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Abstract

This paper develops a new method for dealing with endogenous selection. The

usual instrumental strategy based on the independence between the outcome and the

instrument is likely to fail when selection is directly driven by the dependent variable.

Instead, we suggest to rely on the independence between the instrument and the

selection variable, conditional on the outcome. This approach may be particularly

suitable for nonignorable nonresponse, binary models with missing covariates or Roy

models with an unobserved sector. The nonparametric identification of the joint

distribution of the variables is obtained under a completeness assumption, which

has been used recently in several nonparametric instrumental problems. Even if the

conditional independence between the instrument and the selection variable fails to

hold, the approach provides sharp bounds on parameters of interest under weaker

monotonicity conditions. Apart from identification, nonparametric and parametric

estimations are also considered. Finally, the method is applied to estimate the effect

of grade retention in French primary schools.

Keywords: endogenous selection, instrumental variables, nonparametric identi-

fication, completeness, inverse problems.

JEL classification numbers: C14, C31, C35.
∗I am particularly grateful to Jean-Claude Deville for inspiring me to start this project and to Stéphane

Bonhomme for his fruitful suggestions. I also wish to thank three anonymous referees, Romain Aeberhardt,
Marine Carrasco, Elise Coudin, Bruno Crépon, Laurent Davezies, Philippe Février, Jean-Pierre Florens,
Edwin Leuven, Thierry Magnac, Charles Manski, Arnaud Maurel, Jean-Marc Robin and the participants
of the ESEM and of the CEMMAP seminar for their helpful comments.

1



1 Introduction

Missing observations are very common in micro data, either because of selection, nonre-
sponse or simply because counterfactual variables cannot be observed. Ignoring this issue
by making inference on the observed population generally leads to inconsistent estimates.
Moreover, without additional assumptions, only bounds on the parameters of interest can
be identified (see, e.g., Manski, 2003). Several approaches have been followed to achieve
point identification. The first one is to assume that the selection variable and the outcome
are independent conditional on the observed covariates. This is the so-called missing-at-
random assumption (see, e.g., Little and Rubin, 1987), also known as the unconfoundedness
assumption in the treatment effect literature (see, for instance, Imbens, 2004). This as-
sumption is often considered too stringent because it rules out any correlation between
the selection and the outcome variables. The second approach is to rely on instruments
that determine selection but not outcomes (see, e.g., Heckman, 1974, on sample selection
models, Angrist et al., 1996, or Heckman and Vytlacil, 2005, on treatment effects). This
assumption does not, however, point identify the distribution of the outcome in general
(see Manski, 2003). Moreover, it may be difficult to find such instruments in practice,
in particular when selection depends heavily on the dependent variable. The third ap-
proach relies on functional restrictions rather than exclusion restrictions. For instance,
Chamberlain (1986) obtains identification at infinity by imposing a linear structure. Fi-
nally, Lewbel (2007) obtains identification under the existence of a special regressor that
is strongly exogenous (i.e., conditionally independent of the errors of the selection model),
a large support condition and restrictions on the probability of selection.1

In this paper, another instrumental strategy for solving endogenous selection is considered.
Nonparametric identification is based on independence between the instrument and the
selection variable, conditional on the outcome and possibly on other explanatory variables.
This assumption has been also used in the framework of nonignorable nonresponse by
Chen (2001), Tang et al. (2003), Hemvanich (2004) and Ramalho and Smith (2007).2

Apart from nonresponse, this assumption may be particularly suitable when selection is
directly driven by the dependent variable. Consider for instance a variable that is observed
only conditionally on an unobserved truncation. Finding an instrument that only affects

1This probability has to tend to zero or one when the special regressor tends to infinity.
2The difference with these papers is that they focus mainly on parametric and semiparametric estimation

issues, whereas the emphasis is put on nonparametric identification here. In particular, we generalize the
identification results of Hemvanich (2004), obtained when the support of the outcome is finite, to any kind
of outcome.
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selection is impossible if this truncation variable is purely random. Instead, any variable
that affects the dependent variable will satisfy the exclusion restriction considered here.
Other examples where this assumption can be useful include Roy models with unobserved
sector, one stratum response based samples or truncated count data models. As in usual
instrumental regressions, a rank condition between the instrument and the outcome is also
required to achieve identification. This condition is stated in terms of completeness and
is already considered in several nonparametric instrumental problems (see, among others,
Newey and Powell, 2003, Blundell et al., 2007, and Hu and Schennach, 2008). Under
completeness and conditional independence, the joint distribution of the data is identified
nonparametrically.3 The key point is that it is enough to recover the probability of selection
conditional on the outcome. This is similar to the unconfoundedness situation where
the problem consists of identifying the propensity score. The difference between the two
settings is that the identification of the propensity score is trivial under unconfoundedness,
whereas the conditional probability we consider is more difficult to retrieve. We show
that this function satisfies an integral inverse problem whose solution is unique under the
completeness condition.

The joint distribution of the data can still be recovered under a parametric restriction on
the selection model if only some moments of the instrument and not its full distribution
are used. This result may be useful for estimation or when only aggregated information
on the instrument is available. The idea of using moments of the instrument to deal with
nonresponse has also been applied in survey sampling (see Deville, 2002). It is also related
to the literature on auxiliary information, which has been developed either for efficiency
reasons (see Imbens and Lancaster, 1994, Hellerstein and Imbens, 1999) or, as here, to
provide identification (see Hellerstein and Imbens, 1999, and Nevo, 2002). Our parametric
framework extends Nevo’s result to the case of endogenous selection.

The fact that the identification strategy relies on an exclusion restriction may seem restric-
tive in some applications,4 but contrary to the missing-at-random assumption, for instance,
this condition is testable. Furthermore, the method can be informative even if the exclu-
sion restriction fails, but selection depends monotonically on both the outcome and the

3In particular, the marginal effect of the instrument on the outcome, or the effect of the selection
variable on the outcome, are identified.

4It is not needed in Lewbel’s framework, for instance. On the other hand, the existence of a special
regressor, which may be difficult to find in practice, is not needed here. The instrument may be continuous
or discrete; the completeness condition only requires that their support has at least as many elements as
the support of the outcome. Moreover, almost no restriction is imposed on the conditional probability of
selection.
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instrument. In this case, we provide sharp and finite bounds on some parameters of the
outcome. Thus, even if the dependent variable is unbounded, one can obtain compact
intervals on parameters of interest. This result is similar to the one of Manski and Pepper
(2000, see their Proposition 2, Corollary 2) but within a slightly different framework and
under other assumptions. Instead of their monotone treatment response condition, which
states that outcomes increase with the treatment, the result relies on the existence of an
instrument that affects selection in a monotonic way. Such a condition is weak and is likely
to be satisfied in many contexts, including the use of data with nonignorable nonresponse
and treatment effects estimation. In this latter case in particular, the result should be
of practical importance, as it allows one to go beyond the standard routine of computing
matching estimators as point estimates of these effects.

In addition to identification issues, we also consider estimation of the conditional probabil-
ity of selection. Standard GMM can be used in the parametric case or in the nonparamet-
ric one with a discrete outcome. In a nonparametric setting with a continuous dependent
variable, the parameter is functional and solves a linear inverse problem. We propose an
estimator based on Tikhonov regularization, as Hall and Horowitz (2005) or Carrasco et al.
(2006), and show its consistency. Then valid inference on the whole population is based on
an inverse probability weighting procedure, in a similar fashion to Horvitz and Thompson
(1952), Hellerstein and Imbens (1999), Hirano et al. (2003) or Wooldridge (2007). Finite
sample properties of these estimators are investigated through Monte Carlo simulations.

Finally, the method is used to estimate the effect of grade retention in the 5th grade in
France on test achievement. Aside from the usual counterfactual problem, the identification
of this effect is complicated by the fact that French students only take standardized tests
at the beginning of the 3rd and 6th grades. Thus, ability at the end of the 5th grade,
which is one of the main factors of grade retention, is observed for promoted students,
thanks to the 6th grade test, but not for retained students. Consequently, the problem
fits within our framework. