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Abstract

In markets where sellers are able to price discriminate, individuals pay different prices that
may be unobserved by the econometrician. This paper considers the structural estimation
of a demand and supply model à la Berry et al. (1995, henceforth BLP) with such
price discrimination and limited information on prices taking the form of, e.g., observing
list prices from catalogues or average prices. Within this framework, identification is
achieved not only with usual moment conditions on the demand side, but also through
supply-side restrictions. The model can be estimated by GMM using a nested fixed point
algorithm that extends BLP’s algorithm to our setting. We apply our methodology to
estimate the demand and supply in the French new automobile market. Our results
suggest that discounting arising from price discrimination is important. The average
discount is estimated to be 9.6%, with large variation depending on buyers’ characteristics
and cars’ specifications. Our results are consistent with other evidence on transaction
prices in France.
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1 Introduction

The standard aggregate-level estimation of demand and supply models of differentiated prod-
ucts relies on the observation of market shares and products characteristics, in particular
prices (see Berry, 1994). Yet, prices for an identical product can differ significantly across
transactions. Temporary promotions, coupons, local prices and negotiation between buyers
and sellers are examples of factors that lead to such price dispersion. Precise data on trans-
action prices may be hard to obtain. One typically observes posted prices from catalogues, or
average prices over the different transactions. In the two cases, the common practice is simply
to ignore price variation across transactions, and consider the observed prices to be the prices
paid by all consumers.

One may argue that the instrumental variables approach developed by Berry et al. (1995,
henceforth BLP) to control for price endogeneity also solves this measurement error problem
on prices. However, to the extent that prices are not randomly assigned to consumers, the
difference between observed prices and transaction prices are generally correlated with the
instruments. Hence, ignoring this issue generally results in inconsistent estimators of the
structural parameters and biases in policy simulation exercises.

This paper proposes a method to estimate structural demand and supply models with un-
observed transaction prices. Our rationale for the existence of price dispersion is that firms
price discriminate between heterogeneous consumers in order to extract more surplus than
they would with a uniform pricing strategy, as long as other firms also price discriminate. We
suppose that sellers use observable characteristics of the buyers to price discriminate and set
optimal prices. Of course, it is unlikely that sellers observe perfectly the consumers’ prefer-
ences, and we allow for individual heterogeneity in consumers’ preferences that is unobserved
by both the sellers and the econometrician. This model applies to several of the cases men-
tioned above: temporary discounts if the population of consumers differs along the time of
purchase, local prices if individuals in different geographical areas have different willingness to
pay (e.g., poor versus rich neighborhoods), coupons when they are used by the most price sen-
sitive consumers. Price negotiation may also be seen as a special case of price discrimination,
provided that there is no informational friction and sellers make take-it or leave-it offers to
consumers. This set-up seems in particular appropriate to model business to business markets
with small buyers and large sellers.

We therefore extend the random coefficient discrete choice model of demand popularized by
BLP to allow for unobserved price discrimination. To identify this demand model, we rely on
usual moment conditions on the demand side, but also on supply-side restrictions. The latter
are key here, insofar as prices are only partially observed. First, we consider third-degree price
discrimination, as opposed to (unobserved) second-degree price discrimination. Third-degree
price discrimination is realistic whenever sellers can price discriminate consumers on the exact
same product. Second-degree price discrimination arises, on the other hand, when sellers let
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consumers self-select through menus of contracts corresponding to different quality or quantity
levels and prices. In this latter case, the transaction price paid by a given consumer depends
on his specific unobserved preferences, something our approach cannot handle.

In this setup we rely on three identifying assumptions. First, we assume that the econome-
trician observes the market shares of products for each group of consumers used for price
discrimination. This requires in particular to observe the characteristics of consumers used
by sellers to price discriminate. Second, the marginal cost of a product is supposed to be
identical for all the buyers. This amounts to neglecting differences in the cost of selling to
different consumers in the total cost of a product. This assumption is credible when the major
part of the marginal cost is production, not sale, or when the cost of selling has no reason to
differ from one consumer to another. The third condition for identification is that there is a
known relationship between observed and transaction prices. This assumption is satisfied if
the econometrician observes average prices, or at least one transaction price for each product.
It also holds if list prices are observed, as these prices correspond to the maximal transaction
prices whenever some consumers do pay these prices.

Under these three assumptions, we show that we can estimate the model with the general
method of moments (henceforth, GMM) in a similar spirit as BLP, but with a modified
algorithm to account for unobserved prices. In addition to obtaining the average utilities
through the numerical inversion of the market share equations, we recover transaction prices by
using the first-order conditions of profit maximization. We consider a fixed-point algorithm to
compute both average utilities and transaction prices. We show that this algorithm converges
under, basically, some conditions on the amount of heterogeneity among consumers. We
establish for that purpose that the corresponding function is a contraction, similarly to BLP’s
celebrated contraction mapping.

To assess the credibility of our model, we develop a formal test of price discrimination versus
uniform pricing, where all consumers pay the same prices. Finally, we consider a few extensions
to our initial set-up. First, our method extends, under some conditions, to the case where
only aggregate market shares are observed. Second, we show that the assumption of identical
marginal costs can be relaxed, as long as we observe the underlying cost shifters, and that
they vary across products. We discuss additional extensions in our supplement.

We apply our method to estimate the primitives of the French new car market. Up to now, the
demand for automobiles has always been estimated with posted or average prices, whenever
transaction prices were unobserved. There is however much evidence of price dispersion and
price discrimination in this market (see below for references). We estimate our model using
an exhaustive dataset recording all the registrations of new cars bought by households in
France between 2003 and 2008. Apart from detailed car attributes, including list prices, we
observe the age of the buyers and their expected income given their age class and municipality
of residence. As these characteristics are easily observed by sellers and presumably strong
determinants of car purchases, we suppose that they are used by sellers to price discriminate.
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Our results suggest that price discrimination is significant in France. First, our statistical
test clearly favors price discrimination over the uniform pricing model. Second, the average
discount is estimated to be 9.6% of the posted price. The distribution of estimated discounts
spreads mostly between 0 and 25% depending on the car model purchased and demographic
characteristics. As expected, age and income are negatively correlated to the value of discount.
We also show that price discrimination may be important in ex ante policy analysis. Finally,
we compare our estimated transaction prices with a sample of observed transaction prices
from the French consumer expenditure survey. These data suggest that our method provides
reasonable estimates of transaction prices.

Related literature. Our paper is related to three strands of the literature. First, on a
methodological side, it is close to empirical papers estimating demand and supply with im-
perfect information on prices. Miller and Osborne (2014) develops a method to estimate the
demand for cement when only average prices and total quantities are observed, allowing for
price discrimination (see also Thomadsen, 2005, for a related approach with unobserved quan-
tities). While they compute optimal prices using equilibrium conditions, as we do here, their
model and estimation strategy are very different from ours. First, they do not account for
differences in preferences across groups, which is usually the rationale for price discrimination.
Second, they rule out any systematic unobserved preference term, implying in particular that
prices are exogeneous. These restrictions may hold in homogeneous good markets such as ce-
ment but are less realistic for differentiated product markets, in which preference heterogeneity
and unobserved components such as quality play a crucial role.

Our paper is also related to Dubois and Lasio (2018), which estimates marginal costs when
observed prices are regulated, so that marginal costs can no longer be identified from these
prices. They use the first-order conditions of the firms in countries that do not regulate prices
to identify these costs, under a similar assumption as us on the marginal costs. Contrary to
us, however, they do not use the first-order conditions of the firms to identify the demand
model, as they observe the prices paid by consumers.

Our paper also builds on the recent literature that considers hybrid models of bargaining in
which sellers post a sticker price and offer the possibility to bargain for discounts. This pricing
strategy might be profitable for sellers when consumers have heterogeneous bargaining costs
or are imperfectly informed on their ability to bargain (see Gill and Thanassoulis, 2009, 2016).
Jindal and Newberry (2016) develop a structural model of demand in which all the buyers
are able to negotiate but have heterogeneous bargaining cost. The authors estimate both the
bargaining power and the distribution of bargaining costs. However, their framework is very
different from ours since they omit competition and they observe the transaction prices at
the individual level. Structural models in which prices are set by a bargaining process have
also been recently developed and estimated, but for the case of business to business markets
where there are few identifiable actors (see, e.g. Crawford and Yurukoglu, 2012; Grennan,
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2013; Gowrisankaran et al., 2015). In such models, bargaining modifies the supply side but
contrary to our case, the demand can be estimated in a standard way.

Finally, our application quantifies the importance of price discrimination on the automobile
market. Several papers investigate this issue using either detailed data on transaction prices
or dealers margins, see, e.g., Ayres and Siegelman (1995), Goldberg (1996), Harless and Hoffer
(2002), Scott Morton et al. (2003), Langer (2016) and Chandra et al. (2017). Noteworthy,
our method is still useful to estimate demand with data on prices paid by each consumer,
because the prices of products that are not chosen by the consumers remain unobserved.
Huang (2016) is closest to our paper. He develops a structural model of demand for cars when
some dealers make second-degree price discrimination by proposing the list price immediately
or a discounted price later. He estimates both demand parameters and the discounts using
market shares and list prices. Rather than relying on the supply-side conditions, as here,
identification is achieved by leveraging the existence of non-negotiating car dealers.

Structure of the paper. The second section presents the theoretical model and identifying
assumptions. Section 3 develops our estimation method and consider some extension. The
application on the French new car market is developed in Section 4, while Section 5 concludes.
We present our estimation algorithm and all the proofs in the appendix. Finally, we present
additional extensions, Monte Carlo simulations and further details on the application in the
supplement (D’Haultfœuille et al., 2018).

