) , then E(ε̃1|Z0,W ) = 0 = E(ε̃1|W ).
5It fails for the uniform density but this case is ruled out anyway by assumption A4 below.
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nonparametric additive models with independent errors (for which µ1(x) = x). Usual

ordered choice models correspond to µ1(x) =
∑K

k=1 k1]αk−1;αk](x) (where 1A(x) = 1 if

x ∈ A, 0 otherwise) for some given thresholds α0 = −∞ < α1 < ... < αK = +∞.6 Count

data models can also be handled by taking µ1(x) = [exp(x)] (where [a] denotes the integer

part of a). Simple tobit models correspond to µ1(x) = max(0, x). These three examples

underline the fact that X may not be strictly monotonous in ε1. Lastly, duration models

like the accelerated failure time model or the proportional hazard model also fit in this

framework. The first corresponds to µ1(x) = exp(x), while in the second, µ1 is an unknown

increasing function and −ε1 is distributed according to a Gompertz distribution.

To achieve completeness, further restrictions are required.

A4. PW−almost surely, the conditional characteristic function ψε1|W (., w) of ε1 is infinitely

often differentiable in Rp\A(w) for some finite set A(w) and does not vanish on the

real line.

A5. All the moments of ||ε1|| are finite and there exists B and j such that ||µ1(t)|| ≤ B||t||j

(where ||.|| is the euclidian norm).

A6. ε1 is gaussian or satisfies, PW -almost surely on w and for all x, y ∈ Rp−r, there exists

C(.) and k(.) such that

fε1|W (x+ y, w) ≤ C(w)(1 + ||x||2)k(w)fε1|W (y, w).

Zero-freeness of the characteristic function is a usual assumption in deconvolution problems

(see e.g. Devroye, 1989, Fan and Truong, 1993, Li and Vuong, 1998, Schennach, 2004 and

2007) and is satisfied, among others, by gaussian, Student, Laplace and α−stable distrib-

utions. The only common continuous distributions that fail to satisfy it are the uniform
6Binary choice models are obviously included. Note however that for binary variables X0, model (2.1) is

unnecessary since completeness is simply equivalent to non independence between X0 and Z0, conditional
on W . When X0 takes more than two values, it can be shown that the completeness condition is equivalent
to the positivity of a variance matrix (see Das, 2005, theorem 2.1). However, it is not obvious to check
this condition for a given theoretical model.
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and triangular ones. All standard characteristic functions also satisfy the differentiability

condition.

Assumption A5 rules out thick tails on the density of ε1 and restricts the range of nonlinear

models between X0 and Z. It fails for instance with the previous examples of count data

and accelerated failure time models, but holds for all the others aforementioned cases. A

similar polynomial growth condition is imposed by Schennach (2007) to identify a nonlinear

errors-in-variables model with instruments (on this issue, see also Zinde-Walsh, 2007).

Lastly, assumption A6 is rather restrictive. It imposes in particular that fε1|W (., w) is

either gaussian or has heavy tails.7 The condition holds for instance for Student and α−

stable distributions (see Mattner, 1992).

Theorem 2.1 Suppose that (2.1) and A1-A3 hold. Then

1) if A4 holds, X is bounded complete for Z.

2) If A4 and A5 hold, X is P-complete for Z.

3) If A4 and A6 hold, X is complete for Z.

Theorem 2.1 gives conditions under which different versions of completeness hold. The

intuition of its proof can be explained as follows. First, one can show that completeness is

equivalent to the unicity of the following convolution equation in g(., w) (for almost all w):∫
g(t, w)f−ε1|W (u− t, w)dt = 0. (2.2)

If g(., w) was integrable, this would imply, by the convolution theorem,

F(g(., w))×F(f−ε1|W (., w)) = 0. (2.3)

where F denotes the Fourier transform. Then, by assumption A4, F(g(., w)) = 0, and

since the Fourier transform is injective, g(., w) = 0. Actually, the problem is more involved

because a priori, g(., w) is not integrable, so that its usual Fourier transform may not exist.
7Put x = −y to see that 1/fε1|W must be at most of polynomial order. It can also be shown (see

