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Abstract

We consider the issue of identifying nonparametrically continuous mixture models.

In these models, all observed variables depend on a common and unobserved com-

ponent, but are mutually independent conditional on it. Such models are important

for instance in the measurement error, matching and auction literatures. Traditional

approaches rely on parametric assumptions or strong functional restrictions. We show

that these models are actually identified nonparametrically if the supports of the ob-

served variables move with the true value of the unobserved component. Moreover,

this “moving support” assumption is testable nonparametrically, using tools from ex-

treme value theory. We develop an appropriate test, derive its asymptotic properties

and conduct Monte Carlo simulations. Our approach complements the diagonaliza-

tion technique introduced by Hu & Schennach (2008), which allows to obtain similar

results under different assumptions.
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1 Introduction

In this paper, we consider continuous mixture models where all observed variables depend
on a common and unobserved component, but are mutually independent conditional on
it. Such models have important applications in economics. The main one is probably the
measurement error model, in which extensive attention has been devoted to identifying the
effect of an unobserved variable when only measures of it are available. Other applications
include auctions with unobserved heterogeneity, or matching models. While traditional
approaches rely on parametric assumptions or functional restrictions, we introduce a very
simple sufficient condition for the model to be identified. More precisely, we suppose that
the observed variables have a compact support that moves with the unobserved variable.
When this “moving support” assumption is satisfied, and a necessary normalization is
imposed, the model is identified without any other restriction.

We believe that our identification result is interesting for several reasons. First, the moving
support assumption is naturally satisfied in different economic models. This is for example
the case in the matching literature. Building on Becker (1973) result, Shimer & Smith
(2000) derive sufficient conditions to extend assortative matching in an environment with
search frictions.1 In this model, at equilibrium, workers match with firms of different qual-
ities. The set of firms with which a worker can match is increasing in the own quality
of the worker (see Figure 1 in Shimer & Smith’s paper) and the moving support assump-
tion is satisfied. Similarly, in an auction model with a reserve price unobserved by the
econometrician, both the lower and upper bounds of the bids vary with the unobserved
reserve price (Riley & Samuelson, 1981). Second, our assumption is easy to interpret eco-
nomically. In the measurement error model, the underlying idea is that the mismeasured
variable cannot be too far from the true value of the variable. Finally, we also show how
the moving assumption can be tested formally. Indeed, it implies a moving support con-
dition on the observed variables. Such a condition can then be tested using results from
the statistical literature on extreme values (see, e.g., Embrechts et al., 1997). We derive
the asymptotic properties of our test and conduct Monte Carlo simulations. These simu-
lations indicate that our test discriminates correctly data generating processes satisfying
the moving support assumption against other ones.

Our paper is related to results on the identification of measurement error models. While
this literature is vast (see, e.g., Carroll et al., 2006 for a survey), most of the papers focus

1We thank Jean-Marc Robin for suggesting us this example.
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on the case of classical measurement errors, for which errors are either independent of the
mismeasured variable or have a zero mean conditional on it (see, e.g., Hausman et al.,
1991, Li, 2002, Schennach, 2004 and 2007). Yet, this assumption is likely to fail in many
context (see, e.g., Bound & Krueger, 1991). Building on the ideas of Hu (2008), Hu &
Schennach (2008) explain how to recover the effect of the true variable in the general
case of nonclassical measurement errors with continuous variables. Under an injectivity
condition on integral operators, they show that identification can be achieved through an
eigenvalue-eigenfunction decomposition. Our approach complements Hu an Schennach’s
one in the sense that for some models, our condition is satisfied while theirs fails to hold, and
conversely. The merits of the moving support assumption, over the injectivity condition,
are its simple economic meaning and its testability. In contrast, no empirical test of the
injectivity condition has been proposed yet.

Our paper is also connected to the recent literature on the nonparametric identification
of finite mixture models. In particular, Allman et al. (2009) show that under the same
conditional independence as ours and some rank conditions, nonparametric mixture models
with a known number of unobserved components are identifiable from an observed vector
of at least three components (see also Hall et al., 2005 and Bonhomme et al., 2014a).2

Henry et al. (2014) derive sharp bounds on the mixture weights and components under
a weaker version of the conditional independence condition. Finally, papers more closely
related to ours are the one of Shneyerov & Wong (2011) and Hu & Sasaki (2014). Even if
their approach is distinct from ours, they also use the fact that the upper or lower bound
of the support of observed variables is a strictly increasing function of the unobserved
component. All these papers heavily rely on the fact that the mixture component has a
finite support, and do not seem to generalize easily to the continuous case on which we
focus here.3

The paper is organized as follows. Section 2 presents the model, our main identification
result. Section 3 develops some extensions where we weaken our initial moving support
condition and consider the case of discrete mixtures. Section 4 deals with inference, by first
presenting a multistep nonparametric estimator and then developing a test of the moving
support condition. Section 5 concludes. All proofs are deferred to the appendix.

2Allman et al. (2009), Kasahara & Shimotsu (2009) and Bonhomme et al. (2014b) also provide iden-
tification results for models with additional dependence between the observed variables, such as hidden
Markov models.

3Actually, the result of Hu & Sasaki (2014) also applies to continuous mixtures, but their Restriction
1 is unlikely to hold in practice with continuous mixtures.
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2 Main identification result

We first define the general mixture model on which we focus. Let us considerK real random
variables (X1, ...XK) which are observed by the econometrician. All these variables depend
on a real continuous variable X∗, which is unobserved. The aim of the econometrician is to
recover the distribution of Xk conditional on X∗, and possibly the distribution of X∗. We
rely for that purpose on the following conditions. Hereafter, FXk|X∗ denotes the cumulative
distribution function (cdf) of Xk conditional on X∗.

Assumption 1 K ≥ 3 and (X1, ..., XK) are mutually independent conditional on X∗.

Assumption 2 X∗ has a continuous distribution, with continuous density fX∗ on its sup-
port. For all k ∈ {1, ..., K} and u in the support of X∗, the support of Xk conditional on
X∗ = u is an interval and we denote it by [Xk(u), Xk(u)]. Moreover, u 7→ FXk|X∗(x|u) is
continuous for all x.

Assumption 3 (i) X1(.) and X2(.) are strictly increasing, (ii) X3(.) and X3(.) are strictly
increasing.

Assumption 4 X1(X
∗) = X∗.

Assumption 1 defines the mixture structure. Assumption 2 imposes mild regularity con-
ditions on the distributions. Our main condition is Assumption 3. We refer to it, or
sometimes to Assumption 3-(i) only, as the “moving support” condition.4 The fact that
the bounds of the support are increasing functions of X∗ reflects the positive link between
X∗ and the Xs, which would be formally expressed through the monotone likelihood ratio
property, for instance.5 Assumption 3 holds if we reinforce this positive link by stating
that higher values of X∗ lead to strictly higher values of Xk, i.e., that the support of the
observed variables move with the true value of the unobserved component. In a nonsepara-
ble model Xk = ϕk(X

∗, εk) where εk ∈ [εk, εk] and is independent of X∗ (k ∈ {1, 2, 3}), the
moving support condition holds for instance if ϕi(., εi), ϕj(., εj) and ϕk(X∗, .) are strictly
increasing, for (i, j, k) ∈ {1, 3} × {2, 3} × {1, 2, 3}.

Finally, we fix X1(X
∗) to be equal to X∗. This is a normalization that is without loss of

generality under a mild additional requirement. Specifically, if X∗ satisfies Assumptions
4We separate the conditions into two parts, because as we will see in Subsection 3.1, Condition (i) alone

suffices for identifying some features of the model.
5In our context, this property would amount to supposing that x 7→ fXk|X∗ (x|x

∗
1)

fXk|X∗ (x|x
∗
0)

is increasing, fXk|X∗

denoting the conditional density of Xk.
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1-3 and X−11 (.) is continuously differentiable, Assumptions 1-3 but also 4 hold when using
X̃∗ = X1(X

∗) instead of X∗. In the previous case X1 = ϕ1(X
∗, ε1), this would mean

replacing X∗ by X̃∗ = ϕ1(X
∗, ε1). We would then write Xk = ϕ̃k(X̃

∗, εk), with ϕ̃k(x̃, u) =

ϕk(g
−1(x̃), u) and g(x) = ϕ1(x, ε1). This normalization may be seen as a particular case

of the one considered by Hu & Schennach (2008), who impose that a functional of the
distribution of, say, X1 conditional on X∗, is equal to X∗. In our case, the functional is
the lower bound of the support of X∗1 . Considering this normalization rather than another
one makes sense given Assumption 3-(i). Assumptions 1-3 alone would not guarantee that
another functional of FX1|X∗ is strictly increasing in X∗.6

Theorem 2.1 Under Assumptions 1-4, FX1|X∗ , ..., FXK |X∗ and FX∗ are identified.