2 Theoretical model and identifying assumptions

2.1 The unobserved price discrimination model

We first present our theoretical model. The approach is identical to the BLP model, except
that the demand arises from a finite number of heterogeneous groups of consumers. Firms
are supposed to observe the group of each consumer and the corresponding distribution of
preferences (price sensitivities and preferences for car attributes). They price discriminate
among these groups, in order to take advantage of the difference in preferences from one
group to another.

Specifically, consumers are supposed to be segmented into nD groups of consumers, and we
denote by Di the group of consumer i. As in the standard BLP model, we allow consumers to
be heterogeneous within a group, but assume sellers are not able to discriminate based on this
unobserved heterogeneity. Each consumer chooses either to purchase one of the J products or
not to buy any, which corresponds to the outside option denoted by 0. As usual, each product
is assimilated to the bundle of its characteristics. Consumers maximize their utility, and the
utility of choosing j is assumed to be a linear function of product characteristics:

Udij = X ′jβ
d
i + αdi p

d
j + ξdj + εdij ,
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where Xj corresponds to the vector of observed characteristics and ξdj represents the valuation
of unobserved characteristics.1 pdj is the price set by the seller for the category d and is not
observed by the econometrician. Consumers with characteristics d are supposed to face the
same transaction price pdj . The case where prices differ across unobserved groups is considered
in Section 3.4.2 below. We also assume that ξdj is common to all individuals from group d.
This was shown by Berry and Haile (2014) to be necessary for identifying demand models
nonparametrically from aggregated data. As typical in the literature, the idiosyncratic error
terms εdij are extreme-value distributed.

We make the usual parametric assumption about the intra-group heterogeneity. Specfiically,
the individual parameters can be decomposed linearly into a mean, an individual deviation
from the mean and a deviation related to individual characteristics:{

βdi = βd0 + πX,d0 Ei + ΣX,d
0 ζXi

αdi = αd0 + πp,d0 Ei + Σp,d
0 ζpi ,

where Ei denotes demographic characteristics that are unobserved by the firm for each pur-
chaser, but whose distribution is common knowledge. ζi = (ζXi , ζ

p
i ) is a random vector with a

specified distribution, such as the standard multivariate normal distribution.

The utility function satisfies Udij = δdj (pdj ) + µdj (Ei, ζi, p
d
j ) + εdij , with the mean utility δdj (pdj )

and the individual deviation µdj (Ei, ζi, p
d
j ) satisfying

δdj (pdj ) = X ′jβ
d
0 + αd0p

d
j + ξdj ,

µdj (Ei, ζi, p
d
j ) = X ′j

(
πX,d0 Ei + ΣX,d

0 ζXi

)
+ pdj

(
πp,d0 Ei + Σp,d

0 ζpi

)
. (1)

We let the dependence of δdj and µdj in pdj explicit for reasons that will become clear below.
Because of the logistic assumption on the εdij , the aggregate market share sdj (p

d) of good j for
group d satisfies, when prices are set to pd = (pd1, ..., p

d
J),

sdj (p
d) =

∫
sdj (e, u, p

d)dP dE,ζ(e, u), (2)

where P dE,ζ is the distribution of (E, ζ) for group d and

sdj (e, u, p
d) =

exp
(
δdj (pdj ) + µdj (e, u, p

d
j )
)

∑J
k=0 exp

(
δdk(pdk) + µdk(e, u, p

d
k)
) .

Now, we consider a Bertrand competition model where firms are able to price discriminate by
setting different prices to each of the nD groups of consumers. Letting J denote the set of

1 Following the literature, we focus for simplicity on a single market. The different groups cannot be seen as
different markets because the (ξdj )d=1,...,nD are allowed to be correlated. In case of multiple markets, product
characteristics, including prices and costs, vary with markets. Also, provided that the distribution of random
coefficients is constant across markets, we could include product and market fixed effects in the Xj .
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products sold by a firm, the profit of this firm when the vector of all prices for group d is pd

satisfies

Π = M

nD∑
d=1

P (D = d)
∑
j∈J

sdj (p
d)×

(
pdj − cdj

)
,

where P (D = d) is the fraction of the group d in the population, sdj (p
d) is the market share

of product j for group d when prices are equal to pd and M is the total number of potential
consumers. cdj is the marginal cost of the product j for group d.

The first-order condition stemming from the profit maximization for group d yields

pdj = cdj +
[
(Ωd)−1sd

]
j
, (3)

where [.]j indicates that we consider the j-th line of the vector only. Ωd is the matrix of
typical (j, k) term equal to −∂sdk/∂pj when j and k belong to the same firm, 0 otherwise.
The firms set prices optimally by making the traditional arbitrage between increasing prices
and lowering sales. When a monopoly seller is able to price discriminate, it is less constrained
than with a uniform pricing strategy since this arbitrage is made for each group separately. If
a group is particularly price sensitive, the monopoly seller offers a low price and is still able
to extract a large surplus from the less price sensitive group by setting a higher price for this
group. In a competitive setting, this effect is mitigated by the fact that, for a given group of
consumers, the competition among sellers is reinforced.

Unlike standard demand estimation, our estimation method below relies both on the demand
and supply models. This is necessary because we only partially observe prices. Note that an
assumption on conduct is necessary anyway to run counterfactual simulations, which is most
often the main purpose in empirical industrial organization. We focus here on the most stan-
dard model of competition between firms with differentiated products, but our methodology
can be adapted directly to different competitive settings and collusive models. On the other
hand, it cannot be applied to models of second degree price discrimination where sellers do not
observe consumers’ characteristics but can propose different levels of quality that, like prices,
are unobserved by the econometrician.2 In such cases, the sellers offer menus of contracts
to induce consumers to self-select, implying a dependence between prices and consumers’
unobserved preferences. We rule out such a dependence here.

2.2 Identifying assumptions

To identify the model, we crucially rely on the following three conditions.

Assumption 1. (Observability of market shares) For all d and j, we observe sdj .

Assumption 2. (Constant marginal costs across consumers) For all d and j, cdj = cj.

2This applies as well to bargaining, where quality corresponds to the time needed for the consumer to obtain
a given discount.
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Assumption 3. (Partial observation of prices) For all j ∈ {1, ..., J}, we observe p̃j such that

p̃j = fj(p
1
j , ..., p

nD
j ),

where fj is known and satisfies fj(0, ..., 0) = 0 and for all (c, u1, ..., unD) ∈ RnD+1,

fj(c+ u1, ..., c+ unD) = c+ fj(u
1, ..., unD). (4)

The first requirement to apply our methodology is to observe market shares of products for
all groups of consumers. This basically means that the econometrician and the sellers have
the same information about consumers. We show that we can relax this assumption, at the
cost of additional restrictions on the heterogeneity across consumers (see Section 3.4.2).

Assumption 2 amounts to neglecting differences in the costs of selling to different consumers
in the total cost of a product. This assumption is likely to be satisfied in many settings. In the
automobile market, production costs do not vary with consumers’ type, and distribution costs
are also likely to be the same for all consumers. However in some markets, this assumption
might be more problematic. This is the case for insurance providers that offer different prices
to consumers based on their observable characteristics (e.g., age, gender, driving experience),
because those characteristics imply different risk classes and different costs for insurers. Note
that our method can still be applied if the econometrician observes the risk classes. We show
in Section 3.4.1 that we can introduce cost differences when they are due to observables and
vary across products.

Let us turn to Assumption 3. First, note that fj(0, ..., 0) = 0 is a mere normalization. If it
does not hold, one can simply replace p̃j by p̃j − fj(0, ..., 0), hand the corresponding modified
function fj then satisfies this requirement. Condition (4), on the other hand, is not a normal-
ization. It is nonetheless satisfied in several settings. First, suppose that we only observe the
maximum of all transaction prices, so that

p̃j = max
(
p1
j , ..., p

nD
j

)
. (5)

Then fj satisfies Equation (4). Such a case arises when firms post their highest discriminatory
price p̃j and then offer some discounts according to observable characteristics of buyers in order
to reach optimal discriminatory prices. This assumption is in line with empirical evidence on
the automobile market, showing in particular that some consumers pay the posted prices (for
France and the UK, see, e.g., the reports of L’Observatoire Cetelem in 2013 and the UK
Competition Commission in 2000). Furniture, kitchens, mobile phone contracts are other
examples for which there is either documented or anecdotal evidence that some consumers
receive some discounts over the posted prices. More generally, Shelegia and Sherman (2015)
provide evidence, through a field experiment in Austria, that discounting is common in varied
retail shops. Moreover, even if observed, these discounts may not correspond directly to price
reductions, but rather to non-pecuniary benefits that are difficult to value in monetary terms
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(e.g. more flexibility, extended warranty, free shipping, coupon for a future purchase). In such
cases, our method below is well-suited to identify the monetary equivalent of these advantages
for consumers. We refer to, e.g., Grubb and Osborne (2015, pp.240-241) for an example of
such advantages on mobile phone contracts for college students.

While Equation (5) imposes that the maximal transaction price corresponds to the list price,
the group that pays this maximal price (the pivot group hereafter) is neither supposed to be
known ex ante, nor constant across different products. Finally, in the case where the minimal
rebate rj is not zero, Assumption 3 still holds provided that the econometrician observes rj .
The price p̃j then simply corresponds to the list price minus rj . On the other hand, rj cannot
be identified with the method we propose below.

Another case where Assumption 3 holds is when we observe, through survey data for instance,
the price paid by at least one consumer group for each product. This is typically the case with
survey data where, for a given consumer, the price paid for the chosen product is observed,
while the prices of the other available products are not. With such data, it may be possible to
reconstruct all the prices when the numbers of products and consumer groups are small, but
this is typically not the case when the number of groups and products are large. If we consider
for instance panel data on grocery items for which there is spatial price discrimination, the
number of geographical areas (nD) is potentially very large. It is then unlikely to observe the
prices of all products within each location. A similar problem is likely to arise if there are
many products available, as, again, in the automobile market (see, e.g., Langer, 2016; Allcott
and Wozny, 2014; Murry, 2017, for papers relying on such data in this market). If we do not
observe all the transaction prices (pdj )d=1,...,nD corresponding to product j, but at least one
price pdjj for each j, then we can use p̃j = p

dj
j and apply our methodology since Assumption

3 holds.