Mattner, 1992) that A6 is implied by the condition 0 < c(w) ≤ fε1|W (x,w)(1+ ||x||)γ(w) ≤ C(w) < ∞ for
all x ∈ Rp−r and some real c(w), C(w) and γ(w) > 0.
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To circumvent this issue, I rely on the techniques developed by Ghosh and Singh (1966)

and Mattner (1992) to show completeness of location families.

Theorem 2.1 shows that in model (2.1), bounded completeness holds under rather weak

conditions. Many of the usual densities also satisfy the moment condition which ensures

P-completeness.8 Completeness, on the other hand, is obtained under the restrictive hy-

pothesis A6. As theorem 2.1 only provides sufficient conditions, one may wonder whether

completeness actually holds under milder conditions. If it seems difficult to provide a full

characterization of completeness, the following proposition shows that it really imposes

stringent condition on the distribution of ε1.

Proposition 2.2 Suppose that (2.1), A1-A3 hold and µ1(t) = t. Assume also that, for

PW−almost all w, ε1 is not normal conditional on W = w and there exists δ1, δ2 > 0 such

that E
(
exp

(
δ1||ε1||1+δ2

)
|W = w

)
< +∞. Then X is not complete for Z.

Hence, if fε1|W has light tails, X cannot be complete for Z. On the other hand, X can still

be bounded or P -complete for Z in such situations.

As mentioned above, the large support assumption A2 is rather strong. It is possible,

though, to relax it, at the cost of imposing regularity on the distribution of ε1. For the

sake of simplicity, we restrict here to the case where X0 is real (p− r = 1).

A2’. For PW -almost all w, the measure of ν1(Z0, w) is continuous with respect to the

Lebesgue measure.

A7. There exists (ak(w))k∈N such that, for all x ∈ R and for PW -almost all w,

fε1|W (x,w) =
∞∑

k=0

ak(w)xk. (2.4)

Moreover, there exists r0(w) > 0 such that fε1|W (., w), as a function on C defined by

(2.4), is bounded on {z/|Im(z)| < r0(w)}.
8Moreover, a density which does not fulfill condition A5 has heavy tails and thus is likely to satisfy A6.
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Assumption A2’ will generally hold if Z0 contains a continuous regressor. The first part of

assumption A7 states that fε1|W (., w) is entire. Examples of entire functions include the

polynomials, the exponential function and all compositions of these functions (including

gaussian densities). On the other hand, all densities with support different from R are not

entire. Other counterexamples include the Cauchy and Student distributions. The second

part of A7 is a technical condition which is satisfied for instance by gaussian densities.

Proposition 2.3 Suppose that (2.1), A1, A2’, A3, A4 and A7 hold. Then X is bounded

complete for Z.

Proposition 2.3 shows that the large support condition can be dropped, but at the price

of restricting the range of the densities of ε1.

The easiest way to interpret (2.1) is that Z causes X. However, it may be convenient

sometimes to suppose instead that X causes Z. In the measurement error models of

Chen and Hu (2006) and Hu and Schennach (2008) for instance, their condition on the

injectivity of operators can be restated into completeness of the unobserved variable X0

for the measure Z0. In this case, the model (2.1) is unnatural since one would prefer to

write the measure as a function of the unobserved variable and an independent error, i.e.

a model of the form

µ2(Z) = ν2(X) + ε2, (2.5)

where µ2 and ν2 are maps from Rq (resp. Rp) to Rq−r. The standard measurement error

model, for instance, corresponds to µ2(z0, w) = z0 and ν2(x0, w) = x0. When µ2(., w) is

one-to-one, the model writes Z0 = µ−1
2 (ν2(X) + ε2) and is similar to (2.1). However, in

general we cannot simply switch X0 and Z0 in (2.1) to obtain completeness, as the simple

example Z0 = 1 shows. In such a model, indeed, Z0 would not necessarily be informative

enough on X0 for completeness to hold.