While the detailed proof is given in appendix, let us provide some intuition on the result.
First, as shown by Figure 1, the range of X∗ compatible with an observation X1 = x is
limited, and so is the range of X2 that one can observe in the data when X1 = x. More
formally, observing X1 = x, we know that X∗ ≤ x, and therefore X2 ≤ X2(X

∗) ≤ X2(x).
The shaded area on Figure 1 represents the set of values of (X∗, X2) compatible with
X1 = x.7

6Of course, if the value of X∗ has a precise economic meaning (e.g., the true level of a variable measured
with error by X1), it may be more natural to assume that X1(X

∗) = h(X∗), for some known, strictly
increasing h(.). Then all our analysis would go through with this normalization instead of X1(X

∗) =
h(X∗).

7In Figure 1, we have imposed the random variables to be positive for illustration purpose only.
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Figure 1: Values of X2 and X∗ compatible with X1 = x

We also represent in Figure 1 the range of possible values for X∗ when X1 = x and X2 = x′,
which is [X

−1
2 (x′), x]. It turns out that when X1 = x and X2 = X2(x), the only possible

value for X∗ is x. When K ≥ 3, it is then possible to identify FXk|X∗(.|x), for all x and
k ≥ 3, by looking at the distribution of Xk conditional on X1 = x and X2 = X2(x).
Indeed, by the conditional independence assumption,8

FX3|X1,X2(x3|x,X2(x)) = FX3|X1,X2,X∗(x3|x,X2(x), x) = FX3|X∗(x3|x). (2.1)

By using Assumption 3-(ii), we can identify similarly FX1|X∗ and FX2|X∗ . Finally, to recover
the distribution of X∗, we use the fact that by conditional independence of X1 and X2,9

fX∗(x) =
fX1,X2(x,X2(x))

fX1|X∗(x|x)fX2|X∗(X2(x)|x)
.

Because all terms on the right-hand side are identified by the previous steps, the distribu-
tion of X∗ is identified.

8This equality is not rigorous because the density fX1,X2
is equal to zero at (x,X2(x)). To overcome this

issue, we have to consider instead the event (X1, X2) ∈ Aδ(x1) = [x1−δ, x1+δ]× [X2(x1−δ), X2(x1+δ)],
and let δ → 0. The formal proof is given in the appendix.

9Once again, this equation is not rigorous as the ratio may not be properly defined. The formal proof
considers a limit reasoning to circumvent this issue.
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Theorem 2.1 is similar to the identification result of Hu & Schennach (2008). However,
whereas Hu & Schennach (2008) rely on the injectivity of integral operators (see their
Assumption 3), we mostly use the moving support condition. Our results are complemen-
tary, as both conditions are distinct. Consider the standard measurement error model
Xk = X∗+εk, where (X∗, ε1, ..., εK) are independent and X∗ has a compact support [x, x].
In this setting, we can show that their injectivity condition fails to hold when εk is uni-
form, basically because the characteristic function of εk has zeros on the real line. On the
contrary, Theorem 2.1 applies in this case. Conversely, their injectivity condition holds
when εk ∼ N (0, σ2

k), while we cannot apply Theorem 2.1.

We also believe that the moving support condition is more intuitive than the alternative
approach of Hu & Schennach (2008). Not much is known about the injectivity condition. It
is closely related to the completeness condition used in additive instrumental nonparametric
models to secure identification. This latter condition holds in exponential models (see
Newey & Powell, 2003), or in nonlinear models under an additive decomposition and a
large support condition, but under restrictive technical conditions (see D’Haultfœuille,
2011). No theoretical result has been obtained otherwise. A merit of our condition is, on
the contrary, its simple economic meaning. Moreover, the moving support assumption is
testable (see Section 4.2) whereas no empirical test has been proposed for the injectivity
condition yet.

Example 1: auction models with unobserved heterogeneity

Let us consider a good which is sold by an auction mechanism. This good has a char-
acteristic X∗ which is observed by the K bidders and affects their valuation (V1, ..., VK).
Conditional on X∗, (V1, ..., VK) are independent, but may be non identically distributed
if bidders are asymmetric. The econometrician observes the bids Bk(= Xk) = bk(Vk, X

∗)

but neither (V1, ..., VK) nor X∗. In such a case, (B1, ..., BK) are independent conditional
on X∗. The ultimate goal in this literature is to recover the distribution of Vk conditional
on X∗, and potentially the distribution of X∗. In general, the function bk is known by
the theory and it is thus sufficient to recover the distributions of X∗ and Bk conditional
on X∗. Such auction models with unobserved heterogeneity have been studied recently
by Krasnokutskaya (2011) and Hu et al. (2013), the latter applying Hu & Schennach’s
methodology. We argue that Assumption 3 is likely to hold in this context, and present
two examples supporting this claim.

Suppose first, following Krasnokutskaya (2011), that Vk = X∗ × εk, where the εk are i.i.d.
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with support [ε, ε], with 0 < ε < ε ≤ ∞ (Krasnokutskaya, 2011 actually imposes that
ε < ∞). The model does not change if we divide εk by a positive constant and multiply
X∗ accordingly, so we can suppose without loss of generality that ε = 1. This normalization
is convenient and leads to Assumption 4, as we shall see. In such a model, the equilibrium
function b(., .) is given by:

b(Vk, X
∗) =

[
(K − 1)

∫ εk
ε
fε(u)FK−2

ε (u)udu

FK−1
ε (εk)

]
X∗.

The bidding strategy is increasing in the valuation, and some algebra show that

X∗ ≤ b(Vk, X
∗) ≤

[
(K − 1)

∫ ε

ε

ufε(u)FK−2
ε (u)du

]
X∗.

In other words, conditional on X∗, the bids (X1, ..., XK) = (b(V1, X
∗), ..., b(VK , X

∗)) be-
long to the set [X∗, BX∗]n, with B = (K − 1)

∫ ε
ε
ufε(u)FK−2

ε (u)du. Because B < (K −
1)
∫ ε
ε
ufε(u)du, B < ∞ provided that E(ε1) < +∞, both the lower and upper bound are

strictly increasing, even if ε = +∞. Assumptions 3 and 4 are satisfied, and one can show
that Assumption 2 holds as well. Therefore, Theorem 2.1 applies, and the distribution of
Bk = Xk conditional on X∗, for k ∈ {1, ..., K}, is identified.

Another example where the moving support condition is satisfied is when X∗ is the reserve
price, supposed to be unobserved by the econometrician. Suppose that N potential risk
neutral and symmetric bidders with valuations (V1, ..., VN) ∈ [V , V ]N participate to this
auction. We denote by FV (resp. fV ) the cdf (resp. probability distribution function) of
Vk. Finally, we suppose that before bidding, the bidders learn the number K of effective
bidders i.e. the number of bidders with valuations greater than X∗. In such a case, the
equilibrium function b(., ., .) is given by :

b(V,X∗, K) = (K − 1)

∫ V
X∗
ufV (u)FK−2

V (u)du

FK−1
V (V )

.

Hence, for all K and conditional on X∗, the observed bids Xk = b(Vk, X
∗, K) belong to the

set [X∗, b(V ,X∗, K)]K . As before, b(V ,X∗, K) is finite as soon as E(V1) < +∞. Hence,
both bounds are strictly increasing in X∗ and Assumptions 3 and 4 are a consequence of
the theoretical model.
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Example 2: matching models

Let us consider the matching model with search frictions developed by Shimer & Smith
(2000). In their model, they assume a continuum of heterogeneous agents. Two agents
of type X∗ and Y can match to produce f(X∗, Y ), where f is strictly increasing in both
arguments. At each instant, agents are either matched or unmatched, and nature destroys
any match with a positive probability. Unmatched agents constitute the pool of searchers
that are trying to form new matches. Shimer & Smith characterize the equilibrium match-
ing sets. They prove in particular that under regularity and supermodularity assumptions,
positively assortative matching is ensured.10 This, in turn, implies that the lower and up-
per bound functions of the matching set, Y (.) and Y (.), are nondecreasing,11 as depicted
by Figure 1 in Shimer & Smith’s paper.

Let us suppose that the econometrician observes several matches between, for example,
firms and workers on the job market, and their corresponding matching outputs.12 Hence,
for a firm of unobserved type X∗, the econometrician observes several wages of different
workers, (X1, ..., XK) = (f(X∗, Y1), ..., f(X∗, YK)). The aim is to recover features of the
matching function, to identify for instance what are the relative contributions of workers
and firms on the production function.

Given the results of Shimer & Smith (2000) , the support of Xk conditional on X∗ is given
by [f(X∗, Y (X∗)), f(X∗, Y (X∗))]. Because x 7→ f(x, y) is strictly increasing whereas Y (.)

and Y (.) are nondecreasing, Assumption 3 is satisfied. Under a normalization such as
Assumption 4, the distribution of Xk conditional on X∗ and the distribution of X∗ are
therefore identified.

3 Extensions

We consider in this section various extensions, mostly related to the moving support con-
dition. Theorem 2.1 shows identification of the whole model with four varying bounds on
three variables. We investigate below what can be identified if only two or three bounds
are varying. We also consider the case of weakly instead of strictly monotonic bounds and
situations where the support of Xk conditional on X∗ is not compact. Finally, we show

10For more details, see their Proposition 6.
11For more details, see their Proposition 3.
12Wages are usually observed, rather than the production itself. However, in simple models, there is a

one-to-one relationship at equilibrium between wages and outputs.
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that the same methodology applies if X∗ is discrete.