A third case for which Assumption 3 holds is when we only observe the average price paid
over all consumers for each product. This is the case if we only have access to sales revenue
and units sold for each product within the market. Such data are typically available from
marketing companies or company tax declarations. Then we observe p̃j =

∑nD
d=1 s

d
jp
d
j , which,

again, satisfies Assumption 3.

As a side remark, since it can be costly to gather transaction prices for all the consumer groups
and products, our method below constitutes a way to reduce the collection of such transaction
data, while still being able to use them for demand estimation. This can be particularly
relevant for quantitative analysis in antitrust cases such as merger analysis and evaluation of
damages due to anti-competitive practices.

9



3 Inference

3.1 Bias from ignoring price discrimination

First, let us recall the standard case where the true prices are observed. Let

θd0 = (βd0 , α
d
0, π

X,d
0 ,ΣX,d

0 , πp,d0 ,Σp,d
0 )

denote the true vector of parameters for group d. The standard approach for identification
and estimation of θd0 , initiated by BLP, is to use the exogeneity of Zj , which includes the char-
acteristics Xj and other instruments (typically, function of characteristics of other products
or cost shifters) to derive moment conditions involving θd0 . The exogeneity condition takes the
form E

[
Zjξ

d
j

]
= 0. The idea is then to use the link between ξdj and the true parameters θd0

through Equation (2). Specifically, we know from Berry (1994) that for any given vector θd,
Equation (2), where θd0 is replaced by θd, defines a bijection between market shares and mean
utilities of products δdj . Hence, we can define δdj (sd, pd; θd), where sd = (sd1, ..., s

d
J) denotes

the vector of observed market shares. Once δdj (sd, pd; θd) is obtained, the vector ξdj (pd; θd)

of unobserved characteristics corresponding to θd and rationalizing the market shares follows
easily since

ξdj (pd; θd) = δdj (sd, pd; θd)−Xjβ
d − αdpdj .

The moment conditions used to identify and estimate θd0 are then

E
[
Zjξ

d
j (pd; θd0)

]
= 0. (6)

When the observed prices are different from the true prices paid by consumers, the for-
mer approach is not valid in general. To see this, consider the simple logit model, where
πX,d0 ,ΣX,d

0 , πX,d0 and ΣX,d
0 are known to be zero. In this case δdj (sd, pd; θd) takes the simple

form
δdj (sd, pd; θd) = ln sdj − ln sd0

and does not depend on pd. In this context, using posted prices p̃ instead of the true prices
amounts to relying on

ξdj (p̃; θd) = ln sdj − ln sd0 −Xjβ
d − αdp̃j ,

instead of relying on ξdj (pd; θd). A problem arises because p̃j−pdj is not a classical measurement
error. The true price depends on the characteristics of the good and of the cost shifters. If, for
instance, a group of consumers values particularly the horsepower of automobiles, powerful cars
will be priced higher for this group, and p̃j−pdj will be negatively correlated with horsepower.

Because horsepower is one of the instruments, we have E[Zj(p̃j−pdj )] 6= 0, and E
[
Zjξ

d
j (p̃; θd0)

]
is no longer equal to zero. In the general random coefficient model, this problem is still present
but in addition to it, δdj (sd, pd; θd) generally depends on pd. Thus, Zj is also correlated with
δdj (sd, p̃; θd)− δdj (sd, pd; θd).
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To illustrate this issue, we estimated the usual BLP model on simulated data satisfying our
assumptions. The detailed results, presented in Section 2.4 of our supplementary material,
show that the biases on key parameters are not only large but also unpredictable. The errors
on average mark-ups are up to 78% and vary a lot, depending on the group of consumers and
the function fj we consider. A similar conclusion holds on the preference parameters, with
average errors up to 70% of the true values. Errors on average price elasticities are lower, but
can still reach around 8%.

3.2 Consistent GMM estimation

Instead of simply replacing pd by p̃, we use the supply model together with Assumptions 1-3
to obtain consistent estimators. The idea is first to compute, for a given value of the vector
of parameters θ = (θ1, ..., θnD), the transaction prices pdj (θ) that rationalize the market shares
and the supply-side model. Precisely, Equation (3) and Assumptions 2-3 imply that

p̃j = cj + fj

([
(Ω1)−1s1

]
j
, ...,

[
(ΩnD)−1snD

]
j

)
. (7)

Then, the discriminatory prices satisfy

pdj = p̃j − fj
([

(Ω1)−1s1
]
j
, ...,

[
(ΩnD)−1snD

]
j

)
+
[
(Ωd)−1sd

]
j
, (8)

which shows that for a given vector of parameters θ, the discriminatory prices are identified
up to the matrices Ωd. Now, taking the derivative of the market share function (Equation (2))
with respect to the price pdj , we obtain

∂sdj

∂pdj
(pd) =

∫ (
αd0 + πp,d0 e+ Σp,d

0 u
)
sdj (e, u, p

d)(1− sdj (e, u, pd))dP dE,ζ(e, u) (9)

We obtain a similar expression for ∂sdj/∂p
d
l (p

d). These expressions show that Ωd only depends
on the parameters θd0 , the vector of prices pd and δd = (δd1 , ..., δ

d
J), through sdj (e, u, p

d). We
emphasize this dependence by writing Ωd(θd0 , p

d, δd).

Besides, the observed vector of market shares s = (s1
1, ..., s

1
J , ..., s

nD
1 , ..., snDJ ) satisfies

sdj =

∫ exp
(
δdj + µdj (e, u, p

d
j )
)

∑J
k=0 exp

(
δdk + µdk(e, u, p

d
k)
)dP dE,ζ(e, u). (10)

By Berry (1994), for any vector pd of transaction prices, there exists a unique δdθ such that
Equation (10) holds. We denote by δdθ (pd) this solution. Let

gdθ,j(p) = p̃j − fj
([

Ω1(θ1, p1, δ1
θ(p

1))−1s1
]
j
, ...,

[
ΩnD(θnD , pnD , δnDθ (pnD))−1snD

]
j

)
+
[
Ωd(θd, pd, δdθ (pd))−1sd

]
j
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and gθ(p) = (g1
θ,1(p), ..., g1

θ,J(p), ..., gnDθ,1 (p), ..., gnDθ,J (p)). Then Equation (8) implies that the
true vector of transaction prices p(θ) = (p1

1(θ), ..., p1
J(θ), ..., pnD1 (θ), ..., pnDJ (θ)) satisfies

gθ(p(θ)) = p(θ).

This suggests that we can obtain p(θ) as the fixed point of gθ. However, it is unclear at
this stage whether p(θ) is the sole fixed point of gθ. Even if this is the case, finding this
fixed point may be difficult in practice, given the potentially large dimension of the problem.
In our application, for instance, p ∈ R571×6. To solve both problems, we prove that if the
heterogeneity on price sensitivity is not too large, gθ is a contraction.3 This result is similar
to that of BLP, who exhibit a contraction mapping for Equation (10) in δ when transaction
prices are known.

Theorem 1. Suppose that fj is 1-Lipschitz for all j. Then, for any p > 0 there exists Σ
p
> 0

and πp > 0 such that for all Σp = (Σp,1, ...,Σp,nD) ∈ [0,Σ]nD and πp = (πp,1, ..., πp,nD) ∈
[−πp, πp]nD , gθ is a contraction on [0, p]JnD .

This theorem ensures not only that there is a unique fixed point to gθ, but also that the
sequence (pn)n∈N defined by a given p0 and pn+1 = gθ(pn), for all n ∈ N, always converges
to p(θ), irrespective of p0. The result relies on two conditions. The Lipschitz condition
on fj , first, holds in the first three examples we mentioned above, namely fj(p1, ..., pnD) =

max(p1, ..., pnD), fj(p1, ..., pnD) =
∑nD

d=1 s
d
jp
d/
∑nD

d=1 s
d
j and fj(p1, ..., pnD) = pdj . The second

condition is that pdj ≤ p for all (j, d). Note however that we place no restriction on p.

Though the proof of Theorem 1 is technical (see Appendix B.1), the intuition behind it is
simple. Without heterogeneity on price sensitivity (Σp,d = πp,d = 0 for all d), the function
gθ is constant, since both δθ and Ωd(θ, ·, δd) are constant. Then gθ is obviously a contraction
with a Lipschitz coefficient of 0. The contraction result then holds because we can prove that
this coefficient moves continuously with all the (Σp,d, πp,d). Another interesting consequence
of the observation that gθ is constant when Σp,d = πp,d = 0 is that the convergence of
the aforementioned sequence (pn)n∈N is immediate in this case. We can then expect quick
convergence with moderate values of Σp,d and πp,d.

We can apply the GMM to identify and estimate θ0 = (θ1
0, ..., θ

nD
0 ). Let δdj (s, θ) and pdj (s, θ)

denote the mean utility and price of product j for group d when market shares and the vector
of parameters are respectively equal to s and θ. Let also

GdJ(θ) =
1

J

J∑
j=1

Zj

(
δdj (s, θ)−Xjβ

d − αdpdj (s, θ)
)

denote the empirical counterpart of the moment conditions corresponding to Equation (6).4

3A contraction is a K-Lipschitz function with K < 1, where we recall that a function g is K-Lipschitz if
for all p, p′, ‖g(p)− g(p′)‖ ≤ K‖p− p′‖. The norm we consider here is the supremum norm.