We also assume the following hypotheses, which are close to A1, A2 and A4.

A8. X0 ⊥⊥ ε2 |W .
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A9. For PW -almost all w, ν2(., w) is a one-to-one mapping on Rq−r.

A10. PW−almost surely, the characteristic function ψε2|W of ε2 conditional on W has

isolated zeros.

Assumption A8 is exactly equivalent to A1. Assumption A9 is similar but stronger than the

large support condition A2. Indeed, ν2(., w) is imposed to be one-to-one, so that here q = p.

A10, on the other hand, is weaker than A4 and holds for all usual distributions, including

the uniform and triangular ones. Actually, it holds for all distribution with exponential

tails, because then the corresponding characteristic function is holomorphic on a strip of

the complex plane and thus has isolated zeros (see Rudin, 1987, p. 208). The Fejer - de

la Vallee Poussin density x 7→ (πx2)−1(1 − cos(x)) is a counterexample of a distribution

which violates A10, as its characteristic function is equal to t 7→ max(1− |t|, 0).

Proposition 2.4 Suppose that (2.5) and A8-A10 hold. Then X is complete for Z.

Thus, even if the completeness condition is asymmetric in X and Z, to a certain extent

the roles of X and Z in model 2.1 can be exchanged. The conditions on ν2 are stronger

than the one required for theorem 2.1 to hold, but completeness and not only bounded or

P-completeness is achieved under weak restrictions on the distribution of ε2.

3 Implications for the nonparametric instrumental regression

In this section, we apply theorem 2.1 to the identification of nonparametric instrumental

regressions. Let us consider the following triangular system:

{
Y = ϕ(X) + η

X0 = µ1(ν1(Z) + ε1)
E(η|Z) = 0 (3.1)

In this model, X0 are the endogenous regressors, W are exogenous covariates and Z0 denote

the instruments. The aim is to recover the structural function ϕ. This system is close to the

one studied by Newey et al. (1999), although we allow for nonlinearity in the instrumental
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equation. A main restriction is the additive separability assumption of the first equation.

This is the price to pay for a rather weak exogenous condition E(η|Z) = 0. In particular,

heteroscedasticity is permitted in this framework.

Note that it is possible, through a control variate approach, to relax additive separabil-

ity under full independence between Z and (ε, η). Recent contributions include Chesher

(2003), Imbens and Newey (2006) and Florens et al. (2008) (see Chesher, 2007, for a

survey). However, strict monotonicity in the error term of the instrumental equation is

required to identify this error. Hence, this approach generally rules out limited endogenous

regressor and cannot be applied to model (3.1) unless µ1 is one-to-one.9 The complete-

ness approach, one the other hand, can be applied with virtually no assumption on this

function.

Proposition 3.1 Suppose that (3.1) and A1-A3 hold. Then ϕ is identified if one of the

following conditions is satisfied:

1) A4 holds and ϕ(., w) is bounded for PW -almost all w ;

2) A4-A5 hold and ϕ(., w) is bounded by a polynomial for PW -almost all w ;

3) A4 and A6 hold.

Proposition 3.1 shows that to recover ϕ, there is a trade-off between the regularity con-

ditions imposed on model (3.1) and the assumptions on the function ϕ itself. The first

condition of the proposition is useful when X0 has a finite support, but imposes a strong

restriction on ϕ(., w) otherwise. Linear forms, for instance, cannot be handled by this case.