3.1 Two or three varying bounds with asymmetric variables

We first consider a weaker version of Assumption 3, where the support of X3 may not
vary with X∗, or where only one of its bound varies with X∗. Theorem 3.1 shows that
Assumption 3-(i) is actually sufficient to recover FXk|X∗ , for k ≥ 3. It also establishes that a
single varying bound on X3 is sufficient to identify fX∗ , under regularity conditions related
to this varying bound. Henceforth, we denote by Supp(U) the support of any random
variable U .

Assumption 5 X3(X
∗) = c > −∞, X3 is strictly increasing and there exists m ≥ 1 such

that for all x∗, F
X
−1
3 (X3)|X∗

(.|x∗) is m times differentiable at x∗, F (m)

X
−1
3 (X3)|X∗

(x∗|x∗) > 0 and

(x3, x
∗) 7→

∣∣∣F (m)

X
−1
3 (X3)|X∗

(x3|x∗)/F (m)

X
−1
3 (X3)|X∗

(x∗|x∗)
∣∣∣

is bounded on Supp(X3, X
∗).

Theorem 3.1 Under Assumptions 1, 2, 3-(i) and 4, FX3|X∗ , ..., FXK |X∗ is identified. If
Assumption 5 also holds, then fX∗ is identified.

The intuition of the first part of Theorem 3.1 is the same as in Theorem 2.1. A point
not emphasized in the theorem is that to identify FXk|X∗ , we actually only rely on the
conditional independence between (X1, X2) and Xk(k ≥ 3), not on the mutual conditional
independence of (X1, ..., XK). In particular, X1 and X2 can be correlated conditional
on X∗, as long as their joint conditonal support remains of the form [X1(u), X1(u)] ×
[X2(u), X2(u)].

The idea of the second part of Theorem 3.1 is that the knowledge of FX3 and of FX3|X∗

allows us, under Assumption 5, to identify fX∗ , through the integral equation

FX3(x3) =

∫ +∞

X
−1
3 (x3)

FX3|X∗(x3|x∗)fX∗(x∗)dx∗, (3.1)

which holds for all x3 ∈ Supp(X3). The fact that the lower bound of the integral moves with
x3 ensures that this integral equation has a unique solution, under Assumption 5. Note
that without any restriction between X3 and X∗, the knowledge of these two distributions
may not be sufficient to recover fX∗ . If for instance X3 and X∗ are independent, (3.1)
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does not provide any information on fX∗ . Of course, other restrictions than Assumption 5
would be possible to identify fX∗ through (3.1).

Example 3: measurement error models with repeated measures

The previous framework is well suited to measurement errors on a covariate. Typically,
we seek to measure the effect of a variable X∗ on an outcome Y (= X3) = f(X∗, ν) but
only observe two measures X1 and X2 of X∗, so that Xk = ϕk(X

∗, εk), k ∈ {1, 2} (see,
e.g., Hausman et al., 1991 or Schennach, 2004, for papers studying models with repeated
measures). In this case, Assumption 1 is satisfied if (ν, ε1, ε2) are independent conditional
on X∗. As mentioned above, however, conditional independence betwen ε1 and ε2 is not
necessary for Theorem 3.1 to apply, as long as they remain jointly independent of ν and
their joint support is a rectangle.

Denote by ε1 and ε2 the lower and upper bounds of the supports of ε1 and ε2, respectively.
Assumption 3-(i) is fulfilled if ϕk(x, .), x 7→ ϕ1(x, ε1) and 7→ ϕ2(x, ε2)) are strictly increas-
ing. These conditions hold in the classical measurement error model or with multiplicative
errors, as soon as the error terms are either bounded below or above. If Xk = X∗ + εk

(resp. Xk = X∗ × εk) and εk ∈ [ε, ε](k = 1, 2), the support of Xk conditional on X∗ is
[X∗ + ε,X∗ + ε] (resp. [X∗ × ε,X∗ × ε]) and it changes with X∗. Assumption 3-(i) is also
satisfied if there is systematic over-reporting for one of the measurement, so that X1 ≥ X∗,
and systematic under-reporting for the other measurement, so that X2 ≤ X∗. Actually,
Assumption 3-(i) only requires under-reporting and over-reporting up to some strictly in-
creasing function. Underreporting is plausible when reporting consumption is costly for
individuals, because they have to indicate it on a diary for instance (see e.g. Yang et al.,
2010). As explained by Hu & Schennach (2008), it may also be the case that tobacco
consumption is systematically under-reported by people, for instance. If individuals smoke
at most α% (with α > 0) of the cigarettes they buy, Assumption 3-(i) would hold with X1

the number of cigarettes they buy and X2 the number of cigarettes they report to smoke.13

Example 4: measurement error models with instrumental variables

Alternatively, we could only observe one measure of X∗, X1 = ϕ(X∗, ε), and an instrument
Z = X2 of X∗, such that X∗ = ψ(Z, η) (see, e.g., Newey, 2001, Schennach, 2007 and Hu &
Schennach, 2008, for studies of instrumental models with measurement errors). Assumption
1 is satisfied if (Z, ν, ε, η) are independent. Assumption 1 is equivalent to Assumption 2

13In this example, the normalization X2(X
∗) = X∗ would be more appropriate than X1(X

∗) = X∗.
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of Hu & Schennach (2008), so that our framework is identical to theirs. In addition to
standard instruments, our framework also encompasses the one considered by Schennach
(2013) where Z would be a Berkson measurement error, so that X∗ = Z + η, while X1

would be another variable related to X∗.14

Define ϕ(x) = inf{ϕ(x, u), u ∈ Supp(ε)} and ψ(z) = inf{ψ(z, u), u ∈ Supp(η)}. Because
X1 ≥ ϕ(X∗) and ψ(Z) ≤ X∗, Assumption 3-(i) holds if ϕ(.) and ψ(.) are strictly increasing.
This is the case for instance if ϕ and ψ are additively separable, and inf Supp(ε) > −∞
and inf Supp(η) > −∞. An example where the upper bound of the support of Z moves
with X∗ is still related to consumption. If X∗ denote consumption that we only partially
observe, Z could correspond to the part of X∗ we observe. For instance X∗ may be alcohol,
tobacco and drugs consumption, of which we only observe alcohol and tobacco (Z). By
construction, we then have X∗ ≥ Z.

3.2 Two or three varying bounds with symmetric variables

In some cases, the moving support assumption may be natural for one bound but not
for the other. We show below that it is possible to extend the result of Theorem 3.1,
in the symmetric case where X1 and X2 are identically distributed conditional on X∗, to
situations where only one bound is strictly increasing. We consider here a moving lower
bound, but the proof would be similar with a moving upper bound.

Assumption 6 X1 and X2 are identically distributed conditional on X∗, X1 = X is
constant but X1(.) is strictly increasing, with the normalization X1(X

∗) = X∗. Moreover,
there exists m > 0 such that FX1|X∗ is m+1 times differentiable, with F (m)

X1|X∗(X1(x)|x) 6= 0

and F (j)
X1|X∗(.|x) is bounded for j ∈ {1, ...,m+ 1}.

Theorem 3.2 Under Assumptions 1 and 6, FXk|X∗ is identified for k ∈ {3, ..., K}. If
Assumption 6 also holds for X3, then we can identify fX∗ as well.

The proof of Theorem 3.2 is related but a bit different from that of Theorem 2.1. The reason
is that it is impossible, with only one bound moving, to pin down directly X∗ by choosing
appropriately X1 and X2. Still, the observations provide some inequality restrictions on
X∗. The key insight is that these restrictions entail a relationship between the left and
right partial derivatives of the joint density of the data at appropriate points. We are then

14A typical example of a Berkson measurement errors is when we observe the group-average exposure
to a pollutant instead of the individual exposure.
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able to get rid of the integral expression of the mixture, as in Theorem 2.1, to identify
FXk|X∗ .

Example 1 (continued)

Coming back to auction models with unobserved heterogeneity, the assumption that ε > 0

in the multiplicative model Xk = Vk × εk may be strong in some cases. If ε = 0, Xk(.)

is still strictly increasing, as shown previously. We can therefore still use Theorem 3.2 to
identify the model.

Example 5: wage decompositions

This example is related but distinct from the matching models example. Suppose that
we are interested in the link between fixed wages and bonuses for, say, salesmen. This
question is related to the issue of selection of workers by firms and has received a lot of
attention in the personnel literature (see, e.g., Prendergast, 1999 and Lazear & Shaw, 2007,
for literature reviews). Suppose that we do not observe fixed wages and bonuses, but only
the total wages. If salesmen of the same firm face the same contract, then we can let X∗

denote the fixed wage provided by the firm, while (X1, ..., XK) correspond to the wages of
K employees of the firm. By construction, Xk ≥ X∗. The symmetry condition between Xk

is also natural in this setting. By Theorem 3.2, the joint distribution of bonuses and fixed
wages (Xk−X∗, X∗) is then identified, under the boundary condition of Assumption 6 and
if K ≥ 3. This allows one to quantify the importance of bonuses compared to the fixed
part of wages, and to identify whether there is a positive or negative dependence between
fixed wages and the bonuses.

3.3 Weakly increasing supports

We consider here the case where one bound, say X2, is flat on some subset I of the support
of X∗. We still suppose that X1(.) is strictly increasing and that Assumption 4 holds. In
such a case, we still identify, for all x1 in the support of X1, X2(x1) as the maximum of
the support of X2 conditional on X1 = x1. We thus identify I as the region where X2(.)

is flat. Then the same reasoning as in the beginning of the proof of Theorem 2.1 can be
applied, and we identify FXk|X∗(x|x∗) for all x∗ 6∈ I and k ≥ 3. On the other hand, it is
unclear to us whether we can recover FXk|X∗(x|x∗) for x∗ ∈ I or fX∗ in this context.

Finally, we may wonder whether the model is still identified without any variation in the
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support, namely under Assumptions 1 and 2 only. The following counter-example shows
that this is not the case. Further restrictions, such as ours or the injectivity assumption
of Hu & Schennach (2008), are thus necessary to identify nonparametric mixture models.
Perhaps surprisingly, this is true no matter how large is K, the number of variables that
we observe.

Example 6: non-identification without additional restrictions

Suppose that Xk = X∗ + εk for k ∈ {1, ..., K}, with (X∗, ε1, ...., εK) mutually independent
and (ε1, ..., εK) identically distributed. Assume further that X∗ has the density function
fX∗(x) = (1 − cos(x))/(πx2) and εk have the density function fε(x) = fX∗(x/2K)/2K.
As a normalization, suppose that the distribution of X∗ is known. Then Assumptions 1
and 2 are identified. Yet, the conditional distributions (FXk|X∗)k=1,...,K are not identified,
as shown in the appendix. Basically, we prove that the convolution q(X∗) + εk, for a well
chosen functions q different from the identity function, yields the same joint distribution
for (X1, ..., XK). This is due to the fact that a distribution which is a convolution may not
be decomposed in a unique way, and this remains true even in a multivariate setting. Note
that in this example, both the injectivity assumptions of Hu & Schennach (2008) and our
moving support conditions fail to hold.

3.4 Non-compact measurement errors

Non-compact measurement errors may be a concern because they affect any empirical
strategy relying on the boundaries of the support. Suppose for instance that (X1, X2, X3)

satisfy Assumptions 1, 2 and 3-(i), but X1 is measured with error by X̃1 = X1 + η, and η
error has a non compact support. In this case, (X̃1, X2) does not satisfy Assumption 3-(i),
since inf Supp(X̃1|X∗) = −∞.

However, in such a case, it is still possible to identify the model if we impose restrictions
on η. Following Schwarz & Van Bellegem (2010), suppose for instance that η|X1, X2 =

x2 ∼ N (0, σ2), where σ2 is unknown. Because the support of X1 conditional on X2 = x2

is compact, Theorem 2.1 of Schwarz & Van Bellegem (2010) implies that σ2 and the
distribution of X1 conditional on X2 = x2 are identified. We can then proceed as previously
to fully identify the model.
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3.5 Discrete mixtures

Though we mainly focus on a continuous mixture here, the idea behind our results also
applies when X∗ has a finite support {x∗1, ..., x∗J}, with x∗1 < ... < x∗J . Specifically, suppose
that X1(.) and X2(.) are strictly increasing on {x∗1, ..., x∗J}, and consider as previously
the normalization X1(x

∗
j) = x∗j . First, we identify the x∗j and X2(x

∗
j) by noting that x1 7→

max Supp(X2|X1 = x1) is constant on the J intervals [x∗j , x
∗
j+1) (where we let x∗J+1 = +∞).

The corresponding values X2(x
∗
j) and the points x∗j where this function is discontinuous

are therefore identified.

Second, we basically identify FX3|X∗ by conditioning on (X1, X2) sufficiently far from each
other. Remark that X1 < x∗j+1 and X2 > X2(x

∗
j−1) implies X∗ ≤ x∗j and X∗ ≥ x∗j , so that

X∗ = x∗j . Hence, by conditional independence,

FX3|X1<x∗j+1,X2>X2(x∗j−1)
(x3) = FX3|X∗(x3|x∗j).

Finally, we also recover P (X∗ = x∗j) if the cdfs (FX3|X∗(.|x∗j))j=1...J are linearly independent,
using

FX3(x3) =
J∑
j=1

P (X∗ = x∗j)FX3|X∗(x3|x∗j).

This result is related to a recent result of Hu & Sasaki (2014), who show that the distri-
butions of X1 and X2 can allow, under in particular some support conditions, to recover
the distribution of X∗. An advantage of their approach is that it does not require a third
observation. A related result is also the one of Shneyerov & Wong (2011) in first-price
auctions with an unknown number of potential bidders (which corresponds to X∗ here).
Even if their approach is distinct from ours, they also use the fact that the upper bound
of the support of observed variables is a strictly increasing function of the unobserved
component.

4 Inference

Though the paper is mostly focused on identification, we sketch in this section how inference
can be conducted. We first present possible nonparametric estimators of FXk|X∗ and fX∗ .
We then consider a test of the moving support condition.

15



4.1 Estimation

We first present a possible multistep nonparametric method, under the standard condition
that we observe a sample (X1i, ..., XKi)i=1...n of independent and identically distributed
variables. Our method is suitable if Assumption 3-(i) holds, together with either Assump-
tion 3-(ii) or Assumption 5. It does not cover the symmetric case where only X1(.) = X2(.)

is strictly increasing.

We focus here on the estimation of Xk conditional on X∗ for k ≥ 3, and on the distribution
of X∗. Following the identification strategy, we estimate, in a first step, the bound X2(.).
This bound can be obtained by noting that X2(.) is the maximum of the support of X2

conditional on X1 = x. Because X2(.) is assumed to be strictly increasing, we can use
any frontier estimation method. The literature on this topic is large and the statistical
properties of the estimators are now well established (see, e.g., Simar & Wilson, 2008, for a
survey). We consider here the popular free disposal hull estimator introduced by Deprins
et al. (1984). Let us first consider

q̂α(x1) = inf{x2|F̂X1,X2(x1, x2)/F̂X1(x1) ≥ α},

for any α ∈ [0, 1], and where F̂X1,X2 (resp. F̂X1) is the empirical cdf of (X1, X2) (resp. of
X1). q̂α(x1) is thus the empirical quantile of X2|X1 ≤ x1. The free disposal hull estimator
is simply defined by

X̂2(x1) = q̂1(x1).

Our asymptotic result on this estimator relies on the following regularity condition. For
any functions f and g, we write f(t) ∼ g(t) whenever f(t) = g(t) + o(g(t)) as t ↓ 0.

Assumption 7 X2(.) is differentiable, with X ′2(.) > 0. For all x∗ in the support of X∗,
fX∗(x

∗) > 0 and there exists `1,x∗ > 0, `2,x∗ > 0, both continuous in x∗, β1 > 0 and β2 > 0

such that FX1|X∗(x
∗ + t|x∗) ∼ `1,x∗t

β1 and 1− FX2|X∗(X2(x
∗)− t|x∗) ∼ `2,x∗t

β2.

Assumption 7 holds for instance if we can do a Taylor expansion of FX1|X∗(.|x∗) and
1 − FX2|X∗(.|x∗) at x∗ and X2(x

∗), respectively. In this case β1 (resp. β2) is the minimal
order m such that F (m)

X1|X∗(x
∗|x∗) 6= 0 (resp. [1 − FX2|X∗ ]

(m)(X2(x
∗)|x∗) 6= 0). With a

uniform distribution for FX1|X∗ , for instance, we get β1 = 1, while β1 = 2 for a triangular
distribution. Under Assumption 7, the free disposal hull estimator has an asymptotic
Weibull distribution.15

15Recall that W ∼ Weibull(α, ρ) if its cdf is x 7→ 1− exp(−αxρ) on R+.
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Theorem 4.1 Under Assumptions 1, 2, 3-(i) and 7, there exists αx1 > 0 such that

n1/(1+β1+β2)
(
X2(x1)− X̂2(x1)

)
d−→ Weibull(αx1 , 1 + β1 + β2).

This result is mostly based on previous studies on the asymptotic behavior of the free
disposal hull estimator, see in particular Daouia et al. (2010). Importantly, consistency is
achieved even if the density fX2|X1(u|x) tends to zero as u → X2(x), at any polynomial
rate. The rate of convergence depends on this rate, however. We obtain for instance a rate
of n1/3 if the densities of X1 and X2 do not vanish on the boundary of their conditional
support (β1 = β2 = 1), as with uniform distributions, but only n1/5 if both densities vanish,
while their derivatives do not (β1 = β2 = 2).

X̂2(x1) relies on maxima, and is therefore sensitive to outliers. A more robust estimator,
based on high quantiles (namely, using q̂α(x1) with α close to one), has been introduced
recently by Daouia et al. (2010), following ideas developed by Dekkers & Haan (1989). An-
other advantage of this estimator is that it is asymptotically normal, rather than Weibull.
On the other hand, it is less efficient, less straightforward to compute and its asymptotic
distribution relies on stronger conditions. Nonetheless, its asymptotic normality makes it
convenient for inference, and we will consider related estimators for testing the moving
support condition in the following subsection.