4 In case of multiple markets, we consider averages not only on products but also on markets.
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Let GJ(θ) = (G1
J(θ)′, ..., GnDJ (θ)′)′ and define

QJ(θ) = GJ(θ)′WJGJ(θ),

where WJ is a positive definite matrix. Our GMM estimator of θ0 finally satisfies θ̂ =

arg minθQJ(θ).

Compared to the estimation of the standard BLP model, the computation of θ̂ requires to
optimize over a larger space. In the standard BLP model where sdj is observed for each
group d and true prices are observed or supposed to be equal to posted prices, optimiza-
tion can be performed for each group separately. Further, we only need to optimize over
(πX,d,ΣX,d, πp,d,Σp,d), because we can easily concentrate the objective function with respect
to (αd, βd), by running two-stage least squares of δdj on (pdj , Xj) instrumented by Zj . In our
case, we cannot estimate θd separately from θd

′ , for d′ 6= d, because θd′ matters for deter-
mining pdj (s, θ), as Equation (8) shows. Also, while we can concentrate the objective function
with respect to βd, we cannot do this with αd, as it appears in Equation (8). Second, for each
θ, we need to solve not only Equation (10), but also simultaneously Equation (8), in order to
obtain both the mean utilities and the transaction prices. Therefore, estimating the model is
computationally more costly than estimating the standard random coefficient model.

That said, it is possible to lower the computational burden. We describe in details our algo-
rithm based on Theorem 1 in Appendix A. To investigate both its performance and reliability,
we also display the results of Monte Carlo simulations in Section 2 of the supplement. We show
therein that the fixed point algorithm suggested above works well in practice, and we confirm
the idea of quick convergence with moderate values of unobserved heterogeneity on prices.
We also show that the optimization problem corresponding to the GMM remains feasible in
a reasonable amount of time, and that the estimator is accurate in practice.

3.3 Test of the model

The assumption that firms practice price discriminate may be debatable for some markets,
especially when direct evidence based on transaction prices is not available. We now develop
a formal test of the model of price discrimination against the model of uniform pricing, where
prices are supposed to satisfy p1

j = ... = pnDj = p̃j . The idea is to consider a demand model
nesting both. Specifically, let us define

rdj = fj

([
(Ω1)−1s1

]
j
, ...,

[
(ΩnD)−1snD

]
j

)
−
[
(Ωd)−1sd

]
j
.
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Under the price discrimination model, rdj = p̃j − pdj . We then consider the following demand
model:5

Udij = Xjβ
d
i +

[
p̃j − rdjκ

]
αdi + ξdj + εdij . (11)

This model nests both models since under the discrimination model, κ = 1, while under the
uniform pricing model, κ = 0. Note that we exclude here the very special case where rdj = 0

for all (j, d). This happens if firms could price discriminate, but the groups of consumers are
all identical, resulting in equal transaction prices. In such a case, the two models are actually
identical and our test cannot be implemented since κ is not identified.

We therefore consider the test of H0: κ = 0 versus H1: κ = 1. We treat H0 and H1 symmet-
rically, so that the errors of first and second types should be (approximately) identical. To
construct such a test, we first estimate rdj using our unobserved price discrimination model.
Then we estimate κ by the standard BLP demand model corresponding to utilities defined by
Equation (11), replacing rdj by its estimates. In a third step, we compute consistent estimators
σ̂2
k of the asymptotic variance of κ̂ under Hk (k = 0, 1). σ̂2

0 is simple to obtain because one
can show that the estimation of the discount in the first stage does not have any effect on the
standard error of κ̂ under H0. It does have an effect, however, under H1. In such a case, κ̂
may be seen as a two-step GMM estimator, and we can then apply the corresponding stan-
dard formula (see, e.g., Newey and McFadden, 1994). Finally, we compute the test statistic
T defined by

T = J

[(
κ̂

σ̂0

)2

−
(
κ̂− 1

σ̂1

)2
]
.

T would simply be the likelihood ratio test of H0 versus H1 if κ̂ ∼ N (κ, σ2
κ/J). We consider

tests where we accept H0 if T < s, H1 otherwise. Instead of finding the threshold s∗ such that
the errors of first and second types are (asymptotically) identical, it is simpler to compare the
p-values p0 and p1 under both hypotheses. The following proposition formalizes this idea.6

Proposition 1. Suppose that
√
Jκ̂/σ̂0 ∼ N (0, 1) under H0 and

√
J(κ̂ − 1)/σ̂1 ∼ N (0, 1)

under the alternative, with σ̂0 6= σ̂1. Then the test where we accept H0 if p0 > p1 and H1

5Equation (11) corresponds to a more general demand model than that considered in Section 2.1. It could
be interpreted as a model where discounts are given randomly to consumers with a uniform probability κ.
In our setting where discounts are unobserved, however, we cannot separately identify κ from the discounts
themselves, and therefore we cannot estimate a demand model of this kind.

6The test of Rivers and Vuong (2002) has often been used in the literature to discriminate between alterna-
tive supply-side models, given a consistent demand estimation, by comparing the corresponding R2 of the cost
equations (see, e.g., Jaumandreu and Moral, 2006; Bonnet and Dubois, 2010; Ferrari and Verboven, 2012).
The advantage of this latter test is that it can be applied even if both models are misspecified. In our context,
the test statistic would consist in taking the standardized difference between the GMM objective functions of
the two models. The main problem in applying such a test is to obtain a consistent estimator of the standard
error of this difference, i.e. check Assumption 8 in Rivers and Vuong (2002). When both models are wrong,
the estimated error terms of the two models depend in general on all the (sdj )j=1,...,J and are therefore not
independent from each other, even asymptotically. Moreover, the dependence between these error terms has an
unknown form. Thus, neither the standard GMM formula based on independence, nor the standard bootstrap,
would deliver consistent estimators of the standard error of the aforementioned difference.
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otherwise is symmetric in both hypotheses. Moreover,

p0 = 1{σ̂1 > σ̂0}+ sgn(σ̂1 − σ̂0) (Φ(r1)− Φ(r2)) ,

p1 = 1{σ̂1 < σ̂0}+ sgn(σ̂1 − σ̂0) (Φ(r4)− Φ(r3)) ,

where r1 ≤ r2 (resp. r3 ≤ r4) are the two roots of x 7→ (σ̂2
1−σ̂2

0)x2+2
√
Jσ̂0x−(J+σ̂2

1T ) (resp.
x 7→ (σ̂2

1− σ̂2
0)x2 + 2

√
Jσ̂1x+ (J − σ̂2

0T )). If there is no such root, p0 = 1−p1 = 1{σ̂1 > σ̂0}.

The advantage of our test is that it confronts one model against the other. We could simply
perform a test of κ = 0 versus κ 6= 0, or κ = 1 versus κ 6= 1. These would rather cor-
respond to specification tests of the uniform pricing model and price discrimination model,
respectively. Of course, a more direct approach for specification testing is through standard
overidentification GMM tests.

3.4 Extensions

3.4.1 Allowing for cost differences

Our methodology relies on Assumption 2, which supposes constant marginal costs across
groups of consumers. This assumption might not be valid in some settings. When the demand
segmentation is based on geographic variables, the costs can vary across groups because of
varying prices in production factors. In some cases, the transportation cost from the factory
to the retailers is significant and vary within the territory. We can then relax the constant
marginal cost assumption by considering a model in which the cost of product j for group d
satisfies:

cdj = cj +W d
j
′λ,

where W d
j are cost shifters that vary across products. In this case, Equation (8) becomes:

p̃j = cj + fj

([
(Ω1)−1s1

]
j

+W 1
j
′λ, ...,

[
(ΩnD)−1snD

]
j

+WnD
j
′λ
)
.

Then the optimal price for group d is:

pdj = p̃j − fj
([

(Ω1)−1s1
]
j

+W 1
j
′λ, ...,

[
(ΩnD)−1snD

]
j

+WnD
j
′λ
)

+
[
(Ωd)−1sd

]
j

+W d
j
′λ.

Our method then applies as previously, with λ one of the component of θ. When W d
j does

not vary with j, on the other hand, we may not be able to separately identify λ from the
intercept of the utility function. Intuitively, we can rationalize any price gap (constant across
products) between groups by either a marginal cost difference or a corresponding difference
in the intercepts of the utility function.
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3.4.2 Inference with unobserved groups

We sketch here how the previous ideas can be adapted to cases where only the aggregated
market shares sj , rather than the (sdj )d=1,...,nD , are observed. More details on this case are
provided in Section 1.1 of the supplement. This setting is in particular relevant for combining
aggregate data on sales with survey data where both consumers’ characteristics and transaction
prices are observed. Another important example is when only data on total revenue and
total quantities are available. Supermarket scanner data, for instance typically report weekly
revenues and units sold for all grocery items. The corresponding average prices then hide
temporary promotions.

To handle such cases, we assume that consumers are homogeneous inside each group. Con-
sumers inside a group only differ in their product-specific terms, which, as usual, are supposed
to be i.i.d. and extreme-value distributed. We also suppose that the unobserved preference
terms ξdj are the same across groups of consumers. A similar assumption is also key for
identification in Berry et al. (1995), as discussed in Berry and Haile (2014).

Assumption 4. Σp = 0, πp = 0 and ξ1
j = ... = ξnDj for all j ∈ {1, ..., J}.

The demand model features a discrete unobserved heterogeneity, with nD points of support
on the random coefficients. Such a model has also been used by Berry and Jia (2010) and
Kalouptsidi (2012). Under Assumption 4, the market share of product j for consumer group d
given the vector of prices p = (p1

1, ..., p
1
J , ..., p

nD
1 , ..., pnDJ ), the vector of unobserved preferences

ξ = (ξ1, ..., ξJ) and θ = (α1, β1, ..., αnD , βnD) satisfies

sdj (p, ξ, θ) =
exp(X ′jβ

d + αdpdj + ξj)∑J
k=0 exp(X ′kβ

d + αdpdk + ξk)
.

