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Abstract

This paper studies the econometric properties of a linear-in-means model of so-

cial interactions. Under a slightly more restrictive framework than Lee (2007), we

show that this model is generically identified when at least three different sizes of

peer groups are observed in the sample at hand. While unnecessary in general, ho-

moskedasticity may be required in special cases, for instance when endogenous and

exogenous peer effects cancel each other. We extend this analysis to the case where

only binary outcomes are observed. Once more, most parameters are semiparamet-

rically identified under weak conditions. However, identifying all of them requires

more stringent assumptions, including an homoskedasticity condition. We also de-

velop a parametric estimator for the binary case which relies on the GHK simulator.

Monte Carlo simulations illustrate the influence of group sizes on the accuracy of the

estimation, in line with the results obtained by Lee (2007).
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1 Introduction

In a seminal paper, Manski (1993) showed that in a linear-in-expectations model with so-
cial interactions, endogenous and exogenous peer effects cannot be separately identified.
Only a function of these two types of effects can be identified under some strong exo-
geneity conditions. In the context of pupil achievement for instance, Hoxby (2000) and
Ammermueller & Pischke (2006) reach identification by assuming that variations in time
or across classrooms within the same school are random.1 However, Lee (2007) has re-
cently proposed a modified version of the social interaction model, which corresponds to a
linear-in-means model, and which is shown to be identifiable without any of the previous
restrictive assumptions, thanks to group size variation.

The aim of our paper is threefold. Firstly, we reexamine the identification of this linear-
in-means model when group sizes do not depend on the sample size.2 We believe that, in
practice, such an assumption is virtually always satisfied. For instance, there is no reason
why the mean classroom size should depend on the size of the sample. Moreover, this extra
assumption enables us to clarify the sources of identification in this model.3 More precisely,
we show that in the linear-in-means model, the crucial assumptions for identification are
1) the knowledge of the group sizes, and 2) the fact that group sizes take at least three
different values. Parametric assumptions on the error term are not required. In general,
homoskedasticity is not required either. This last assumption is useful however when both
types of peer effects cancel each other, since in this case identification is lost without such
a restriction.

Secondly, we extend these results to a model where only binary outcomes are observed.
Identification of discrete outcome models with social interactions has already been studied
by, e.g., Brock & Durlauf (2001, 2007) and Krauth (2006). Our model is slightly different,
though, as we assume that social interactions may affect individuals through peers’ latent
variables rather than through their observable outcomes. This is convenient when only
binary outcomes are observable, because of data limitation. This model is close to spatial
discrete choice models (see e.g. Case, 1992, McMillen, 1992, Pinkse & Slade, 1998, Beron
& Vijverberg, 2004 or Klier & McMillen, 2008). The difference is that we allow here for

1Subsequently, we will often consider the example of peer effects in schools, although the model could
also be applied to other topics, like smoking (see, e.g., Krauth, 2006), productivity in teams (see Rees
et al., 2003) or retirement (Duflo0 & Saez, 2003).

2This is approximately the scenario with small group interactions proposed by Lee (2007).
3Under his more general setting, Lee (2007) provides sufficient conditions for identification, but they

are rather difficult to interpret (see his Assumption 6.1 and 6.2).
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exogenous peer effects and for fixed group effects simultaneously. The attractive feature
of our result is that it does not rely on any functional assumption concerning the errors.
Once more, the exogenous peer effects can be identified through group size variation. On
the other hand, due to the loss of information, endogenous peer effects cannot be identified
without further restrictions. We show that an homoskedasticity condition is sufficient for
this purpose.

Thirdly, we develop a parametric estimation of the binary model, complementing the meth-
ods proposed by Lee (2007) for the model with a continuous outcome. We show that under
a normality assumption on the residuals and a linear specification à la Mundlak (1961) on
the fixed effect, a simulated maximum likelihood estimator can be implemented by using
the GHK algorithm (Geweke, 1989, Keane, 1994 and Hajivassiliou et al., 1996). Thus,
this estimator is close to Beron and Vijverberg (2004)’s one on spatial probit models. We
investigate its finite sample properties through Monte Carlo simulations. The results stress
the determining effect of average group size for the accuracy of the inference, in line with
Lee (2007)’s result concerning the linear model.

The paper is organized as follows. In the next section, we present the theoretical model
of social interactions. In Section 3, we study the identification of the model, both for the
continuous and the discrete cases. The fourth section discusses the parametric estimation
method of the discrete model. Section 5 displays Monte Carlo simulations. Section 6
concludes. Proofs are given in the appendix.

2 A theoretical model of social interactions

We consider the issue of individual choices in the presence of social interactions within
groups. Let ei denote the continuous choice variable of an individual i who belongs to a
group of size m, xi be her exogenous covariates and εi her (random) individual-specific
characteristic. We suppose that her utility when choosing ei, while the other persons in
the group choose (ej)j 6=i, takes the following form:

Ui(ei, (ej)j 6=i) = ei

[
xiβ10 +

(
1

m− 1

m∑
j=1, j 6=i

ej

)
λ0

+

(
1

m− 1

m∑
j=1, j 6=i

xj

)
β20 + α + εi

]
− 1

2
e2

i .