In a second step, the conditional distribution functions FXk|X∗ (k ≥ 3) can be estimated by
a kernel estimator, using a subsample of “sufficiently extreme” values X1 and X2. Specifi-
cally, we consider, following Equation (2.1),

F̂Xk|X∗(xk|x
∗) =

∑n
i=1K ((X1i − x∗)/h1)K

(
(X2i − X̂2(x

∗))/h2

)
1{Xik ≤ xk}∑n

i=1K ((X1i − x∗)/h1)K
(

(X2i − X̂2(x∗))/h2

) , (4.1)

where K(.) is a kernel function and h1, h2 are two bandwidth parameters.

Finally, fX∗ can be estimated as well, using the fact that under Assumption 5, it is the
unique solution of the integral equation

FX3(x3) =

∫ +∞

X
−1
3 (x3)

FX3|X∗(x3|x∗)fX∗(x∗)dx∗. (4.2)

Alternatively, under Assumption 3-(ii), we can identify and estimate FX1|X∗ and FX2|X∗

as well. Then we can use an integral equation involving FX1,X2,X3 and the corresponding
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conditional cdfs, instead of simply FX3 and FX3|X∗ , to achieve accuracy gains. Similarly,
if K > 3, we can estimate FXk|X∗ for k ∈ {3, ..., K} as in (4.1), and then use the integral
equation involving FX1,...,XK and the corresponding conditional cdfs to estimate fX∗ , result-
ing also in accuracy gains.16 In all cases, we face an ill-posed problem as Hu & Schennach
(2008) and it is possible to estimate fX∗ through any regularization scheme: Tikhonov,
spectral cut-off or Landweber-Fridman (see Carrasco et al., 2007). Though all steps of this
procedure involve existing estimators, the rate of convergence of the final estimator remains
to be established as they incorporate nonparametric first and second-step estimators.

4.2 Tests of the moving support condition

Our identification strategy relies crucially on Assumption 3-(i). We now show that this
condition is testable, in the sense that we can test for implications of this condition. The
idea is that the maximum of the support of X2 conditional on X1 = x, namely X2(x),
is finite and strictly increasing with x. We investigate below how both points can be
formally tested, using a sample (X1i, X2i)i=1...n of independent and identically distributed
variables. Such formal tests are useful because models for which the moving support
condition is satisfied may display, at first glance, similar patterns to others for which this
assumption does not hold. Figure 2, for instance, plots X2 against X1 in the two models
Xk = X∗ + εk (k ∈ {1, 2}), where X∗ is uniformly distributed and (ε1, ε2) are i.i.d. and
follow respectively a normal and a uniform distribution. The moving support is satisfied
only in the second model, but the data look very similar. On a related note, if more than
two variables are candidates for Assumption 3-(i), our tests below can also be useful to
choose the most credible pair among them.

16In the same vein, if Assumption 5 holds for Xk, k ≥ 3, we can estimate fX∗ using similar equations
as (4.2) but for each FXk

, k ≥ 3, and then average the corresponding estimators.

18



−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

ε
k
 ∼  N(0,1/4)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

ε
k
 ∼  U[−1,1]

Figure 2: X2 against X1 if Xk = X∗ + εk, with εk bounded or not.

4.2.1 Construction of the tests

To test for the fact that the upper bound of X2 conditional on X1 is finite, we consider a set
A with supA < sup Supp(X1). Because X1 ∈ A implies that X2 ≤ X2(X1) ≤ X2(supA),
the upper bound of the support of X2 conditional on X1 ∈ A should also be finite. The idea
of the test is to restate this boundary condition in terms of the tail index of FX2 |X1∈A, a
notion borrowed from the statistical extreme value theory. Our test works provided that we
can apply the equivalent of the central limit theorem for extremes, the technical condition
corresponding to the finite variance in the central limit theorem being Assumption 8 below.
We let hereafter S denote the subsample {i : X1i ∈ A}.

Assumption 8 (Extreme value condition) There exist sequences (an)n∈N and (bn)n∈N and
a non degenerate distribution H such that an maxi∈S X2i + bn

d−→ H.

This condition is mild and satisfied for all standard families of continuous distributions
(see, e.g., Embrechts et al., 1997, chapter 3, for a comprehensive discussion). By the
Fisher Tippett Theorem (see e.g., Embrechts et al., 1997, Theorem 3.2.3), H belongs
actually to the family of generalized extreme value distributions (Hξ)ξ∈R, with Hξ(x) =

exp(−(1 + ξx)−1/ξ) for 1 + ξx > 0 (and H0(x) = exp(− exp(−x))). Moreover, the tail
index ξF corresponding to F is negative if F has a finite supremum (see Theorem 3.3.12
of Embrechts et al., 1997), zero for distributions with thin tails such as the normal or
exponential ones and positive for distributions with heavy tails such as the Pareto or
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Student. Hence, within this framework, testing sup Supp(X2|X1 ∈ A) = +∞ against
sup Supp(X2|X1 ∈ A) < +∞ is equivalent to testing for ξ ≥ 0 against ξ < 0 (where
ξ = ξFX2 |X1∈A

). We adapt hereafter a test proposed by Segers & Teugels (2000) because it
is simple and consistent without further restrictions, but other choices would be possible
(see Neves & Alves, 2008, for a review).

The test works as follows. Let (kn)n∈N denote a sequence of integers such that kn →∞ and
n/kn → ∞. Split S into kn subsamples (Sj)j=1...kn of size mn = [n/kn] (where [.] denotes
the integer part) and let Xj

2(1) < Xj
2(2) < ... < Xj

2(mn)
denote the order statistic of X2 on

subsample Sj. Introducing the ratio

Gj =
Xj

2(mn)
−Xj

2(mn−2)

Xj
2(mn−1) −X

j
2(mn−2)

,

the test statistic is defined by

T1n =

√
5

kn

kn∑
j=1

[
1− 6Gj

(1 +Gj)2

]
.

The following proposition, which adapts Segers’ result to our context, shows that a consis-
tent test of ξ ≥ 0 against ξ < 0, or, equivalently, of sup Supp(X2 |X1 ∈ A) = +∞ against
sup Supp(X2 |X1 ∈ A) < +∞, can be obtained using T1n.

Proposition 4.1 Suppose that Assumption 8 holds. Then the test defined by the critical
region {T1n < −zα}, where zα is the α-quantile of a normal random variable, is a consistent
test with asymptotic level α of the null hypothesis that sup Supp(X2|X1 ∈ A) = +∞.

The other issue is to test that x 7→ Supp(X2|X1 = x) is strictly increasing. We actually
test an implication of this hypothesis, by testing X21 = X22 against X21 < X22, with
X2j = sup Supp(X2|X1 ∈ Aj) (j ∈ {1, 2}) and (A1, A2) two sets such that supA1 < inf A2.
For that purpose, we compare the two estimators of the upper bounds X21 and X22 derived
by Dekkers & Haan (1989). Let (Xj

2(i))i=1...nj denote the order statistic of X2 on the
subsample {i : X1i ∈ Aj} of size nj. Let also (kjn) denote a sequence of integers. The
estimator of Dekkers & Haan (1989) is defined by

X̂2j = Xj
2(nj−kjn+1) +

Xj
2(nj−kjn+1) −X

j
2(nj−2kjn+1)

2−ξ̂j − 1
,
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where ξ̂j is the Pickands estimator of ξj = ξFX2|X1∈Aj
:

ξ̂j =
1

ln 2
ln

(
Xj

2(nj−kjn+1) −X
j
2(nj−2kjn+1)

Xj
2(nj−2kjn+1) −X

j
2(nj−4kjn+1)

)
.

Out test statistic is then defined by

T2n =
X̂22 − X̂21√
σ2
1n + σ2

2n

,

where σjn satisfies

σjn =

√
3

kjn

|ξ̂j|2ξ̂j−1∣∣∣2ξ̂j − 1
∣∣∣3
[
Xj

2(nj−kjn+1) −X
j
2(nj−2kjn+1)

]
.

As already mentioned in the previous subsection, the advantage of using X̂2j in this test
statistic, rather than the sample maximum Xj

2(nj)
is that under the null, the asymptotic

distribution of the corresponding test statistic is normal and free of nuisance parameter.

As previously, kjn should tend to infinity at an appropriate rate and mild restrictions on
FX2|X1∈Aj have to imposed for our test to be consistent. We let afterwards F denote the
set of differentiable cdfs, and Rα be the set of regular variation functions with exponent
α.17

Assumption 9 (Regular compact distributions) For j ∈ {1, 2}, the support of X2 condi-
tional on X1 ∈ Aj is bounded and FX2|X1∈Aj ∈ P, with

P = {F ∈ F : sup(support(F )) = xF <∞ and F ′(x) = λF (xF − x)m(1 +R(1/(xF − x)).

for some λF > 0,m > −1 and R ∈ Rα, α < 0} .