The second widens considerably the range of identified models, at the price of the moment

condition on ε1 and the polynomial growth restriction on µ1. Lastly, if one is reluctant to

make any assumption on ϕ, identification is achieved under strong restrictions on ε1.
9One could redefine the instrumental equation as X0 = µ̃(Z, ε̃1) with µ̃1 strictly increasing in ε̃1 but

then the independence condition Z ⊥⊥ (ε̃1, η) would not hold anymore in general (see Florens et al., 2007,
for a discussion on this point).
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4 Conclusion

This paper provides general sufficient conditions to achieve varieties of completeness condi-

tions, and apply these results to the nonparametric instrumental regression. Two questions

on this topic are left for future research. Firstly, one can wonder whether the assumption of

additive decomposition into independent parts could be weaken. Secondly, the adaptation

of the results above to the identification condition of Chernozhukov and Hansen (2005) (see

their assumption L∗1) in the context of nonseparable models remains a challenging issue.

5 Proofs

5.1 Theorem 2.1

For all h, let h̃(t, w) = h(µ1(t), w). By A1,

E[h(X)|Z] = E[h̃(ν1(Z) + ε1,W )|Z]

=

∫
h̃(ν1(Z) + u,W )fε1|W (u,W )du a.s.

=

∫
h̃(t,W )f−ε1|W (ν1(Z)− t,W )dt a.s.

By A2 (and conditional on W ), ν1(Z) admits a continuous distribution whose support is

Rp−r. Thus,

E[h(X)|Z] = 0 a.s. ⇔
∫
h̃(t, w)f−ε1|W (u− t, w))dt = 0 λ⊗ PW − a. e. in (u,w) (5.1)

where λ denotes the Lebesgue measure. Because ν1(Z) + ε1 also admits a continuous

distribution and its support is Rp−r, it follows that

h(X) = 0 a.s. ⇔ h̃(t, w) = 0 λ⊗ PW − a. e. in (u,w). (5.2)

Moreover, h(X) integrable (resp. h bounded) implies that h̃(ν1(Z) + ε1) is integrable

(resp. h̃ is bounded). Similarly, by A5, if h(., w) is bounded by a polynomial, h̃(., w) is
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also bounded by a polynomial. Hence, to prove completeness (resp. bounded completeness,

P -completeness), it suffices to prove that for all g such that g(ν1(Z)+ε1) is integrable (resp.

g is bounded, bounded by a polynomial), PW−almost surely in w,∫
g(t, w)f−ε1|W (u− t, w)dt = 0 a.e. in u⇒ g(t, w) = 0 a.e. in t (5.3)

This statement corresponds to the completeness of the location family with density f−ε1|W ,

except that the left part of (5.3) holds almost everywhere and not everywhere. But in

theorem 1.3 of Mattner (1992) (and hence in his theorem 1.1), the statement also holds

almost everywhere, so that we can apply it to obtain part 3 of the theorem.

To show part 1, we adapt the proof of theorem 2.4 of Ghosh and Singh (1966). Let L1 (resp.

L∞) denote the space of equivalent classes of integrable (resp. essentially bounded) func-

tions with respect to the Lebesgue measure. Let w be such that g(., w) ∈ L∞, ψε|W (., w)

does not vanish anywhere and the left part of (5.3) holds (the set of such w being of probabil-

ity one). Let fw,u(x) = f−ε1|W (u−x,w), Pw = span
{
fw,u, u ∈ Rp−r /

∫
g(t, w)fw,u(t)dt = 0

}
and Qw = {fw,u / u ∈ Rp−r}.

Let Rw = {u / fw,u ∈ Pw}. Because the Lebesgue measure of cRw is zero, there exists

a sequence (un)n∈N of elements of Rw such that un → u for all u ∈ cRw. By continuity

of f−ε1|W (., w) and Scheffé’s theorem (see e.g. van der Vaart, 1998, p. 22),
∫
|fw,un(t) −

fw,u(t)|dt→ 0. Thus Qw is included in the closure of Pw (for the L1−norm).

Now, by A4 and Wiener’s tauberian theorem (see e.g. Rudin, 1991, p. 229), Qw is dense

in L1. Thus, Pw is dense in L1. By continuity of the linear form φ 7→
∫
g(t, w)φ(t)dt and

the Riesz theorem (see e.g. Rudin, 1987, p. 130), g(t, w) = 0 for almost every t and almost

all w.