In this framework, the marginal returns of individual i depends on her own characteristics
xi, her peers’ choices (ej)j 6=i, their observable (exogenous) characteristics (xj)j 6=i and a
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group fixed effect α. In a classroom, for instance, the utility of a student depends on her
effort ei and on the efforts of others because of spillovers in the learning process. Like
Cooley (2007) and Calvó-Armengol et al. (2008), among others, we also allow the utility
of each individual to depend on the observable characteristics of her peers. Indeed, there
is some empirical evidence about the influence of peers’ race, gender or parental education
on student achievement (see e.g. Hoxby, 2000, or Cooley, 2007). A plausible explanation
is that the marginal effect of ei on achievement (which is positively correlated with the
student’s utility) depends on these characteristics.4 Lastly, the outcome may depend on
a classroom-specific effect, because of the teacher’s quality, for instance. This model is
close to the one considered by Calvó-Armengol et al. (2008) who study the effect of peers
on individual achievement at school. An important difference is that they consider the
network of friends, whereas our model is better suited when all classmates potentially
affect the student’s achievement.

Assuming that α and the (xi, εi)1≤i≤m are observed by all the individuals in the group, the
Nash equilibrium of the game (ỹ1, ..., ỹm) satisfies

ỹi = xiβ10 +

(
1

m− 1

m∑
j=1,j 6=i

ỹj

)
λ0 +

(
1

m− 1

m∑
j=1,j 6=i

xj

)
β20 + α + εi. (2.1)

This model is identical to Lee’s model (2007) of social interactions. Following the termi-
nology introduced by Manski (1993), the second term in the right-hand side corresponds
to the endogenous peer effect, the third refers to the exogenous peer effect and α is a
contextual (group-specific) effect. This model departs from the one considered by Manski
(1993) or by Graham & Hahn (2005) by replacing, on the right-hand side, the expectations
relative to the whole group by the means of outcomes and covariates in the group of peers.5

Interestingly, one can show that Manski’s model is actually the Bayesian Nash equilibrium
of the game when player i does not observe the characteristics (xj, εj)j 6=i of her peers, the
(εi)1≤i≤m being mutually independent and independent of (x1, ..., xm, α,m). This frame-
work seems more realistic in large groups, whereas the hypothesis that the characteristics
of other persons in the group are observed is likely to hold in small ones.

4For instance, girls may less disrupt classrooms than boys, all things being equal (see Lazear, 2001). In
this case, the marginal effect of effort increases for everyone in the classroom.

5Graham and Hahn (2005) makes the further restriction that β20 = 0, i.e., that there are no exogenous
peer effect.
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3 Identification

We now turn to the identification of Model (2.1). First, as a benchmark, we suppose that
the outcomes ỹi are directly observed. This case corresponds to Lee (2007)’s framework, but
we investigate it under a slightly different approach in Subsection 3.1. In Subsection 3.2, we
study the situation where only rough measures of the outcomes, namely yi = 1{ỹi ≥ 0},
are available. In both cases, we implicitly assume that the econometrician knows the
group of interactions for each individual. In the previous example, this assumption is mild
if students really interact within the classroom, since the classroom identifier is usually
known. It can be restrictive otherwise, but at our best knowledge, this assumption is also
maintained in all papers studying identification of peer effects, including those by Manski
(1993), Brock and Durlauf (2001), Lee (2007), Graham (2008) and Bramoullé et al. (2009).
This stems from the fact that, in Manski’s model at least, very little can be inferred from
the data and from the model if the peer group is not known (see Manski, 1993, Subsection
2.5).

3.1 The benchmark: the linear model

In this section, we clarify the results obtained by Lee (2007), in the case where the size m of
the group does not depend on the size of the sample.6 We believe that such an assumption
is virtually always satisfied in practice. For instance, there is no reason why the mean
classroom size should depend on the size of the sample. Moreover, this restriction enables
us to show what is identified from the usual exogeneity condition (see Assumption 4 below)
and when homoskedasticity is required (see Theorem 3.2 below).

It is quite common to observe some but not all members in each group, and we take this
into account for identification. On the other hand, we maintain the assumption that the
size of the group is observed.7 Let n denote the number of sampled individuals in the
group (n ≤ m). We denote by Ỹ (respectively, X) the vector of outcomes ỹi (respectively,
of covariates) of the individuals sampled in the group. Let Fm,n denote the distribution
function of (m,n) and F

eY ,X|m,n denote the conditional distribution of (Ỹ , X) given (m, n).
Lastly, we denote by Supp(T ) the support of a random variable T . We rely on the following
definition of identification.

6This is approximately the scenario with small group interactions considered by Lee (2007).
7This assumption is realistic in our leading example. In French panels of students, for instance, class-

room sizes are observed while only a fraction of pupils within classrooms is sampled.
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Definition 1 (β10, β20, λ0) is identified if there exists a function ϕ such that

(β10, β20, λ0) = ϕ

[(
F
eY ,X|m=m∗,n=n∗

)
(m∗,n∗)∈Supp(m,n)

, Fm,n

]
.

This definition states that the structural parameters are identified if they can be obtained
through the distribution of the data. Implicit in the definition is the fact that our asymp-
totic is in the number of groups, as it is the case in standard panel data models.8 Now,
the key point for identification of the parameters when the ỹi are observed is to focus on
the within-group equation, which may be written as:

WnỸ = WnX

(
(m− 1)β10 − β20

m− 1 + λ0

)
+ Wn

U

1 + λ0/(m− 1)
, (3.1)

where U is the vector of unobserved residuals ε for individuals sampled in the group, and
Wn denotes the within-group matrix of size n, that is to say the matrix with (1 − 1/n)
on the diagonal and (−1/n) elsewhere. To identify the structural parameters, we use
the variation in the slope coefficient β(m) = ((m− 1)β10 − β20) / (m− 1 + λ0). For this
purpose, we make the following assumptions:

Assumption 1 Pr(n ≥ 2) > 0.

Assumption 2 Supp(m) contains at least three values.

Assumption 3 For all 1 ≤ i, j ≤ m, E [x′iεj | m, n] = 0.

Assumption 4 E [X ′ Wn X | m,n] is almost surely nonsingular.

Assumption 5 1 > λ0 > 1−min (Supp(m)).

Assumption 1 simply states that the within-group approach is feasible. Assumption 2,
which is the cornerstone of our approach, ensures that there is sufficient variation in group
sizes. Assumptions 1, 3 and 4 are standard in linear panel data models, except that
conditional expectations depend here both on the number of observed individuals in each
group and on the group size. Conditioning by n does not cause any trouble if, for instance,
the observed individuals are drawn randomly in each group. Finally, Assumption 5 ensures
that β(m∗) exists for all m∗ ∈ Supp(m).9

8Indeed, when the number of groups tend to infinity, we are able to estimate consistently(
F
eY ,X|m=m∗,n=n∗

)
(m∗,n∗)∈Supp(m,n)

as well as Fm,n.
9Theorem 3.1 would remain valid if Assumption 5 were replaced by the weaker condition λ0 /∈

−Supp(m− 1). However, Assumption 5 is required under this form in Theorems 2, 3, 4 and in Lemma 1.
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Theorem 3.1 Under Assumptions 1-5, β10 is identified. Moreover,
- if β20 6= −λ0β10, then λ0 and β20 are identified;
- if β20 = −λ0β10, then λ0 is not identified and β20 is identified only up to scale.

Theorem 3.1 states that all parameters are generally identified, provided that there is
sufficient variation in the group sizes. As a notable exception, identification is lost in the
absence of endogenous and exogenous peer effects, since then β20 = −λ0β10 = 0. One
can always rationalize such a model with any λ′0 6= 0 and β′

20 = −λ′0β10. Using the first
conditional moment of Ỹ alone, one cannot distinguish the case with both exogenous and
endogenous peer effects (which cancel out in this case) from the case with no peer effects.
Below, we provide a method which yields identification in this case, but it relies on a
stronger assumption of homoskedasticity. In any case, one can check whether identification
is lost or not, since this amounts to test whether β(.) is constant or not.

Contrary to the reduced form approach, we do not need to know the mean (xr)1≤r≤R in
each group to identify the parameters. Thus the problem of measurement error on xr,
which appears when some individuals in the group are unobserved, does not arise in our
framework. Here the crucial assumption is the knowledge of the group size. If it is unknown
but can be estimated, the measurement error problem comes back in a nonlinear way. The
issue of identification in this case is left for future research.10

The nature of the group size effect provides another identifying assumption. Indeed, m

may be correlated with α in a general way, but we cannot add interaction terms between
the indicators 1{m = m∗} (with m∗ ∈ Supp(m)) and the covariates to the list of regressors,
since then Assumption 4 would fail. To see this, let us remark that, if β10 and β20 depend on
m in an unspecified way, then we can still identify β(m) but not the structural parameters.
On the other hand, identification of these structural parameters can be achieved if the
dependence of β10 and β20 with respect to m takes a parametric form.11 Of course, in
this case, identification requires that m takes more than three different values. This also
implies that the basic model where β10, β20 and λ0 are constant across group sizes is
overidentified as soon as we observe at least four different group sizes. A simple way to
test this restriction is to estimate β(.) by using a within-group estimator for each group
size, and then to implement the overidentification test for minimum distance estimators

10Following Schennach (2004), the model would still be identified if two independent measures of m were
available. The remaining issue is whether the model is identified with only one measure, as it is in a linear
model (see, e.g., Lewbel, 1997).

11For instance we can write these parameters as affine transformations of m. This is equivalent to adding
interaction terms between X and m.
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(see e.g. Wooldridge, 2002, p. 444).

If β20 = −λ0β10, then λ0 and β20 cannot be identified without further restriction. To recover
them, one can use the residual variance variation, under an homoskedasticity condition
(see our Assumption 6 below). More precisely, the conditional variance of the residuals
should not depend on the group size. This hypothesis is quite weak since it does not
restrict the relationship between the residuals εri and the covariates xri. Moreover, under
Assumption 6, one needs less variation across group sizes than previously, and we can
replace Assumption 2 by Assumption 2’.

Assumption 2’ Supp(m) contains at least two values.

Assumption 6 V (U | n, m) = σ2In where In is the identity matrix of size n.

Theorem 3.2 Under Assumptions 1, 2’ and 3-6, (β10, λ0, β20) are identified.

The idea of using second order moments to identify peer effects has already been exploited
by Glaeser et al. (1996) and Graham (2008). In particular, Graham (2008) develops a
framework where composite peer effects can be identified through such a restriction. In
his model, however, endogenous peer effects are not identified.

3.2 The binary model

We now investigate whether the parameters are still identified when one cannot observe
directly the outcome variable ỹi but only a rough binary measure of it, namely yi =

1{ỹi ≥ 0}.12 For instance, when studying peer effects in the classroom, the analyst could
observe only grade retention decisions rather than students’ efforts. Similarly, in criminal
studies, the violence level chosen by an individual may depend on the violence level chosen
by her peers. The level chosen in equilibrium is a continuous variable. However, the
econometrician may only be able to observe a rough measure of this violence level, through
criminal acts. This fits within our framework as long as doing criminal acts corresponds
to being above a given threshold of violence.

The binary model we consider is not a discrete choice model but rather a continuous
choice model with imperfect observations of the choice. In discrete choice models, the
econometrician observes the choice ỹi ∈ {1, ..., p} of i. This choice depends on (ỹj)j 6=i,

12The definition of identification that we use here is similar to the one introduced in Definition 1, except
that Ỹ has to be replaced by Y , the vector of outcomes yi observed for the individuals sampled in the
group.
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as in Equation (2.1), but in a nonlinear way. Such models have been studied by Brock
and Durlauf (2001, 2007), Tamer (2003), Krauth (2006) and Bayer & Timmins (2007).
The main challenge when making inference on these models is that in general, multiple
equilibria arise. This is not a concern here, as ỹi is uniquely defined by Equation (2.1).

When the outcome is a binary variable, the reduced-form Equation (3.1) is useless for
identification since WnỸ has no observational counterpart. Instead, we rely on Equation
(3.2) below.

Lemma 1 Suppose that yi = 1{ỹi ≥ 0}, where ỹi satisfies Equation (2.1), and that As-
sumption 5 holds. Then the model is observationally equivalent to the model generated by
the following equation:

yi = 1

{
xi

(
β10 −

β20

m− 1

)
+

[
x

m

m− 1

(
β20 +

β10 + β20

1− λ0

λ0

)
+ α (1 + λ0(m))

]
+ε λ0(m) + εi ≥ 0

}
, (3.2)

where λ0(m) = mλ0/((m− 1)(1− λ0)).

The term into brackets is a fixed group effect. Thus we are led back to a binary model for
panel data. Identification of such a model has been considered, among others, by Manski
(1987), and our analysis relies on his paper. In the following, we denote by xk

j the k-th
covariate of individual j. The following assumptions are needed for identification.13

Assumption 7 (ε1, ..., εm) are exchangeable conditional on (m, x1, ..., xm, α). The support
of ε1 + λ0(m)ε conditional on (m, x1, ..., xm, α) is R, almost surely.

Assumption 8 Let z = x2 − x1. The support of z is not contained in any proper linear
subspace of RK, where K denotes the dimension of xi.

Assumption 9 There exists k0 such that zk0 has everywhere a positive Lebesgue condi-
tional density given (m, z1, ..., zk0−1, zk0+1, ..., zK) and such that βk0

10 = 1. Without loss of
generality, we set k0 = 1.

The first part of Assumption 7 holds for instance if, conditional on m and α, the residuals
(εi)1≤i≤m are exchangeable and independent of the covariates (xi)1≤i≤m. In particular,
Assumption 7 is satisfied if the (εi)1≤i≤m are i.i.d. and independent of (x1, ..., xm, m, α).
The second part of Assumption 7 is a technical condition, which is identical to the second

13Without loss of generality, we assume here that individuals 1 and 2 are observed.
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part of Assumption 1 set forth by Manski (1987). Assumption 8 ensures that z varies
enough within a group. As usually in binary models, one parameter must be normalized,
and this is the purpose of Assumption 9. However, a small difficulty arises here, because
the reduced form does not allow us to identify the sign of the structural parameters. A
sufficient condition is to fix one parameter (and not only its absolute value): thus we set
β1

10 = 1.14

Theorem 3.3 Suppose that Assumptions 1-2, 5 and 7-9 hold. Then β10 is identified.
Moreover,
- if β20 6= β1

20β10, then β20 is identified,
- if β20 = β1

20β10, β1
20 is not identified and the other parameters βk

20 are identified up to β1
20.

On the other hand, λ0 is not identified.

If fewer parameters (i.e., fewer than those included in Model (2.1) are identified, Theorem
3.3 shows that the main attractive features of the method remain. Without any exclusion
restriction and even if only two members of the groups are observed, β10 and β20 are
generally identified. Similarly to the result set forth in Theorem 3.1, identification of β20

is lost when there is no exogenous peer effect, because in this case β20 = β1
20β10 = 0. The

non-identifiability of λ0 is not surprising since this parameter only appears in the fixed
effect and in the residuals (see Equation (3.2)). Heuristically, without any assumption
imposed on these terms, any λ0 can be rationalized by changing accordingly α and the
residuals (εi)1≤i≤m.

Thus stronger assumptions are needed for identifying λ0. One possibility is to observe
x and to restrict the dependence between the residuals and the covariates through the
following assumptions:

Assumption 2’’ The support of m given x has at least three elements with positive proba-
bility.

Assumption 10 x is observed.

Assumption 11 (ε1, ..., εm, α) ⊥⊥ (x1, ..., xm) | m, x.

Assumption 12 V (ε1, ..., εm, α | x, m) =

(
V (ε1 | x)Im 0

0 V (α | x)

)
.

Assumption 13 Given (x, m), the support of
{
x1(β10 − β20

m−1
), x2(β10 − β20

m−1
)
}

is R2.

14Obviously, Theorem 3.3 also holds with β1
10 = −1.
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Assumption 2’’ is slightly more restrictive than Assumption 2, but should hold most of the
time. For instance, it is satisfied for a multinomial logit (or probit) model generating the
conditional distribution of m given x. As mentioned above, Assumption 10 is a restrictive
condition as it imposes either to observe all individuals in the group or to consider only
covariates whose means are known. Assumption 11 is in the same spirit as Assumption 7.
It restricts the dependence between α and the covariates to a dependence on the mean.
Assumption 12 is the assumption of homoskedasticity in m; it is very similar to Assumption
6. The difference between both assumptions stems from the identifying equation we use in
both cases. In the discrete model, α remains in Equation (3.2), and thus its variance must
be modeled as well as its covariance with the residuals (εi)1≤i≤m.15 Finally, Assumption
13 is a condition of large support. In particular, it implies that m ≥ 3. Otherwise, indeed,
the two variables belong to a line in R2.

Theorem 3.4 Under Assumptions 1, 2’’, 5, and 7-13, and if β20 6= β1
20β10, λ0 is also

identified.