Assumption 10 (Conditions on (kjn)n∈N) For j ∈ {1, 2}, kjn →∞ and kjn = o(n/g−1j (n)),
where g−1j is the generalized inverse of gj(t) = t3−2ξj [U ′j(t)/(t

1−ξjU ′(t)−λFX2 |X1∈Aj
|ξj|1+ξj)]2,

and Uj(t) = F−1X2|X1∈Aj(1− 1/t).

The set P includes all standard distributions with compact support, such as the uniform
and the beta. Under Assumptions 9 and 10, a test based on T2n is consistent.

17A function R is regularly varying with exponent α if for all x > 0, limt→∞R(xt)/R(t) = xα. We also
include the zero function in Rα.
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Proposition 4.2 Suppose that Assumptions 9 and 10 hold. Then the test defined by the
critical region {T2n < −zα}, where zα is the α-quantile of a normal random variable, is a
consistent test with asymptotic level α of the null hypothesis X21 = X22 against X21 < X22.

An important feature of this test is that it is consistent and has an asymptotically correct
level even if the tail indices ξ1 and ξ2 differ, or, equivalently, even if the rates of convergence
towards 1 of FX2 |X1∈Aj (when x → X2j) are not the same for j = 1 and j = 2. In such a
case, the estimators X̂21 and X̂22 have different rates of convergence, but these differences
are automatically taken into account by the denominator of the test statistic T2n.

Our approach does not test for strict monotonicity of X2(.) everywhere, but rather between
supA1 and supA2. However, it is possible to conduct several tests using different sets in
each test. The rejection of all such tests would strongly support the strict monotonicity
condition.18

4.2.2 Monte Carlo simulations

Both previous tests rely on the use of data near the boundaries of the support and one
might wonder if such tests are useful in practice. To evaluate their power, we perform
Monte Carlo simulations.

More precisely, we study the performances of the compact support test in four models of
the form Xk = ρX∗ + εk (k ∈ {1, 2}), where (ε1, ε2) are i.i.d. and independent of X∗. In
the first one, ρ = 0 and εk ∼ U [−1, 1]. Then sup Supp(X2|X1 ∈ A) < ∞ and the density
of X2|X1 ∈ A is strictly positive at the boundary (because X1 and X2 are independent
and X2 = ε2 is uniform), the tail index being equal to −1. In the second model, ρ = 1,
X∗ ∼ U [−2, 2] and εk ∼ U [−1, 1]. We still have sup Supp(X2|X1 ∈ A) < ∞ but the
density at the boundary is zero. The tail index is still negative as the supremum is finite,
but it is smaller in absolute value and equals −0.5. The third model corresponds to the
sum of two normal distributions (ρ = 1, X∗ ∼ N (0, 1) and εk ∼ N (0, 1/4)) for which the
tail index is equal to 0. In this case sup Supp(X2|X1 ∈ A) = +∞, but the distribution of
X2 conditional on X1 ∈ A has thin tails. Finally, in the fourth model, ρ = 0 and εk follows
a student distribution with two degrees of freedom. The tail index is positive and equals
0.5, which reflects an infinite upper bound and heavy tails.

18Our test could also be generalized to K different subsets (Ak)k=1...K . In this case, we can use multi-
variate constraints tests developed for instance by Wolak (1991).
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To test for the finiteness of the upper bound, we simulate, for each model and each sample
s, respectively n = 500, n = 1, 000 and n = 2, 000 observations of the form (Xs

1i, X
s
2i). We

then calculate the test T s1n and check if T s1n is less than −1.64.19 The power of the test is
reported in Table 1.

Table 1: Power of the test sup Supp(X2|X1) = +∞

Xk = εk
(U)

Xk = X∗
(U)

+ εk
(U)

Xk = X∗
(N)

+ εk
(N)

Xk = εk
(St)

n (ξ = −1) (ξ = −0.5) (ξ = 0) (ξ = 0.5)

500 0.79 0.42 0.06 0.009
1000 0.89 0.49 0.06 0.001
2000 0.97 0.55 0.07 0.002
Note: the results are based on 1,000 simulations.

These simulations are reassuring about the power of our test. When sup Supp(X2|X1 ∈
A) <∞, the test is rejected with a rather high probability. In the worst case, i.e. n = 500

observations and Xk is the sum of two uniform distributions, so that its density is equal
to zero at the boundary, our test is rejected with a probability of 42%. This percentage
increases to 79% in the first model in which the distribution is strictly positive at the
boundary. On the contrary, when ξ equals 0 or is positive, the test is almost always
accepted. The case ξ = 0 also shows that the actual level is close to the nominal level of
5%. Hence, even with a rather small number of observations, the nonparametric test of the
compact support assumption appears to be quite powerful. It may be visually difficult to
distinguish a distribution with compact support against one with thin tails (see Figure 2),
but it is relatively easy to compare them empirically, relying on observations near the
boundaries.

We then perform monotonicity tests for the first two models, in which sup Supp(X2|X1 =

x) <∞. The results for different sets A1 and A2 are reported in Table 2.20

19In these simulations, A = [0.05, 0.95]. As usually in this literature, the choice of the tuning parameter
(here kn) can be delicate and is not discussed in Segers & Teugels (2000). As a rule of thumb, we take
kn =

√
n(1 + 10

√
ξ).

20Once again, the choice of kjn can be delicate in practice. We fix them here to 12 for n = 500, 25 for
n = 1, 000 and 50 for n = 2, 000.
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Table 2: Power of the test that X21 = X22.

n Sets A1 and A2 Xk = εk
(U)

Xk = X∗
(U)

+ εk
(U)

[0.1, 0.2], [0.8, 0.9] 0 0.89
500 [0.3, 0.4], [0.6, 0.7] 0.01 0.69

[0.4, 0.5], [0.5, 0.6] 0 0.23
[0.1, 0.2], [0.8, 0.9] 0 1

1000 [0.3, 0.4], [0.6, 0.7] 0 0.98
[0.4, 0.5], [0.5, 0.6] 0 0.64
[0.1, 0.2], [0.8, 0.9] 0 1

2000 [0.3, 0.4], [0.6, 0.7] 0 1
[0.4, 0.5], [0.5, 0.6] 0.01 0.88

Note: the results are based on 1,000 simulations.

These simulations are also reassuring for the empirical relevance of the monotonicity test.
Quite intuitively, the more A1 and A2 are separated, the more powerful the test is. Even
with only 500 observations, when Xk is the sum of two uniform distributions, the null
hypothesis is rejected in 89% of the cases when A1 = [0.1, 0.2] and A2 = [0.8, 0.9]. On
the contrary, when Xk corresponds to a uniform distribution, for which the monotonicity
assumption is not satisfied, the test is almost always accepted. When A1 and A2 are closer,
the test is less powerful except if one has larger data at his disposal. For instance, when
A1 = [0.4, 0.5] and A2 = [0.5, 0.6], the power of the test for the second model goes from
23% to 88% when the size of the sample increases from 500 to 2, 000 observations.

5 Conclusion

This paper proposes an alternative and complementary approach to Hu & Schennach (2008)
to identify continuous mixture models. Our result relies on a moving support assumption
that states that the supports of the observed variables strictly change with the underlying
unobserved component. We believe that this assumption is economically relevant in many
settings such as measurement error, matching and auction models. Finally, it has the
advantages of being simple and testable.
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Appendix: proofs

Proof of Theorems 2.1 and 3.1

We prove both results here, as their proof are closely related. The proof consists in four
steps. The first two steps show that FXk|X∗ is identified for k ≥ 3 under Assumptions
1, 2, 3-(i) and 4. It therefore applies to both theorems. Then the third step proves that
FX1|X∗ , FX2|X∗ and fX∗ are identified if we also impose Assumption 3-(ii). This concludes
the proof of Theorem 2.1. Finally, Step 4 shows that fX∗ is also identified if we impose
Assumption 5 instead of Assumption 3-(ii). This proves the second part of Theorem 3.1.

First step: identification of X2(.), X∗ ≡ inf Supp(X∗) and X∗ ≡ sup Supp(X∗).

First, by monotonicity of X2(.) and because X∗ ≤ X1, we have

X2 ≤ X2(X
∗) ≤ X2(X1).

Therefore, X2(.) is identified by X2(x) = max Supp(X2|X1 = x).

Second, inf Supp(X∗) = inf Supp(X1), soX∗ is identified. Finally, we have sup Supp(X2) =

X2(X
∗). This implies that X∗ is identified by X−12 (sup Supp(X2)).

Second step: identification of the distribution of Xk|X∗ for k ≥ 3.

For all η > 0 and x ∈ (X∗, X
∗
), let xη = max(x − η,X∗) and xη = min(x + η,X∗). We

also define the set Aη(x) by

Aη(x) =
[
xη;xη

]
×
[
X2(xη);X2(xη)

]
.

Remark that X∗ < xη implies X2 < X2(xη) and X∗ > xη implies X1 > xη. Thus,
(X1, X2) ∈ Aη(x) implies that X∗ belongs to the interval [xη, xη].