Lastly, let us turn to part 2. First, because it is integrable, f−ε1|W (., w) ∈ S ′, the space of

tempered distribution (see Rudin, 1991, p. 191, example d). Moreover, g(., w) is bounded

by a polynomial, so that g(., w) ∈ S ′ (see Rudin, 1991, p. 191, example d). Lastly, the

function

c(., w) : u 7→
∫
g(t, w)f−ε1|W (u− t, w)dt

12



equals zero almost everywhere. Hence, it is the zero distribution and, as such, is tempered.

Now let gn(., w) = g(., w) × 1[−n,n](.). gn(., w) is a tempered distribution with compact

support, so that it belongs to the space of quickly decreasing distributions (see Schwartz,

1973, p. 244). Let us show that gn(., w) converges to g(., w) in S ′. We have to prove that∫
gn(u,w)φ(u)du→

∫
g(u,w)φ(u)du

for all φ ∈ S, the space of rapidly decreasing functions (see e.g. Rudin, 1991, p. 161). Let

Φ be any bounded set in S, the space of rapidly decreasing functions. There exists (see

Schwartz, 1973, p. 235) a continuous function b with b(x) = o(|x|−m) as |x| → ∞ and

for every m, such that |φ(x)| ≤ b(x) for every x ∈ R and every φ ∈ Φ. Because g(., w) is

bounded by a polynomial, g(., w)× b is integrable. Thus, by dominated convergence,

sup
φ∈Φ

∣∣∣∣∫ φ(u)(gn(u,w)− g(u,w))du

∣∣∣∣ ≤ ∫
b(u)1c[−n,n](u)|g(u)|du −→ 0.

Hence, gn(., w) → g(., w) in S ′.

Let us show similarly that cn(., w) =
∫
gn(t, w)f−ε1|W (.− t, w)dt converges to c(., w) in S ′.

Let D(w) and l(w) be such that |g(t, w)| ≤ D(w)(1 + ‖t‖l(w)). We get∫
|g(t, w)|f−ε1|W (u− t, w)dt =

∫
|g(u− t, w)|f−ε1|W (t, w)dt

≤D(w)

(
1 +

∫
‖u− t‖l(w) f−ε1|W (t, w)dt

)
≤D(w)

[
1 + 2l(w)−1

(
‖u‖l(w) +

∫
‖t‖l(w) f−ε1|W (t, w)dt

)]
,

where the second inequality follows by convexity. Moreover, by assumption A5,∫
‖t‖l(w) f−ε1|W (t, w)dt < +∞.

This, together with the previous inequality, implies that (t, u) 7→ b(u)g(t, w)f−ε1|W (u−t, w)

is integrable. As a consequence, u 7→ b(u)(cn(u,w)− c(u,w)) is also integrable. Moreover,

by dominated convergence,∫
b(u)[cn(u,w)− c(u,w)]du =

∫ ∫
b(u)g(t, w)f−ε1|W (u− t, w)1c[−n,n](t)dtdu −→ 0.
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As previously, this shows that cn(., w) → c(., w) in S ′.

The previous results ensure that we can apply lemma 2.1 of Mattner (1992) to f−ε1|W (., w),

g(., w), c(., w) and gn(., w). As a consequence, we get, for almost all w and everywhere

except on A(w),

F(g(., w))×F(f−ε1|W (., w)) = 0.

Thus, by A4, F(g(., w)) = 0 everywhere except on A(w). Applying the same reasoning as

at the end of the proof of theorem 1.3 of Mattner (1992) finally yields g(t, w) = 0 almost

everywhere in t. Part 2 follows and the proof is complete.