4 Estimation

In this section we restrict the analysis to the case where only 1{ỹi ≥ 0} is observed,
since the continuous case is analyzed in full details by Lee (2007). We also restrict our-
selves to a parametric setting with homoskedasticity that is characterized by the following
assumptions:

Assumption 14 The residuals (εi)1≤i≤m are i.i.d. and εi ∼ N (0, 1).

Assumption 15 α|x, m ∼ N (γ0(m) + δ0(m)x, σ2
0).

Assumption 14 imposes the normality of the residuals. This assumption is also imposed
by Lee (2007) when he develops his conditional maximum likelihood estimator, or by
McMillen (1992) and Beron and Vijverberg (2004), among others, when studying spatially
dependent discrete choice models. Contrary to the previous section, we adopt here the usual
normalization by supposing that the variance of the residuals is equal to one. Assumption
15 has two consequences. First, it strengthens Assumptions 11 and 12 by introducing a
linear dependence à la Mundlak (1961) between α and x, conditional on m. Note that the

15The assumption of no covariance is not restrictive. Indeed, if there is a correlation between εi and α

which does not depend on i, one can always reparametrize the model in order to make them uncorrelated.
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dependence between α and m remains very flexible. Second, Assumption 15 imposes the
normality of the residual term, in a similar way to the standard random effect probit.

Under these conditions, the model is fully identified, as in Theorem 3.4 but in a more direct
way. Indeed, β10 and β20 can be identified through group size variations. Moreover, the
model can be written in this case as

yi = 1

{
γ′0(m) + xi

(
β10 −

β20

m− 1

)
+ x δ′0(m)− vi ≥ 0

}
, (4.1)

where γ′0(m) and δ′0(m) depend on γ0(m), δ0(m) and on the parameters of the model,
the error term vi being a combination of (εi)1≤i≤m with the residual α − γ0(m)− δ0(m)x.
Conditional on m, the vector (vi)1≤i≤m is normally distributed and exchangeable, with

V (vi|m) = 1 + σ2
0 + λ0(m)(2 + λ0(m))

(
σ2

0 +
1

m

)
,

Cov(vi, vj|m) = σ2
0 + λ0(m)(2 + λ0(m))

(
σ2

0 +
1

m

)
, ∀ i 6= j.

One can show that when m varies, it is possible to separate λ0 from σ2
0 in the covariances

(or in the variance).

Now, let us suppose that we observe a sample of R groups where, for the sake of simplicity,
all members in each group are observed (even if we only need to observe x). Hence, for
group r, we observe its size mr, the vector of outcomes Yr = (yr1, ..., yrmr) and the vector
of covariates Xr = (xr1, ..., xrmr). We suppose that the sizes (mr)1≤r≤R are i.i.d., and that
(Xr, αr, Vr)1≤r≤R are independent and distributed according to FX,α,V |m,n, where V is the
vector of unobserved shocks (v1, ..., vm). In the previous example of peer effects in the
classroom, this condition imposes that there is no spillovers between classrooms.

Let θ = (β1, β2, λ, σ2, (γ′(m∗), δ′(m∗))m∗∈Supp(m)) denote the vector of all parameters. Under
the previous i.i.d. assumption, the likelihood of the whole sample satisfies

L(Y1, ..., YR|m1, ...,mR, X1, ...XR, θ) =
R∏

r=1

L(Yr|mr, Xr, θ),

where L(Yr|mr, Xr, θ) denotes the likelihood for group r. Moreover, by using (4.1), we can
write this likelihood as:

L(Yr|mr, Xr, θ)

= Pr

[
(2yr1 − 1)vr1 ≤ (2yr1 − 1)

(
γ′(mr) + xr1

(
β1 −

β2

mr − 1

)
+ xrδ

′(mr)

)
, ...,

(2yrmr − 1)vrmr ≤ (2yrmr − 1)

(
γ′(mr) + xrmr

(
β1 −

β2

mr − 1

)
+ xrδ

′(mr)

)]
.

12



This is the probability that a multivariate normal vector belongs to an hyperrectangle in
Rmr . Such a probability can be estimated, for instance, by the GHK algorithm (Geweke,
1989, Keane, 1994, and Hajivassiliou et al., 1996). Thus, the model can be estimated by
simulated maximum likelihood.

5 Monte Carlo simulations

In this section, we investigate the finite sample performance of our estimator. The sample
data are generated with one regressor xri ∼ N (0, 4), the (xri)r,i being independent for all
r and i. The true parameters are β10 = 1, β20 = 1, λ = 0.2, σ2

0 = 0.5, γ(m) = 0 for all
m, and δ(m) = 0.1 for all m. As Lee (2007), we consider a case where the average size
group is small, and another where it is relatively large. In the first case, the group sizes
vary from 3 to 8, the number of groups of each size being the same. In the relatively large
case, they range from 15 to 25. The first case could be realistic for groups of good friends
or roommates for instance, whereas the second one could correspond to groups of students
in a classroom. In each case, we consider different sample sizes from 330 to 21,120. In the
GHK algorithm, we use Halton sequences instead of standard uniform random numbers
as they improve, on average, the accuracy of the integral estimation (see, e.g., Sándor &
András, 2004). In the small group case where the dimension of the integral is low, we rely
on 25 replications, whereas we utilize 50 replications in the large group case.
Table 1 displays our results. The first striking point is that sample sizes must be quite large
to obtain satisfactory results. If we compare the results of our small groups scenario with
the one considered by Lee (see Lee, 2007, Table 1, Model SG-SX), it seems that, observing
a binary measure of ỹi instead of ỹi itself leads to rather large biases for even moderately
large sample sizes.16 In particular, the bias on λ0 is systematically negative for small and
moderately large sample sizes. The second striking result is the influence of the group
sizes. The accuracy of the estimator of β20 in large groups is approximately the same as
the one in small groups, but with a sample four times larger. This is not surprising, since
identification of peer effects becomes weak as the sample size increases (see Lee, 2007).
The parameter λ0 is also better estimated with small groups, but the difference between
the two designs seems to decrease when the sample size grows. On the other hand, and
quite surprisingly, the estimator of β10 is more precise in large groups.