By continuity of x 7→ FXk|X∗(xk|x), there exists, for all δ > 0, η > 0 such that |FXk|X∗(xk|u)−
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FXk|X∗(xk|x)| < δ for all u such that |u− x| < η. Hence,

∣∣FXk|(X1,X2)∈Aη(x)(xk)− FXk|X∗(xk|x)
∣∣

=

∣∣∣∣∣
∫ xη

xη

(
FXk|X∗(xk|u)− FXk|X∗(xk|x)

)
fX∗|(X1,X2)∈Aη(x)(x

∗)dx∗

∣∣∣∣∣
≤

∫ xη

xη

∣∣FXk|X∗(xk|x∗)− FXk|X∗(xk|x)
∣∣ fX∗|(X1,X2)∈Aη(x)(x

∗)dx∗

< δ,

where the second line stems from the independence between Xk and (X1, X2) conditional
on X∗. Hence, for all x ∈ (X∗, X∗) and all xk,

lim
η→0

FXk|(X1,X2)∈Aη(x)(x) = FXk|X∗(xk|x). (5.1)

As a consequence, the distribution of Xk conditional on X∗ is identified. Finally, if X∗ >
−∞ (and similarly for X∗), FXk|X∗(xk|X

∗) is identified by continuity of x 7→ FXk|X∗(xk|x).

Third step: identification of FX1|X∗ , FX2|X∗ and fX∗ under Assumption 3-(ii).

First, applying the previous reasoning with (X1, X2) replaced by (X3, X2) and (X1, X3),
we identify the distributions of X1 and X2 conditional on X∗. Finally, we prove that we
identify fX∗ as well. For that purpose, let

qη(x) = P (X1 ∈ [xη, xη]|X∗ = x)P (X2 ∈ [X2(xη);X2(xη)]|X∗ = x).

qη is identified. Moreover, by conditional independence between X1 and X2,

P [(X1, X2) ∈ Aη] =

∫ xη

xη

qη(x
∗)fX∗(x

∗)dx∗.

Let us consider
fX∗,η(x) =

P [(X1, X2) ∈ Aη]∫ xη
xη
qη(v)dv

.

fX∗,η(x) is identified, so the result follows if we prove that limη→0 fX∗,η(x) = fX∗(x).

By assumption, fX∗ is continuous on (X∗, X∗). Thus, for all δ > 0, there exists η such
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that |x∗ − x| < η implies that |fX∗(x∗)− fX∗(x)| < δ. Hence,

|fX∗,η(x)− fX∗(x)| =

∣∣∣∣∣∣
∫ xη

xη

qη(x
∗)∫ xη

xη
qη(v)dv

(fX∗(x
∗)− fX∗(x)) dx∗

∣∣∣∣∣∣
≤

∫ xη

xη

qη(x
∗)∫ xη

xη
qη(v)dv

|fX∗(x∗)− fX∗(x)| dx∗

< δ

∫ xη

xη

qη(x
∗)∫ xη

xη
qη(v)dv

dx∗

< δ.

The result follows.

Fourth step: identification of fX∗ under Assumption 5.

First, under Assumption 5, we can identify X3(.) by the same reasoning as in the first step.
Then the distribution of X̃3 = X

−1
3 (X3), as well as its distribution conditional on X∗ = x∗,

are identified. Besides, by Assumptions 2 and 5,

FX̃3
(x3) =

∫ x3

c

FX̃3|X∗(x3|x
∗)fX∗(x

∗)dx∗.

By Assumption 5 and the dominated convergence theorem, FX̃3
is differentiable and

fX̃3
(x3) = fX̃3|X∗(x3|x3)fX∗(x3) +

∫ x3

c

fX̃3|X∗(x3|x
∗)fX∗(x

∗)dx∗.

Suppose first that m = 1. Then fX̃3|X∗(x3|x3) > 0 and

fX̃3
(x3)

fX̃3|X∗(x3|x3)
= fX∗(x3) +

∫ x3

c

fX̃3|X∗(x3|x
∗)

fX3|X∗(x3|x3)
fX∗(x

∗)dx∗.

The left hand-side is identified, as well as the fraction in the integral. This equation corre-
sponds to a Volterra equation of the second kind in fX∗ . Because (x3, x

∗) 7→ fX̃3|X∗(x3|x
∗)/fX3|X∗(x3|x3)

is bounded by assumption, this equation admits a unique solution (see, e.g., Kress, 1999,
Theorem 3.10). Hence, fX∗ is identified.

Now, if m > 1, we have similarly, by a straightforward induction,

F
(m)

X̃3
(x3)

F
(m)

X̃3|X∗
(x3|x3)

= fX∗(x3) +

∫ x3

c

F
(m)

X̃3|X∗
(x3|x∗)

F
(m)

X̃3|X∗
(x3|x3)

fX∗(x
∗)dx∗.
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This equation also corresponds to a Volterra equation of the second kind in fX∗ , implying
once more that fX∗ is identified.

Proof of Theorem 3.2

Identification of FX3|X∗ , ..., FXK |X∗

We suppose, without loss of generality, that K = 3 and let (x1, x2, x3) be in the support
of (X1, X2, X3), with x1 ≤ x2. Because X∗ ≤ min(X1, X2), we have,

FX1,X2,X3(x1, x2, x3) =

∫ x1

X∗
FX1|X∗(x1|x∗)FX1|X∗(x2|x∗)FX3|X∗(x3|x∗)fX∗(x∗)dx∗.

By Assumption 6 and the dominated convergence theorem, FX1,X2,X3 is twice differentiable
with respect to x1 and x2 and Q(x1, x2, x3) = ∂2FX1,X2,X3/∂x1∂x2(x1, x2, x3) satisfies

Q(x1, x2, x3) =

∫ x1

X∗
fX1|X∗(x1|x∗)fX1|X∗(x2|x∗)FX3|X∗(x3|x∗)fX∗(x∗)dx∗.

For k ∈ {1, 2}, let ∂krQ (resp. ∂klQ) denote the right (resp. left) derivative of Q with
respect to xk. We have

∂1lQ(x1, x2, x3) =fX1|X∗(x1|x1)fX1|X∗(x2|x1)FX3|X∗(x3|x1)fX∗(x1)

+

∫ x1

X∗

∂fX1|X∗

∂x
(x1|x∗)fX1|X∗(x2|x∗)FX3|X∗(x3|x∗)fX∗(x∗)dx∗

Similarly, taking the derivative with respect to x2 yields

∂2rQ(x1, x2, x3) =

∫ x1

X∗
fX1|X∗(x1|x∗)

∂fX1|X∗

∂x1
(x2|x∗)FX3|X∗(x3|x∗)fX∗(x∗)dx∗.

Hence, by choosing x1 = x2 = x, we get

∂1lQ(x, x, x3)− ∂2rQ(x, x, x3) = fX1|X∗(x|x)2FX3|X∗(x3|x)fX∗(x) (5.2)

Suppose that m = 1, so that fX1|X∗(x|x) > 0. Then

FX3|X∗(x3|x) =
∂1lQ(x, x, x3)− ∂2rQ(x, x, x3)

limy→∞ ∂1lQ(x, x, y)− ∂2rQ(x, x, y)
.

Because Q and its derivative can be recovered from the data, the right-hand side is iden-
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tified, and so is FX3|X∗(x3|x).

When m > 1, some algebra show that the following equation holds:

∂Q

∂xm1l∂x
m−1
2r

(x, x, x3)−
∂Q

∂xm−11l ∂xm2r
(x, x, x3) =

(
∂fX1|X∗

∂xm−11

)2

(x|x)FX3|X∗(x3|x)fX∗(x). (5.3)

Hence, reasoning as previously, we also identify FX3|X∗(x3|x) in this case.

Identification of fX∗ if Assumption 6 holds for X3

In this case, FX1|X∗ = FX3|X∗ is identified. Thus, by Equation (5.2), we obtain, when
m = 1,

fX∗(x) =
∂1lQ(x, x, x3)− ∂2rQ(x, x, x3)

fX1|X∗(x|x)2FX3|X∗(x3|x)
,

which holds for any x3. Thus fX∗ is identified as well. The same reasoning applies when
m > 1 by using (5.3) instead of (5.2).

Proof of non-identification for Example 6

Let us consider the density function h(x) = fX∗(x/2)/6 + 4fX∗(2x)/3 and let H be the
corresponding cdf. H is strictly increasing on the real line since h(x) > 0 for all x ∈ R.
Then let q(x) = H−1 ◦ FX∗(x). Because h 6= fX∗ , q is not the identity function. We show
that the data can be rationalized by f̃Xk|X∗(xk|x∗) ≡ fε(xk − q(x∗)), which differs from
fXk|X∗(xk|x∗). We prove this by showing that (q(X∗) + ε1, ..., q(X

∗) + εK) has the same
characteristic function as (X∗+ ε1, ..., X

∗+ εK) = (X1, ..., XK). The result follows because
by construction, the conditional distribution of q(X∗) + εk is f̃Xk|X∗ .