5.2 Proposition 2.2

We keep the notations of the previous proof. Because µ1(t) = t, h̃ = h. Hence, by (5.1)

and (5.2), completeness is equivalent to∫
h(t, w)f−ε1|W (u− t, w)dt = 0 a.e. in u⇒ h(t, w) = 0 a.e. in t. (5.4)

for PW -almost all w and all h such that E [|h(X0)|] < ∞. But theorem 2.4 of Mattner

(1993) implies that this condition is not satisfied.10 Hence, X is not complete for Z.

5.3 Proposition 2.3

We still keep the previous notations. Following the same lines as in the proof of theorem

2.1, we can show that bounded completeness holds if, for PW−almost all w and all bounded

g(., w),

∫
g(t, w)f−ε1|W (u− t, w)dt = 0 for a.e. u ∈ Supp(ν1(Z)|W = w) ⇒ g(t, w) = 0

a.e. in t (5.5)
10Actually, Mattner (1993) shows that

∫
h(t, w)f−ε1|W (u− t, w)dt = 0 for every u (and not almost every

u) implies h(t, w) = 0 for almost every t. However, an inspection of the proofs of his theorem 2.4 and
lemma 2.3 shows that “every u” can be replaced by “almost every u” without affecting the result.
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Suppose that the left hand side holds. Then, by Assumption A2’, c(., w) equals zero on an

open set Ow.

Besides, by assumption A7 and the fact that g(., w) is bounded for PW -almost all w, the

function

(t, u) 7→ g(t, w)f−ε1|W (u− t, w)

is bounded on {(t, u) ∈ R × C/|Im(u)| < r0(w)}. Moreover, u 7→ g(t, w)f−ε1|W (u − t, w)

is holomorphic on {u ∈ C/|Im(u)| < r0(w)} by assumption A7. Thus (see Rudin, 1987, p.

229), c(., w) is holomorphic on this same set. An holomorphic function which vanishes on

an open set actually equals zero everywhere (see e.g. Rudin, 1987, p.209). Thus, c(., w) = 0

everywhere and the end of the proof of theorem 2.1, part 1, can be applied.

5.4 Proposition 2.4

Let h be such that E[|h(X)|] < ∞ and E[h(X)|Z] = 0 almost surely. Let also ν−1
2 (., w)

denote the inverse of ν2(., w) and h̃(t, w) = h(ν−1
2 (t, w), w). Letting T = ν2(X), we have

E[h̃(T,W )|µ2(Z),W ] = 0.

Hence, for all t1 ∈ Rq−r, almost surely,

E[h̃(T,W )eit′1(T+ε2)|W ] = 0.

Then, by assumption A8, almost surely,

E[h̃(T,W )eit′1T |W ]E[eit′1ε2|W ] = 0.

This implies, by assumption A10, that the function t1 7→ E[h̃(T,W )eit′1T |W ] vanishes

everywhere except perhaps on isolated points. Now, because E[|h̃(T,W )| |W ] < +∞, the

function t1 7→ E[h̃(T,W )eit′1T |W ] is continuous by dominated convergence. Thus, for all

(t1, t2) ∈ Rq−r × Rr,

E[h̃(T,W )ei(t′1T+t′2W )] = 0.

This implies (see e. g. Bierens, 1982, theorem 1) that E[h̃(T,W )|T,W ] = 0 almost surely.

In other words, h(X) = 0 almost surely.
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5.5 Proposition 3.1

E(Y |Z) = E(ϕ(X)|Z), so that any candidate ϕ′ for ϕ satisfies

E[(ϕ′ − ϕ)(X)|Z] = 0.

If ϕ(.,W ) is known to be bounded, any candidate must be also bounded so that (ϕ′ −

ϕ′)(.,W ) is bounded. Then by theorem 2.1 (part 1), ϕ′ = ϕ so that ϕ(.,W ) is identified.

If ϕ(.,W ) is bounded by a polynomial, so is (ϕ′−ϕ′)(.,W ), and the same conclusion holds

by part 2 of the theorem. Lastly, if A6 holds, ϕ′ = ϕ by part 3 of the theorem.
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