As a result, the aggregate market share of product j is:

sj(p, ξ, θ) =

nD∑
d=1

φdsdj (p, ξ, θ), (12)

where φd = Pr(D = d) can be assumed to be known or added to the vector of parameters θ.

For a given θ and vector of transaction prices p, the system of nonlinear equations in (ξ1, .., ξJ)

given by (12) can be seen as a particular case of the system studied by Berry (1994), with
the (ξ1, .., ξJ) playing the role of the (δ1, ..., δJ) in his setting. By his result, the market share
function is invertible and there is a unique solution to this system. Hence, we can define the
vector ξ(p, s, θ) of the (ξ1, ..., ξJ) corresponding to transaction prices p, the vector of observed
market shares s = (s1, ..., sJ) and θ. Note that the condition ξ1

j = ... = ξnDj is key here to
invert the market share equations and obtain ξ(p, s, θ).

We do not observe transaction prices, however, so we cannot compute directly ξ(p, s, θ) to
form the moment conditions. Instead and as above, we solve both for ξ and p, using not only
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the market share equations but also the first-order conditions on prices. Because there is no
unobserved individual heterogeneity inside groups, these first-order conditions are simply:

pdj = cj −
1

αd(1−
∑

k∈Jj s
d
k(p, ξ, θ))

, (13)

where Jj denotes the set of products sold by the same firm as the one selling j. These
first-order conditions imply:

pdj =p̃j + fj

(
1

α1(1−
∑

k∈Jj s
1
k(p, ξ, θ))

, ...,
1

αnD(1−
∑

k∈Jj s
nD
k (p, ξ, θ))

)
− 1

αd(1−
∑

k∈Jj s
d
k(p, ξ.θ))

. (14)

Replacing ξ by ξ(p, s, θ) in this equation, we obtain that the vector of prices p is the fixed
point of the function Ms,θ = (M1

s,θ,1, ...,M
1
s,θ,J , ...,M

nD
s,θ,1, ...,M

nD
s,θ,J) defined by

Md
s,θ,j(p) =p̃j −

1

αd(1−
∑

k∈Jj s
d
k(p, ξ(p, s, θ), θ))

+ fj

(
1

α1(1−
∑

k∈Jj s
1
k(p, ξ(p, s, θ), θ))

, ...,

1

αnD(1−
∑

k∈Jj s
nD
k (p, ξ(p, s, θ), θ))

)
.

For any ξ ∈ RJ , let p(ξ, θ) denote the vector of equilibrium prices, provided that there is a
unique solution to the system defined by Equations (12) and (13). Then let

s(ξ, θ) = (s1(p(ξ, θ), ξ, θ), ..., sJ(p(ξ, θ), ξ, θ))

denote the market shares corresponding to ξ and p(ξ, θ). In a similar way as Theorem 1
above, we show in Section 1.1 of the supplement that for at least some θ, the sequence
(pn)n∈N defined by p0 = p̃j and pn+1 = Ms(ξ,θ),θ(pn) converges towards p(ξ, θ). Once p(ξ, θ)
is obtained, we can compute the corresponding ξ by the standard BLP inversion, and then
compute the GMM objective function in the same way as in Section 3.2. We provide details
on the estimation algorithm and the results of Monte Carlo simulations in Section 2.6 of the
supplement. There, we assume nD and the proportions (φd)d=1,...,nD to be known. This is the
case when the econometrician knows the groups that are used for price discrimination and their
proportion in the population, but does not observe their specific demand (e.g. male/female
in our application, if there is price discrimination with respect to gender).

3.4.3 Other extensions

We consider other extensions in our supplement. First, we show how to adapt our methodology
to other supply models and how to include additional moment conditions from the supply side.
Second, we consider cases where discrimination is based on an unobserved characteristic but
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a proxy of this unobserved characteristic is available. Then we provide details on how one can
leverage individual-level data in addition to aggregate-level market shares. Finally, we discuss
how to account for a nonlinear effect of price on utility.

4 Application to the French new car market

4.1 Data and methodology

We apply our methodology to estimate demand and supply together with unobserved dis-
counts in the new automobile industry in France. Automobile sellers are well-known to price
discriminate, negotiate or offer discounts over the sticker price to close the deal. As in our
theoretical model, we only observe here posted prices that come from manufacturers cata-
logues. Apart from such posted prices, we use data on all the registrations of new cars in
France between 2003 and 2008. We observe the corresponding car attributes as well as the
municipality of residence and the age of the car owner.

We define groups of buyers by interacting three age classes and two income classes. We choose
the commonly used thresholds of 40 and 60 for the age classes, and 27,000 euros per year for
the income classes. The age is presumably a strong determinant of purchase, and it seems
plausible that the seller can observe the age class of the buyer even if they do not know
each other before the transaction. Income is also likely to affect preferences for different car
attributes and price sensitivity. Income is, however, likely to be unobserved by the seller but
instead inferred. We compute a predictor of buyer’s income, namely the median household
income in his age class and in his municipality. We therefore assume that both age and this
income predictor are used by the automobile sellers to price discriminate.7

Hereafter, we estimate the random coefficient model with uniform pricing and with unobserved
price discrimination. In the latter, we assume that the observed price, i.e. the posted price,
is the maximal price among all prices paid by the different groups of consumers. In all
specifications, we control for the main characteristics of the cars such as horsepower, weight,
the cost of driving 100 kilometers, dummies for station wagon body-style and three doors in
the utility function. Finally, we include year and brand dummies, constraining the coefficients
of the latter to be identical for all demographic groups. We allow for unobserved heterogeneity
of preferences inside groups of consumers in terms of price sensitivity, constraining again the
distribution of this coefficient to be identical for all demographic groups in order to obtain
more accurate results.8

In addition to exogenous characteristics, we include the following instruments for car j. The
first is the weight of j multiplied by a composite price index that aims at approximating the

7We refer to Section 3.1 in our supplement for more details on the data and evidence of heterogeneity in
purchase patterns across consumer groups.

8We estimated a specification with heterogeneity on the fuel cost and for the utility of buying a new car.
These coefficients turned out to be imprecisely estimated, so we preferred to drop them.
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average input price. Specifically, we use a weighted average of steel, aluminium and plastic
prices taken in January 2015. The weights we use are equal to 0.77, 0.11 and 0.12, respectively,
reflecting the relative importance of each of these inputs in car manufacturing. The other
instruments are close to those suggested by BLP. We include the sum of the continuous
exogenous characteristics (namely weight, horsepower and fuel cost) of the other brands’
products. We also consider the sums of these characteristics over the other brands’ products
in the same segment as j, supposing that they are closer substitutes to j.9 Finally, we include
the sums of the continuous characteristics of the other products belonging to the same segment
as j and produced by the brand producing j.10

4.2 Parameter estimates and comparison with the standard model

The results for the models with uniform pricing and unobserved price discrimination are
presented in Table 1. The two models produce different price sensitivities. They are always
smaller for the price discrimination model, except for the group of old with high income for
which we obtain a higher price sensitivity under the uniform pricing model. This group is
the least price sensitive group and turns out to be always pivot in the model with unobserved
price discrimination. More generally, price sensitivity decreases with both age and income.

The parameters of the intercept are negative, reflecting the fact that the major part of con-
sumers choose the outside option, namely not to buy a car or buy one on the second-hand
market. The heterogeneity of this parameter across demographic groups does not follow a
clear pattern. As expected, consumers display a preference for horsepower, but the groups
differ in how much they value it. Young consumers have a high valuation for the engine power
while the eldest care less about this attribute. As expected, all groups of consumers dislike
large fuel expenses. The parameters of sensitivity to the fuel cost are consistent with the
parameters of sensitivity to the car price. The old purchasers with high income appear to be
also less sensitive to the cost of driving while the most sensitive consumers are also the young
and middle-age groups with a low income. As weight is a proxy for the size and the space of
the car, it is positively valued by all the consumers. Three doors and station wagon vehicles
are negatively valued, reflecting that most of the consumers buy sedan or hatchback cars with
five doors (four doors plus the trunk).

9See Table 14 for the details of the segmentation we use.
10Armstrong (2016) has shown that such instruments could be weak when the number of products is large.

Note however that identification is secured here by the inclusion of the cost shifter. Nonetheless, we checked
that the instruments are relevant for prices. We used for that purpose the F-statistic of the joint nullity of the
coefficients of the instruments in the linear regression of prices on the characteristics and these instruments.
We obtained F ' 24.1, which is far above the threshold of 10 suggested by Staiger and Stock (1997) and
usually used to detect weak instruments. This is therefore reassuring on the identification of the model and
the validity of inference here.
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Uniform Price discrimination
Parameter Std-err Parameter Std-err