16Note that it is difficult to compare our large group scenario with the one studied by Lee, since he
considers a model with two independent covariates x1i and x2i such that x1i has only a direct effect on yi

(i.e., β1
20 = 0), while x2i affects yi only through exogenous peer effects (so that β2

10 = 0).
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Table 1: Results of the Monte Carlo simulations.

Sample Small groups Large groups
size Parameter Mean Std. err. Mean Std. err.

660 β10 0.9975 0.2254 1.0128 0.1658
β20 0.8956 0.8877 1.4445 2.7601
λ0 -0.0304 0.5688 -0.3801 0.6600

1320 β10 1.0029 0.1198 1.0025 0.0865
β20 0.9823 0.4885 0.9780 1.4712
λ0 0.1158 0.3458 -0.0026 0.3093

2640 β10 0.9936 0.0951 0.9978 0.0678
β20 0.9378 0.3739 1.0761 0.8625
λ0 0.1831 0.1405 0.1247 0.1833

5280 β10 0.9904 0.0664 1.0001 0.0419
β20 0.9744 0.2425 1.0264 0.5747
λ0 0.1927 0.0678 0.1620 0.1167

10560 β10 0.9914 0.0451 1.0014 0.0285
β20 0.9708 0.1690 1.0240 0.4303
λ0 0.2000 0.0389 0.1788 0.0513

21120 β10 0.9911 0.0295 0.9984 0.0180
β20 0.9872 0.1065 0.9777 0.2847
λ0 0.1897 0.0284 0.1950 0.0311

Note: The small groups scenario corresponds to a sample composed of groups
whose size goes from 3 to 8, the number of groups of different sizes being equal.
The large groups scenario corresponds to a sample of groups whose size goes
from 15 to 25, the number of groups of different sizes being still equal.

6 Conclusion

This paper considers identification and estimation of social interaction models using group
size variation. Provided that the sizes of the groups are known and vary sufficiently,
endogenous and exogenous peer effects can be identified without any exclusion restriction
in the linear-in-means model. The result can be extended to a binary outcome model. In
this case, exogenous peer effects are also identified under weak assumptions. Identification
of endogenous peer effects is more stringent, as it requires an homoskedasticity condition
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and restrictions on the dependence between fixed group effects and covariates.

Our paper has two main limitations. First, the size of each group is assumed to be known.
However, as emphasized by Manski (2000), it is often difficult to define groups a priori. This
criticism is common to all models of social interactions, but may be especially problematic
here. Indeed, ignoring the boundaries of the group leads (among other difficulties) to
measurement errors on the group size, which could prevent identification. Second, we do
not consider a fully nonparametric regression. The issue of whether group size variation
has an identifying power in this general case should be examined in a future research.

Appendix A: proofs

In all the proofs, t∗ denotes a possible value of the random variable t.

Proof of Theorem 3.1: First, under Assumption 3, E(X ′WnU | n, m) = 0. Thus, by
Assumption 4, β(m∗) is identified for all m∗ ∈ Supp(m). We now prove that the knowledge
of m∗ 7→ β(m∗) allows in general to identify the structural parameters.

Let (m∗
1, m

∗
2) ∈ Supp(m)2. Then

(m∗
1 − 1)β10 − β20

m∗
1 − 1 + λ0

=
(m∗

2 − 1)β10 − β20

m∗
2 − 1 + λ0

is equivalent to
(β10λ0 + β20) (m∗

1 −m∗
2) = 0.

Hence, if β20 = −λ0β10, β(.) is constant. In the opposite case, β(.) is a one-to-one mapping.
In the first case, β(m∗) = β10 for all m∗. Thus β10 is identified, but λ0 cannot be identified
by β(.). Since β20 = −λ0β10, β20 is identified up to a constant.

Now suppose that β20 6= −λ0β10. Let (m∗
0, m

∗
1, m

∗
2) be three different values in Supp(m). We

will prove that the knowledge of β(m∗
0), β(m∗

1) and β(m∗
2) allows to identify (β10, λ0, β20).

This amounts to show that the system
β(m∗

0)λ0 − (m∗
0 − 1)β10 + β20 = −β(m∗

0)(m
∗
0 − 1)

β(m∗
1)λ0 − (m∗

1 − 1)β10 + β20 = −β(m∗
1)(m

∗
1 − 1)

β(m∗
2)λ0 − (m∗

2 − 1)β10 + β20 = −β(m∗
2)(m

∗
2 − 1)

has a unique solution. Using the matrix form, we can rewrite the system as Aζ0 = B

where ζ0 = (λ0, β10, β20)
′. If det(A) 6= 0, ζ0 is identified. Suppose that det(A) = 0. Then
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com(A)′B = 0 where com(A) denotes the comatrix of A. By using the first line of this
equation and the expression of det(A), we get: (m∗

2 −m∗
1)β(m∗

0) + (m∗
0 −m∗

2)β(m∗
1) + (m∗

1 −m∗
0)β(m∗

2) = 0

(m∗
0 − 1)(m∗

2 −m∗
1)β(m∗

0) + (m∗
1 − 1)(m∗

0 −m∗
2)β(m∗

1) + (m∗
2 − 1)(m∗

1 −m∗
0)β(m∗

2) = 0.