First, note that the characteristic functions corresponding to fX∗ , h and fε are respectively
ΨX∗(t) = (1 − |t|)+ (where x+ = max(x, 0)), Ψ̃(t) = 1

3
ΨX∗(2t) + 2

3
ΨX∗(t/2) and Ψε(t) =

(1− 2K|t|)+. Hence, the characteristic function of (X1, ..., XK) satisfies

ΨX1,...,XK (t1, ..., tK) = ΨX∗

(
K∑
k=1

tk

)
K∏
k=1

Ψε(tk)

=

(
1−

∣∣∣∣∣
K∑
k=1

tk

∣∣∣∣∣
)+ K∏

k=1

(1− 2K|tk|)+ .
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Now, if
∣∣∣∑K

k=1 tk

∣∣∣ ≥ 1/2, |tk| ≥ 1/2K is satisfied for at least one k ∈ {1, ..., K}. Hence,

ΨX1,...,XK (t1, ..., tK) = ΨX∗

(
K∑
k=1

tk

)
K∏
k=1

Ψε(tk) = 0 = Ψ̃

(
K∑
k=1

tk

)
K∏
k=1

Ψε(tk).

Moreover, Ψ̃ and ΨX∗ coincide on [−1/2, 1/2]. Indeed, if
∣∣∣∑K

k=1 tk

∣∣∣ ≤ 1/2,

ΨX∗

(
K∑
k=1

tk

)
=

(
1−

∣∣∣∣∣
K∑
k=1

tk

∣∣∣∣∣
)+

=

(
1−

∣∣∣∣∣
K∑
k=1

tk

∣∣∣∣∣
)

=
1

3

(
1− 2

∣∣∣∣∣
K∑
k=1

tk

∣∣∣∣∣
)

+
2

3

(
1− 1

2

∣∣∣∣∣
K∑
k=1

tk

∣∣∣∣∣
)

=
1

3

(
1− 2

∣∣∣∣∣
K∑
k=1

tk

∣∣∣∣∣
)+

+
2

3

(
1− 1

2

∣∣∣∣∣
K∑
k=1

tk

∣∣∣∣∣
)+

= Ψ̃

(
K∑
k=1

tk

)

Hence, for all (t1, ..., tK),

ΨX(t1, ..., tK) = ΨX∗

(
K∑
k=1

tk

)
K∏
k=1

Ψε(tk) = Ψ̃

(
K∑
k=1

tk

)
K∏
k=1

Ψε(tk).

In other words, (q(X∗) + ε1, ..., q(X
∗) + εK) has the same characteristic function as (X∗ +

ε1, ..., X
∗ + εK) = (X1, ..., XK). The result follows.

Proof of Theorem 4.1

We show that there exists `x1 > 0 such that

P
(
X1 ≤ x1, X2 ≥ X2(x1)− t

)
∼ `x1t

1+β1+β2 . (5.4)
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The result follows then directly from Corollary 2.1 of Daouia et al. (2010). As in the proof
of Theorem 2.1, we have

P
(
X1 ≤ x1, X2 ≥ X2(x1)− t

)
=

∫ x1

X
−1
2 (X2(x1)−t)

FX1|X∗(x1|x∗)[1−FX2|X∗(X2(x1)−t|x∗)]fX∗(x∗)dx∗.

By Assumption 7, we have

P
(
X1 ≤ x1, X2 ≥ X2(x1)− t

)
∼
∫ x1

X
−1
2 (X2(x1)−t)

`1,x∗(x1−x∗)β1`2,x∗(X2(x
∗)−X2(x1)+t)

β2fX∗(x
∗)dx∗.

`1,x∗ , `2,x∗ and fX∗(x
∗) are continuous as functions of x∗. Moreover, by Assumption 7,

X2(x
∗)−X2(x1) + t ∼ X

′
2(x1)(x

∗ − x1) + t. Therefore,

P
(
X1 ≤ x1, X2 ≥ X2(x1)− t

)
∼ `1,x1`2,x1fX∗(x1)

∫ x1

X
−1
2 (X2(x1)−t)

(x1−x∗)β1(X
′
2(x1)(x1−x∗)+t)β2dx∗.

The change of variable v = (x1 − x∗)/(x1 −X
−1
2 (X2(x1)− t)) then yields

P
(
X1 ≤ x1, X2 ≥ X2(x1)− t

)
∼`1,x1`2,x1fX∗(x1)(x1 −X

−1
2 (X2(x1)− t))1+β1∫ 1

0

vβ1
(
X
′
2(x1)(x1 −X

−1
2 (X2(x1)− t))v + t

)β2
dv.

By Assumption 5, x1 −X
−1
2 (X2(x1)− t) ∼ t/X

′
2(x1). Hence,

P
(
X1 ≤ x1, X2 ≥ X2(x1)− t

)
∼

[
`1,x1`2,x1

fX∗(x1)

X
′
2(x1)

1+β1

∫ 1

0

vβ1(1 + v)β2dv

]
t1+β1+β2 .

Therefore, Equation (5.4) holds, and the result follows.

Proof of Proposition 4.1

We cannot apply directly the result of Segers & Teugels (2000) because the size nA of S
is random. To overcome this issue, we first prove the result conditional on nA. We then
recover the unconditional result by integration.

Let (in)n∈N denote a sequence of integers such that limn→∞ in/n ∈ (0, 1]. Conditional on
nA = in, the sample size is deterministic. Moreover, in/kn →∞. Hence, we can apply the
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result of Segers & Teugels (2000):

lim
n→∞

P (T1n ≤ x|nA = in) = Φ(x),

for all x and where Φ denotes the cdf of a standard normal variable.
By the strong law of large numbers, P (limn→∞ nA/n ∈ (0, 1]) = 1. Hence, for all x,

lim
n→∞

P (T1n ≤ x|nA) = Φ(x) almost surely.

Because P (T1n ≤ x|nA) is bounded, by Lebesgue’s dominated convergence theorem,

lim
n→∞

P (T1n ≤ x) = Φ(x).

The result follows.

Proof of Proposition 4.2

We prove the result conditional on the size nj of the subsample {i : X1i ∈ Aj}(j ∈ {1, 2}),
as if nj were deterministic. To take into account their randomness, we then integrate over
these sizes, as in the previous proof.

Let αn = σ1n/
√
σ2
1n + σ2

2n and Ujn = (X̂2j −X2j)/σjn for j ∈ {1, 2}. Under Assumptions
9 and 10, the conditions of Theorem 3.2 of Dekkers & Haan (1989) are satisfied (with their
c = λF and their ρ = −α), so that

√
2kjn

X̂2j −X2j

Xj
2(nj−kjn+1) −X

j
2(nj−2kjn+1)

d−→ N

(
0,

3ξ2j 2
2ξj−1

(2ξj − 1)6

)
.

Thus, because ξ̂j
P−→ ξj, Ujn converges in distribution to a standard normal distribution.

U1n and U2n are independent as they are functions of the two independent subsamples
{i : X1i ∈ Aj}, j ∈ {1, 2}. Thus,

(U1n, U2n)
d−→ N (0, I2) (5.5)

where I2 is the 2× 2 identity matrix.

Now, applying Lemma 3.1 of Dekkers & Haan (1989) (see also their Remark p.1807), we
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have
Xj

2(nj−kjn+1) −X
j
2(nj−2kjn+1)

n
kjn
U ′j(n/kjn)

P−→ 1.

Using the expression of σjn and the consistency of ξ̂j, this implies that there exists a deter-
ministic sequence (µn)n∈N such that [σ1n/σ2n]/µn

P−→ 1. Then, letting λn = 1/
√

1 + µ2
n,

we obtain after some algebra αn/λn
P−→ 1 and

√
(1− α2

n)/(1− λ2n)
P−→ 1. Defining

V1n = (αn/λn)U1n and V2n =
√

(1− α2
n)/(1− λ2n)U2n, we thus get, by Slutsky’s lemma

(see, e.g., van der Vaart, 2000, Lemma 2.8),

(V1n, V2n)
d−→ N (0, I2).

Thus, by Skorokhod’s representation theorem (see, e.g., van der Vaart, 2000, Theorem
2.19), there exists (V1, V2) ∼ N (0, I2) such that (V1n, V2n)

P−→ (V1, V2).21

Now, we have

T2n =
X̂22 −X22 +X21 − X̂21√

σ2
1n + σ2

2n

+
X22 −X21√
σ2
1n + σ2

2n

= αnU1n +
√

1− α2
nU2n +

X22 −X21√
σ2
1n + σ2

2n

(5.6)

Thus, under the null,

T2n =
[
λn(V1n − V1) +

√
1− λ2n(V2n − V2)

]
+
[
λnV1 +

√
1− λ2nV2

]
.

Because λn is bounded, the first term into brackets tends to zero in probability. The second
term is a standard normal variable. Thus, under the null, T2n

d−→ N (0, 1). This proves
that the test has asymptotically level α.

To show consistency, it suffices to prove that the third term in (5.6) tends to infin-
ity under the alternative. Because X2 has compact support, Xj

2(nj−kjn) − Xj
2(nj−2kjn) is

bounded, and we have σjn = OP (1/
√
kjn). Moreover, kjn →∞ by Assumption 10. Hence,√

σ2
1n + σ2

2n
P−→ 0. Besides, X22 > X21 under the alternative. The result follows.

21Actually, this representation theorem applies on a different probability space but this is not a concern
here, as at the end, we are only interested by the convergence in distribution of T2n.
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