Price sensitivity
Age < 40, I = L -4.57∗∗ 0.149 -4.83∗∗ 0.12
Age < 40, I = H -4.33∗∗ 0.145 -4.52∗∗ 0.119
Age ∈ [40,59], I = L -3.98∗∗ 0.137 -4.32∗∗ 0.118
Age ∈ [40,59], I = H -3.73∗∗ 0.133 -3.96∗∗ 0.116
Age ≥ 60, I = L -3.85∗∗ 0.149 -4.21∗∗ 0.133
Age ≥ 60, I = H -3.61∗∗ 0.15 -3.05∗∗ 0.134
Std. dev. (σp) 1.15∗∗ 0.058 0.98∗∗ 0.086
Intercept
Age < 40, I = L -5.4∗∗ 0.211 -6.24∗∗ 0.208
Age < 40, I = H -6.25∗∗ 0.209 -6.92∗∗ 0.207
Age ∈ [40,59], I = L -6.12∗∗ 0.212 -6.85∗∗ 0.208
Age ∈ [40,59], I = H -6.36∗∗ 0.21 -6.9∗∗ 0.207
Age ≥ 60, I = L -5.73∗∗ 0.228 -6.48∗∗ 0.226
Age ≥ 60, I = H -6.25∗∗ 0.236 -6.31∗∗ 0.282
Horsepower
Age < 40, I = L 3.88∗∗ 0.214 2.68∗∗ 0.179
Age < 40, I = H 3.13∗∗ 0.191 2.09∗∗ 0.166
Age ∈ [40,59], I = L 2.27∗∗ 0.195 1.87∗∗ 0.161
Age ∈ [40,59], I = H 1.65∗∗ 0.17 1.37∗∗ 0.162
Age ≥ 60, I = L 1.11∗∗ 0.202 1.12∗∗ 0.178
Age ≥ 60, I = H 0.64∗∗ 0.225 0.28 0.251
Fuel cost
Age < 40, I = L -6.08∗∗ 0.179 -5.5∗∗ 0.181
Age < 40, I = H -5.1∗∗ 0.171 -4.63∗∗ 0.176
Age ∈ [40,59], I = L -5.24∗∗ 0.173 -4.97∗∗ 0.17
Age ∈ [40,59], I = H -4.18∗∗ 0.164 -4.03∗∗ 0.17
Age ≥ 60, I = L -3.51∗∗ 0.171 -3.46∗∗ 0.17
Age ≥ 60, I = H -2.73∗∗ 0.174 -2.59∗∗ 0.177
Weight
Age < 40, I = L 5.67∗∗ 0.218 6.63∗∗ 0.221
Age < 40, I = H 5.83∗∗ 0.213 6.61∗∗ 0.22
Age ∈ [40,59], I = L 5.7∗∗ 0.218 6.69∗∗ 0.22
Age ∈ [40,59], I = H 5.55∗∗ 0.211 6.28∗∗ 0.215
Age ≥ 60, I = L 4.55∗∗ 0.23 5.59∗∗ 0.243
Age ≥ 60, I = H 4.64∗∗ 0.24 4.13∗∗ 0.289
Three doors
Age < 40, I = L 0.09 0.199 0.16 0.209
Age < 40, I = H -0.05 0.197 0.02 0.208
Age ∈ [40,59], I = L -0.05 0.196 -0.04 0.206
Age ∈ [40,59], I = H -0.2 0.199 -0.18 0.209
Age ≥ 60, I = L -0.52∗∗ 0.194 -0.53∗∗ 0.205
Age ≥ 60, I = H -0.59∗∗ 0.194 -0.51∗ 0.203
Station wagon
Age < 40, I = L -0.74∗∗ 0.131 -0.75∗∗ 0.144
Age < 40, I = H -0.61∗∗ 0.13 -0.61∗∗ 0.143
Age ∈ [40,59], I = L -0.64∗∗ 0.13 -0.66∗∗ 0.142
Age ∈ [40,59], I = H -0.71∗∗ 0.132 -0.72∗∗ 0.143
Age ≥ 60, I = L -0.73∗∗ 0.128 -0.76∗∗ 0.14
Age ≥ 60, I = H -0.72∗∗ 0.128 -0.65∗∗ 0.132
Value of objective function 2,343 1,739

Notes: Significance levels: †: 10% ∗: 5% ∗∗: 1%. Standard
errors are computed using the standard GMM formula. “Horse-
power” is the fiscal horsepower, “Fuel cost” is in euros/10 kilometres
and “Weight” is in tons. Year and brand fixed effects and the within-
group heterogeneity parameter of price sensitivity are constrained
to be identical across groups of consumers.

Table 1: Parameter estimates for the standard uniform BLP model and our model with
unobserved price discrimination.

If qualitatively similar, the results we obtain with the two models exhibit some quantitative
differences, as we further illustrate below. It is therefore important to discriminate between
the two models. Recall that in the test developed in Section 3.3, κ = 0 corresponds to uniform
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pricing, while κ = 1 corresponds to the price discrimination model. We estimate κ̂ = 1.08

and obtain p0 = 0 and p1 = 0.52.11 Hence, this test clearly points towards the discrimination
model over the uniform pricing model.

To understand what the differences of the estimates between the two models imply, we compare
the corresponding price elasticities and mark-up rates. As Table 2 shows, price elasticities are,
in absolute terms, lower for the model with uniform pricing for all groups, except for the pivot
group, namely the group assumed to pay the posted prices. Hence the overestimation of
prices in the uniform pricing model is more than compensated by the underestimation of price
sensitivity parameters.

In the discriminatory pricing model, we find average price elasticities varying from -3.9 to -6.4.
Such elasticities are in line with those obtained by BLP (between -3.5 and -6.5) but below
those of Langer (2016) who finds, using transaction prices, a range between -6.4 to -17.8. Our
price elasticities imply an average mark-up of 20.6% under the price discrimination model
and 21.6% under the uniform pricing model, with, as we could expect, sizable heterogeneity
across groups in the price discrimination model. As in the simulations (see Table 4 in the
supplement), the uniform pricing model underestimates the mark-up firms obtain on the
pivot group but overestimates the mark-ups of the other groups. The average mark-up for the
group of young, low-income consumers is around 17.6%, contrasting with the 28.5% the firms
obtain for the old and high-income group. Similarly, the costs are always overestimated in the
uniform pricing model, with an average difference of 9.5%. The relative cost differences even
exceed 18% for 2.9% of the products. We refer to Section 3.3 of the supplementary material
for more details.

Group of Price elasticity Average mark-up Average surplus
consumers Disc. Unif. Disc. Unif. Disc. Unif.
Age < 40, I = L -6.4 -6.15 17.5 21.4 13,220 16,552
Age < 40, I = H -6.18 -5.89 18.2 21.1 14,473 18,261
Age ∈ [40,59], I = L -5.99 -5.28 18.9 21.2 15,465 21,018
Age ∈ [40,59], I = H -5.53 -4.92 20.4 21.3 18,480 25,411
Age ≤ 60, I = L -5.52 -4.75 20.7 22.2 15,574 20,774
Age ≤ 60, I = H -3.94 -4.5 28.5 22 32,442 26,590
Average -5.61 -5.2 20.6 21.6 17,916 21,651
Reading notes: Mark-ups are in percentage.

Table 2: Comparison of average price elasticities, mark-ups and consumer surplus under the
uniform pricing and unobserved price discrimination models.

We investigate further the differences between the two models by looking at the results of two
counterfactual exercises. First we measure the welfare effects of a purchase subsidy for young
households that are below 40. We consider three policy designs: (i) a uniform subsidy of
e1,000, (ii) a subsidy of e1,000 for cars that are more fuel efficient than the average (148 cars

11The standard errors σ̂0 and σ̂1 are equal to 0.07 and 0.92, respectively. σ̂0 is much smaller than σ̂1 because
under H0, the variance of the discounts has no effect on the asymptotic variance of κ̂, and it turns out that
the variance of the discounts has an important effect on σ̂1.
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out of 571) and (iii) a feebate system that provides a rebate of e1,000 for cars that are more
fuel efficient than the average and a tax of e1,000 for the other cars. Results are displayed in
Table 3. All the scenarios imply welfare effects qualitatively similar but quantitatively very
different. Under the uniform pricing we always obtain lower effects on profits, consumers and
policy cost. The differences are the most striking for the variation in consumer surplus: 30%,
44% and 92% for respectively scenario (i), (ii) and (iii).

Secondly, we measure the welfare implications of a potential merger between manufacturers.
We investigate the unilateral effects of a merger between Peugeot group (PSA) and the Euro-
pean branch of General Motor (Opel and Vauxhall).12 The results, displayed in the last two
columns of Table 3, reveal that the two alternative models imply welfare effects that differ
by 1.5 million euros. We estimate the total welfare loss to be 18% lower under the uniform
pricing model than under the model with price discrimination. The effects on profits differ by
57%, the uniform pricing model implying larger impacts on the profitability of the industry.

Subsidy for young buyers Merger
scenario (i) scenario (ii) scenario (iii) PSA/GM
Disc Unif Disc Unif Disc Unif Disc Unif

∆Consumer surplus 959.59 674.32 588.23 327.49 284.92 21.56 -9.56 -8.56
∆Profits 161.05 151.64 107.48 102.87 69.89 67.88 0.99 1.56
# firms better off 20 19 15 15 9 8 19 19
Policy cost 269.09 255.88 17.02 16.2 13.25 12.18 0 0
∆Welfare 851.55 570.08 678.69 414.16 341.56 77.26 -8.57 -7
∆Profits for PSA/GM 0.34 0.53
Reading notes: All monetary values are in million euros. The differences in consumer surplus and profits
are summed over all consumers and firms, respectively. The average surplus CSd for group d is computed
in euros, using the standard formula CSd =

∫
log
(
1 +

∑J
j=1 exp(δ

d
j + µj(u, p

d
j ))
)
dFζ(u). We thus take into

account the substitution from the outside good. The welfare is computed as the sum of manufacturers’ profits
and all consumers’ surplus, minus the cost of the policy.

Table 3: Welfare analysis of the hypothetical purchase subsidy for young households and a
hypothetical merger between PSA and Opel.

4.3 Analysis of the discounts

Table 4 presents the average discount for each demographic group estimated using the model
with unobserved price discrimination. We compute average discounts weighted by actual sales
in each group but also using the same weighting scheme for all groups of consumers, namely,
the overall product market shares (“basket-weighted” method). This allows us to eliminate the
potential group-specific demand composition effect. The results with both weighting methods
are nevertheless very similar. As expected, the pattern on average discounts across groups is
similar to that on price elasticity. The estimated pivot group is identical for all the products

12This merger analysis is inspired by acquisition of Opel by PSA in the beginning of March 2017. Note that
we do not pretend that our results are credible to evaluate this merger as our results use market conditions
from 2007 and are no longer relevant.
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and corresponds to the group with the lowest price elasticity. These are the 13.2% of the
population over 60 years of age with income over 27,000 euros.

On average, the sales-weighted discount is 9.6%, with a large heterogeneity across consumers.
Around 25% of transactions occurred with a discount greater than or equal to 12.2%. Clearly,
income and age are both important determinants of the discount obtained. On average, young,
low-income purchasers pay 13.4% less than the posted price, while young, high-income buyers
get an average discount of 12.0%. These percentages represent a gross gain of around 2,500
euros. Middle-aged consumers get smaller discounts (11.4% for the low-income group and 9.6%
for the high-income group). Finally, whereas old, low-income individuals receive an average
discount of 10.4%, the old, high-income buyers receive no discount since they constitute the
pivot group for all the products.

Average discount Average gross discount
(in % of posted price) (in euros)

Group of consumers Sales-weighted Basket-weighted Sales-weighted Basket-weighted
Age < 40, I = L 13.3 13.53 2,594 2,813
Age < 40, I = H 12.01 12.27 2,523 2,568
Age ∈ [40,59], I = L 11.36 11.33 2,482 2,385
Age ∈ [40,59], I = H 9.56 9.53 2,156 2,032
Age ≥ 60, I = L 10.37 10.28 2,084 2,174
Age ≥ 60, I = H 0 0 0 0
Average 9.64 9.68 2,023 2,038
Reading notes: the “basket-weighted” discounts are obtained by using the same artificial basket of
cars for all groups.

Table 4: Average discounts by group of consumers

To put these discounts into perspective, we provide a rough assessment of the importance of
third- versus second-degree price discrimination. We define the latter as the variations in prices
of the different versions of a given car model, fuel type, body style and year. These different
versions of a car model are associated to different characteristics such as cylinder capacity or
horsepower for instance. We first compare the sales-weighted variance of list prices without
second-degree price discrimination, thus considering only baseline models, with the variance of
list prices that includes second-degree price discrimination. We find that second-degree price
discrimination increases the variance of log list prices by 2.7%. We then turn to third-degree
price discrimination. Using our estimated prices, we observe a further increase in the variance
of 2.3%.13 We can make a similar assessment on relative price ranges, defined for a given car
model name, fuel type and body style as the ratio between the maximal and minimal prices
minus one. While the average relative price range with second-degree price discrimination
only is equal to 38%, this average relative price range reaches 56% when introducing third-
degree price discrimination. Hence, at the end of the day, third-degree price discrimination

13Because we do not define products at the finest possible level in our model in order to measure markets
shares with enough precision, we do not have a specific estimate of discounts for each version of the different
car models. To compute such an estimate, we assume that the discounts represent the same percentage of the
list prices for all the different versions of a car model.

23



appears to be a determinant of price dispersion nearly as important as second-degree price
discrimination.

Further results are displayed in Section 3.3 of the supplement. In particular we analyze
the heterogeneity of discounts across car models (Section 3.3.2). We also investigate the
importance of price discrimination on firms and consumers in Section 3.3.3. Counterfactual
simulations suggest that compared to an equilibrium with uniform pricing, price discrimination
matters. Most firms and consumers gain from discrimination, but the high-income group of
consumers older than 60 is significantly worse off.

4.4 Plausibility of the results

Note first that a direct comparison with data on discounts for each product and consumer
group is not possible since, to the best of our knowledge, such data are not available. Never-
theless, we confirm indirectly the plausibility of our results using data from the 2006 French
consumer expenditure survey of Insee (BdF survey hereafter, for “Budget des Familles”). Sim-
ilar data was used by Goldberg (1996) in her study on price discrimination against women
and minorities. Each household in this survey must indicate whether they bought a new car
in the three years before the survey (2004, 2005 or 2006). If so, they indicate how much they
paid for it, the brand and model’s names (e.g., Volkswagen Golf) and the type of fuel. We
also observe the age of the head of the household, the administrative region and the type of
urban area of their residence.14

Let X̃ denote the characteristics of the car and its owner that are available both in the BdF
survey and in the CCFA. X̃ includes the brand name and model, the type of fuel, the owner’s
age, region and urban area. Because the BdF survey is representative, the average prices we
estimate with our demand and supply model and those observed in the survey (conditional
on X̃) should match, if the model is correct. Formally, under the hypothesis that the price
discrimination model holds, we have

E(pBdF |X̃) = E(pCCFA|X̃). (15)

To test the equality described by (15), we first compute p(X̃) ≡ E(pCCFA|X̃) using the
CCFA data and our estimates of the transaction prices. Then (15) may be seen as a standard
nonparametric specification test E(pBdF |p(X̃)) = p(X̃). We rely on Yatchew’s differencing
test (see Yatchew, 1998, Section 4.2.1), which has the advantage of not relying on any tuning
parameter. Note that we ignore that p(.) itself is estimated here. This means that the test
is overrejecting, and thus plays against our model. Given that the CCFA database is much
larger than the BdF sample, this is most likely not a first-order concern here.

14There were 22 administrative regions at this period and there are five types of urban area defined by the
size of the population: less than 5,000 inhabitants, between 5,000 and 20,000, between 20,000 and 100,000,
more than 100,000 without Paris and Paris agglomeration.
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Equality (15) also has two simple implications. First, prices should be equal on average, i.e.
E(pBdF ) = E(pCCFA). Second, we should have E(pBdF − p(X̃)|X̃) = 0. We can test the
latter by considering the linear regression of pCCFA − p(X̃) on X̃, or components of X̃, and
testing whether all the coefficients are equal to zero.

The results of these different tests are displayed in Table 5. We obtain for the non-parametric
test a t−statistic of 0.52 when using our estimated transaction prices, meaning that we accept
the null hypothesis that (15) holds at all standard levels. Conversely, the t−statistic is equal
to 3.50 when considering list prices instead of our discounted prices. We also observe that
the average of our estimated transaction prices is very close to the average price obtained
in BdF, while the average list price is clearly higher. Finally, the parametric test using
owner characteristics also indicates that our estimated transaction prices are not significantly
different from BdF prices, whereas the test of equality with list prices is rejected. When
controlling for both car and owner characteristics, the tests of equality are both rejected at
standard levels. But again, the test statistic of equality between list prices and BdF prices is
much larger than that involving discounted prices. Thus, at the end of the day, these tests
suggest that our estimated transaction prices are indeed reasonable approximations of the true
transaction prices.

Finally, we provide additional robustness checks in Section 3.4 of the supplement. In particular,
we estimate our model and the uniform pricing one with a nested logit structure instead
of random coefficients. We obtain similar results. We also perform sensitivity analyses of
our results with respect to temporary promotions, price discrimination based on unobserved
characteristics, spatial price dispersion, old cars as trade-ins, etc. Our results suggest that
these issues are not of first-order concern here.

pCCFA = pCCFA =
discounted prices list prices

Nonparametric test (t-stat) 0.52 3.50∗∗

E(pBdF − pCCFA) (in euros) 112 -1,899∗∗

Linear reg. on owner characteristics (F-test) 1.46 8.82∗∗

Linear reg. on owner & car characteristics (F-test) 2.85∗∗ 8.48∗∗

Reading notes: owner characteristics include the age, the type of urban area of residence and the
year of purchase. Car characteristics include the brand, the list price and type of fuel. Significance
levels: †: 10%, ∗: 5%, ∗∗: 1%. Data source: Budget des familles survey - 2005-2006, INSEE, Centre
Maurice Halbwachs (CMH).

Table 5: Comparison with BdF data.

5 Conclusion

This paper investigates the pervasive issue of partial observation of prices in structural models
of demand and supply in markets with differentiated products. We propose an approach that
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incorporates unobserved price discrimination by firms based on observable individual charac-
teristics. We use this model to estimate demand and supply on the French new car market
where price discrimination may occur through discounts. Our results suggest significant dis-
counting by manufacturers, in line with other evidence on this market.

While we have considered several extensions of our baseline model, we have maintained the as-
sumption that consumer groups are fixed ex ante. Yet, in several cases, relevant characteristics
of the consumers are unobserved by the sellers, who then offer menus of contracts to price dis-
criminate consumers. Adapting our methodology to such second-degree price discrimination
does not seem obvious, and is left for future research.
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A Computation of the GMM estimator

We first provide additional details on how to compute our GMM estimator in practice. As
in BLP, we rely on a nested fixed point (NFP) algorithm to solve the system of non-linear
equations given by (8) and (10) for each value of θ,. Specifically, the algorithm involves the
following steps:

1. Start from initial values for pd, for each group d. We can use the observed prices p̃ or
previous transaction prices obtained for another θ.

2. Given the current vector of transaction prices pdn, compute δdn = δ(sd, pdn; θd) by inverting
Equation (10).

3. Given δdn and pdn, compute the corresponding matrix Ωd and update the transaction
prices, using Equation (8).

4. Iterate 2 and 3 until convergence of prices.

The construction of the moment conditions therefore involves two nested inner loops. The
price-loop searches over the vector of prices for all the consumer groups. Inside the price-loop,
the delta-loop searches over the mean utilities δd. For each value of transaction prices, we have
to invert the market share equation to solve for the mean utility vectors δd. We use for that
purpose the contraction mapping proposed by Lee and Seo (2016) which relies on Newton’s
method and converges more rapidly than BLPs contraction mapping.

If the computational cost of our algorithm is greater than for the BLP estimator, it is possible
to parallelize the market share inversion as well as the computation of the mark-up terms
((Ωd)−1sd), as they are independent across markets and demographic groups. We also save
time by updating the initial values of the mean utilities after each iteration of the inner price-
loop and by updating initial values of prices across iterations of the outer loop that involves the
parameters θ (for more details on computational aspects, see Section 2.2 in the supplement).