Hence,  (m∗
2 −m∗

1)β(m∗
0) + (m∗

0 −m∗
2)β(m∗

1) + (m∗
1 −m∗

0)β(m∗
2) = 0

m∗
0(m

∗
2 −m∗

1)β(m∗
0) + m∗

1(m
∗
0 −m∗

2)β(m∗
1) + m∗

2(m
∗
1 −m∗

0)β(m∗
2) = 0.

Thus,  (m∗
2 −m∗

1)β(m∗
0) + (m∗

0 −m∗
2)β(m∗

1) + (m∗
1 −m∗

0)β(m∗
2) = 0

(m∗
0 −m∗

2)(m
∗
2 −m∗

1)β(m∗
0) + (m∗

0 −m∗
2)(m

∗
1 −m∗

2)β(m∗
1) = 0.

Because m∗
1 6= m∗

2 and m∗
0 6= m∗

2, this implies that β(m∗
1) = β(m∗

0), which is in contradiction
with the fact that β(.) is a one-to-one mapping. Thus det(A) 6= 0 and ζ0 is identified.

Proof of Theorem 3.2: Because m∗ 7→ β(m∗) is identified, V

(
WnU

1+
λ0

m−1

| n,m

)
is known.

Thus, under Assumption 6,

V

(
WnU

1 + λ0

m−1

| n,m

)
=

σ2(
1 + λ0

m−1

)2Wn.

Hence, for all m∗
1 6= m∗

2 ∈ Supp(m)2,

C ≡

(
1 + λ0

m∗
1−1

)2

(
1 + λ0

m∗
2−1

)2

is identified. Under Assumption 5, 1 + λ0/(m
∗ − 1) > 0 for all m∗ ∈ Supp(m). Thus( √

C

m∗
1 − 1

− 1

m∗
2 − 1

)
λ0 = 1−

√
C.

It is clear that
( √

C
m∗

1−1
− 1

m∗
2−1

)
6= 0. Otherwise, C = 1 and m∗

1 = m∗
2, which is a contradic-

tion. Thus λ0 is identified.

Then, because m∗ 7→ β(m∗) is identified, β10−β20/(m
∗−1) is known for all m∗ ∈ Supp(m).

Taking two different values for m∗ allows to identify β20 and thus β10.

Proof of Lemma 1: Taking the mean in both sides of Equation (2.1) leads to

ỹ = x

(
β10 + β20

1− λ0

)
+

α

1− λ0

+
ε

1− λ0

,
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since 1/(1 − λ0) exists, according to Assumption 5. Because
∑

j 6=i ỹj = mỹ − ỹi and∑
j 6=i xj = mx− xi, Equation (2.1) is then equivalent to

ỹi

(
1 +

λ0

m− 1

)
= xi

(
β10 −

β20

m− 1

)
+ x

m

m− 1

(
β20 +

β10 + β20

1− λ0

λ0

)
+α

(
1 +

m

m− 1

λ0

1− λ0

)
+ ε

m

m− 1

λ0

1− λ0

+ εi.

Now, under Assumption 5, 1+λ0/(m− 1) > 0, so that ỹi ≥ 0 if and only if ỹi(1+λ0/(m−
1)) ≥ 0. Thus, under Assumption 5, yi = 1{ỹi ≥ 0}, where ỹi satisfies Equation (2.1), is
observationally equivalent to yi satisfying Equation (3.2).

Proof of Theorem 3.3: Assumption 7 implies that the conditional distribution of εi +

λ0(m)ε is identical for every i. Thus Assumption 1 in Manski (1987) is satisfied and, using
our Assumptions 8 and 9, we can apply directly Manski’s result to identify ((m− 1)β10 −
β20)/|m− 1− β1

20|. The first term of the vector, ((m− 1)β1
10 − β1

20)/|m− 1− β1
20|, is also

identified. By Assumption 9,

β̃(m) ≡ (m− 1)β10 − β20

m− 1− β1
20

=

(m−1)β10−β20∣∣m−1−β1
20

∣∣
(m−1)β1

10−β1
20∣∣m−1−β1

20

∣∣ ,

so that β̃(m) is identified as the ratio of two known terms. The rest of the proof for the
identification of (β10, β20) follows the same development than the one used for Theorem
3.1, λ0 being replaced by −β1

20.

However, λ0 cannot be identified. Indeed, let λ′0 6= λ0, and define

ε′i = εi + ε
m(λ0 − λ′0)

(m− 1 + λ′0)(1− λ0)
.

Finally let

α′ =
mx(β10 + β20)(λ0 − λ′0) + α(m− 1 + λ0)(1− λ′0)

(m− 1 + λ′0)(1− λ0)
.

Then the parameters (λ′0, α
′, ε′1, ..., ε

′
m) are observationally equivalent to those characteriz-

ing the initial model. Indeed, we can check that they lead to Equation (3.2) as well. More-
over, conditioning on (m, x1, ..., xm, α′) is equivalent to conditioning on (m,x1, ..., xm, α),

and conditional exchangeability of (ε1, ..., εm) implies conditional exchangeability of (ε′1, ..., ε
′
m).

Furthermore, letting λ′0(m) = mλ′0/((m− 1)(1− λ′0)), we get

Fε′1+ε′λ′0(m)|m=m∗,x1=x∗1,...,xm=x∗m,α′=α′∗ = Fε1+ελ0(m)|m=m∗,x1=x∗1,...,xm=x∗m,α=α∗ ,
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where
α∗ =

(m− 1 + λ′0)(1− λ0)α
′∗ −mx∗(β10 + β20)(λ0 − λ′0)

(m− 1 + λ0)(1− λ′0)

and x∗ = (1/m)
∑

i x
∗
i . Thus the second part of Assumption 7 also holds with (λ′0, α

′, ε′1,

..., ε′m). This shows that λ0 is not identified.

Proof of Theorem 3.4: Let θ0 = λ0/(1− λ0) and

νi =

[
x

m

m− 1
[β20 + θ0(β10 + β20)] + α

(
1 +

m

m− 1
θ0

)]
+ ε

m

m− 1
θ0 + εi.

Note that Fν1,...,νm|x1,...,xm,m = Fν1,...,νm|x,m. Indeed

Fν1,...,νm|x1,...,xm,m(ν∗1 , ..., ν
∗
m|x∗1, ..., x∗m, m∗)

=

∫
Fν1,...,νm|x1,...,xm,m,α(ν∗1 , ..., ν

∗
m|x∗1, ..., x∗m, m∗, α∗)dFα|x1,...,xm,m(α∗|x∗1, ..., x∗m, m∗)

=

∫
Fν1,...,νm|x,α,m(ν∗1 , ..., ν

∗
m|x∗, α∗, m∗)dFα|x,m(α∗|x∗, m)

= Fν1,...,νm|x,m (ν∗1 , ..., ν
∗
m|x∗, m∗) ,

where the third line is derived from Assumption 11 and the fact that, given (x1, ..., xm,

m, α), (ν1, ..., νm) is a deterministic function of (ε1, ..., εm). Moreover,

Pr(y1 = 0, y2 = 0 | x1 = x∗1, x2 = x∗2, x = x, m = m∗)

= Pr

{
ν1 ≤ −x∗1

(
β10 −

β20

m− 1

)
, ν2 ≤ −x∗2

(
β10 −

β20

m− 1

) ∣∣x1 = x∗1, x2 = x∗2, x = x,

m = m∗
}

= Fν1,ν2|x,m

(
−x∗1

(
β10 −

β20

m∗ − 1

)
,−x∗2

(
β10 −

β20

m∗ − 1

) ∣∣x, m∗
)

.

Since Theorem 3.3 implies that (β10, β20) is identified, x∗1 (β10 − β20/(m
∗ − 1)) and

x∗2 (β10 − β20/(m
∗ − 1)) are known. Moreover, x is observed so that the first term is iden-

tified on the whole support of (x1, x2) conditional on (x, m). Thus, by Assumption 13,
making (x1, x2) vary allows us to identify the whole conditional distribution of (ν1, ν2)

given x and m.

Now, by Assumption 12,

Cov(ν1, ν1 − ν2 | x, m) = Cov
(

ε
m

m− 1
θ0 + ε1, ε1 − ε2 | x, m

)
= V (ε1 | x),

so that the right-hand side term is identified. Moreover, a little algebra shows that

(m− 1)2Cov(ν1, ν2|x, m) = m2
[
(1 + θ0)

2V (α|x)
]
+ m

[
− 2(1 + θ0)V (α|x)

+θ0(2 + θ0)V (ε1|x)

]
+ [V (α|x)− 2θ0V (ε1|x)] .
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Conditional on x, this is a regression of the (known) left term on (m2, m, 1). By Assumption
2′′, there exists a set A of positive probability such that m can take three different values
with positive probability, given that x = x∗ for all x∗ ∈ A. Thus, the coefficients (a, b, c)

of this regression can be identified. These coefficients depend on x but, for the sake
of simplicity, this dependence is let implicit in the following. We show now that the
knowledge of these coefficients implies that θ0 is identified. The conclusion follows since θ0

is in a one-to-one relationship with λ0.

First, we set φ0 = 1 + θ0 and ρ0 = V (α|x)/V (ε1|x). We also define a′ = a/V (ε1|x),
b′ = b/V (ε1|x) + 1 and c′ = c/V (ε1|x)− 2. Then a′, b′ and c′ are identified, and

φ2
0ρ0 = a′

−2φ0ρ0 + φ2
0 = b′

ρ0 − 2φ0 = c′.

Replacing ρ0 by c′ + 2φ0 in the first and second equations leads to
φ3

0 + c′

2
φ2

0 − a′

2
= 0

φ2
0 + 2c′

3
φ0 + b′

3
= 0

ρ0 − 2φ0 = c′.

(A.1)

This system admits at most two solutions in terms of (ρ, φ). Suppose that there exist
two different solutions, and let (ρ1, φ1) denote the second one. Then we can write the
polynomial of the first equation as a product in which one factor is the polynomial of the
second equation. Hence, there exists x such that, for all φ ∈ R,

φ3 +
c′

2
φ2 − a′

2
=

(
φ2 +

2c′

3
φ2 +

b′

3

)
(φ + x).

Thus, x = −c′/6 and 2c′x = −b′, which implies that c′2 = 3b′. Replacing b′ and c′ by their
values in terms of φi and ρi (i ∈ {0, 1}), we obtain, for i ∈ {0, 1},

3(−2φiρi + φ2
i )− (ρi − 2φi)

2 = 0.

This equation is equivalent to φi +ρi = 0. Replacing ρi by −φi in c′ yields φ0 = φ1 = −c′/3

and thus also ρ0 = ρ1. This contradicts our assumption that (ρ0, φ0) 6= (ρ1, φ1). Thus φ0

is identified by System (A.1), and the conclusion follows.
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