We do not rely on the minimization program with equilibrium constraints (MPEC) approach
suggested by Dubé et al. (2012) here. Simulations suggest that in our set-up, this approach
is much slower than our NFP algorithm. This result is consistent with the findings of Dubé
et al. (2012), who report that with markets of size 500 or more, MPEC was less efficient than
NFP for the standard BLP model. Here, we can easily reach problems of size 500, since the
optimization problem has a size larger than 2JnD.

Finally, we can reduce the computational cost by considering restricted versions of the model.
In particular, the computation of the GMM estimator is much simpler if we assume no het-
erogeneity on price sensitivity within a group of consumers (Σp

0 = 0 and πp,d0 = 0), so that
αdi = αd0. This assumption may be reasonable in particular if we have a fine segmentation
of consumers. In this case, we still have to optimize over θ = (θ1, ..., θnD). On the other
hand, solving the system defined by Equations (8)-(10) is easy. Equation (10) reduces to
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the standard inversion of market shares, whereas Equation (8) provides an explicit expres-
sion for transaction prices, since Ωd does not depend on pd. Thus, the computational cost is
significantly reduced compared to the general model.

Another restricted version of our model is when utility parameters do not vary with d. Then
θ = θ1 is of much lower dimension, making again the optimization much easier. This assump-
tion is realistic if consumers preferences vary with individual characteristics E, but sellers
only observe a proxy of E trough the discrete variable D. Then individual preferences are
independent of D conditional on E. Note that price discrimination with respect to D is still
relevant for sellers because the distribution of E conditional on D = d varies with d, i.e. the
distribution of preferences differs in the nD groups.

Finally, another alternative is to rely on the logit or nested logit models. In the simple logit
model, we have seen above that the matrix Ωd only depends on (α1, ..., αnD). In the nested
logit, it also depends on the parameters (σ1, ..., σnD) that drive substitutions within nests. But
at the end, we also obtain a quite simple nonlinear optimization over (α1, σ1, ..., αnD , σnD) only.
We refer to Section 2.5 of the supplement for a detailed discussion on the computational and
statistical performances of the GMM estimator with the logit and nested logit models.

B Proofs

B.1 Proof of Theorem 1

In the sequel, the components of θ other than Σp = (Σp,1, ...,Σp,nD) and πp = (πp,1, ..., πp,nD)

are held fixed. Hence, we identify θ (resp. θd) with (Σp, πp) (resp. (Σp,d, πp,d)). We also let
Kr = [0, p]r for any r ∈ N and introduce the function

qd,d
′

θ,j (p) =
[
Ωd′(θd

′
, pd

′
, δd
′

θd′
(pd
′
))−1sd

′
]
j
−
[
Ωd(θd, pd, δdθd(p

d))−1sd
]
j
.

The proof is divided in three steps. First, we show that gθ is a contraction if qd,d
′

θ,j (.) is a con-
traction, for all (j, d, d′). Second, we show that (θ, p) 7→ qd,d

′

θ,j (p) is continuously differentiable
(C1). Third, we prove that qd,d

′

θ,j (.) is a contraction for all θ = (Σp, πp) in a neighborhood of 0.

1. gθ is a contraction if qd,d
′

θ,j is a contraction, for all (j, d, d′).

First, because we consider the supremum norm here, gθ is a contraction if for all j, d, and θ
in a neighborhood of 0, gdθ,j is a contraction. By Assumption 3, we have

gdθ,j(p)− gdθ,j(p′) = fj(q
d,1
θ,j (p), ..., qd,nDθ,j (p′)− fj(qd,1θ,j (p′), ..., qd,nDθ,j (p)).

By assumption, fj is 1-Lipschitz for the supremum norm. As a result,

‖gdθ,j(p′)− gdθ,j(p)‖ ≤ max
d′

∣∣∣qd,d′θ,j (p′)− qd,d
′

θ,j (p)
∣∣∣ .
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The first step follows.

2. (θd, p) 7→ qd,d
′

θ,j (p) is C1.

First, we show that (θd, pd) 7→ δd
θd

(pd) is C1. Let µdθ,j(e, u, p
d
j ) be defined as in Equation (1),

except that we let the dependence on θ explicit. Then let

sθd(e, u, p
d, δd) = (sθd,1(e, u, pd, δd), ..., sθd,J(e, u, pd, δd)),

with

sθd,j(e, u, p
d, δd) =

exp
(
δdj + µdj (e, u, p

d
j )
)

∑J
k=0 exp

(
δdk + µdk(e, u, p

d
k)
) .

Finally, let Qθd(pd, δd) = (Qθd,1(pd, δd), ..., Qθd,J(pd, δd)), with

Qθd,j(p
d, δd) =

∫
sθd(e, u, p

d, δd)dP dE,ζ(e, u)− sdj .

Then δd
θd

(pd) is defined by Qθd(p
d, δd

θd
(pd)) = 0. By the dominated convergence theorem,

(θd, pd, δd) 7→ Qθd(p
d, δd) is C1. Moreover,

∂Qθd,j

∂δdk
=

∫
sθd,j(e, u, p

d, δdδd)
(
1{j = k} − sθd,k(e, u, pd, δdδd)

)
dP dE,ζ(e, u).

Thus,

∑
k 6=j

∣∣∣∣∂Qθd,j∂δdk

∣∣∣∣ ≤ ∫ sθ,j(δ
d, pd, u, e)

(
1− sθ,0(δd, pd, u, e)− sθ,j(δd, pd, u, e)

)
dP dE,ζ(e, u)

<
∂Qθd,j

∂δdj
.

In other words, the jacobian matrix of δd 7→ Qθd(p
d, δd) is diagonally dominant, and thus

invertible. Hence, the conditions of the implicit function theorem hold, and (θd, pd) 7→ δd
θd

(pd)

is C1.

Second, for any products (i, j) produced by the same firm, the (i, j)-th term of the matrix
Ωd(θd, pd, δd) satisfies

Ωd
i,j(θ

d, pd, δd)

=

∫ (
αd + πp,de+ Σp,dup

)
sdθd,i(e, u, δ

d, pd)(1{i = j} − sdθd,j(e, u, δ
d, pd))dP dE,ζ(e, u).

Then, by the dominated convergence theorem, (θd, pd, δd) 7→ Ωd
i,j(θ

d, pd, δd) is C1 on R×KJ×
RJ . This is also the case if i and j are not produced by the same firm, since in this case
Ωd
i,j(θ

d, pd, δd) is simply equal to 0.

Third, the inverse mapping for matrices, A 7→ A−1, is C1 on any subset of A+ = {A : det(A) >
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0} or A− = {A : det(A) < 0}. Let us show that{
Ωd(θd, pd, δd), (θd, pd) ∈ R×KJ

}
⊂ A+ or

{
Ωd(θd, pd, δd), (θd, pd) ∈ R×KJ

}
⊂ A−.

(16)
Suppose this is not the case. Then, by the intermediate value theorem, det(Ωd(θd, pd, δd)) = 0

for some (θd, pd). But a same reasoning as above shows that Ωd(θd, pd, δd) is diagonally
dominant. Thus, it is invertible, a contradiction. Hence, (16) holds.

Finally, by the chain rule, (θ, p) 7→ qd,d
′

θ,j (p) is C1.

3. For all (j, d, d′) and (θd, θd
′
) in a neighborhood of 0, qd,d

′

θ,j is a contraction.

By the maximum theorem (see e.g. Carter, 2001, Theorem 2.3) and Step 2, the function

Rd,d
′

j : (θd, θd
′
) 7→ max

p∈KJ

JnD∑
k=1

∣∣∣∂qd,d′θ,j /∂pk(p)
∣∣∣

is continuous. Let θ0 = (θ1
0, ..., θ

nD
0 ) be such that θd0 = θd

′
0 = 0. qd,d

′

θ0,j
is a constant function,

since neither δθ0(p) nor Ωd(θd0 , p
d, δd) depend on pd. Hence, Rd,d

′

j (θd0 , θ
d′
0 ) = 0. By continuity

of Rd,d
′

j , there exists Σ
d such that for all θd ∈ [0,Σ

d
] × {0}, Rd,d

′

j (θd, θd
′

0 ) < 1. πp,d 7→
max

Σp,d∈[0,Σ
d
]
Rd,d

′

j (Σp,d, πp,d) is also continuous and smaller than 1 at πp,d = 0. Then there

exists πd such that for all (Σp,d, πp,d) ∈ [0,Σ
d
]× [−πd, πd], Rd,d

′

j (Σp,d, πp,d, θd
′

0 ) < 1.

Repeating this argument for θd′ instead of θd, we see finally that there exists Σ
d,d′

> 0 and
πd,d

′ such that for all (θd, θd
′
) ∈ ([0,Σ

d,d′
] × [−πd,d′ , πd,d′ ])2, Rd,d

′

j (θd, θd
′
) < 1. In turn, this

implies that qd,d
′

θ,j is a contraction for all Σp ∈
[
0,Σ

d,d′
]nD

and all πp ∈
[
−πd,d′ , πd,d′

]nD
. The

result follows.

B.2 Proof of Proposition 1

A symmetric test is to accept H0 if T < s∗ and accept H1 otherwise, with PH0(T > s∗) =

PH1(T ≤ s∗). The first probability is strictly decreasing in s∗ while the second is increasing in
s∗. Hence, t < s∗ if and only if PH0(T > t) > PH1(T ≤ t). In other words, T < s∗ if and only
if p0 > p1, and the test where we accept H0 if p0 > p1 and accept H1 otherwise is symmetric
in both hypotheses. Now, to compute p0 and p1, note that under H0,

PH0(T > t) = P (aZ2 + bZ + c > 0),

where Z ∼ N (0, 1) and with a = σ̂2
1 − σ̂2

0, b = 2
√
Jσ̂0 and c = −J − σ̂2

1t. The result follows
using standard arguments on quadratic inequalities. The same reasoning applies for p1.
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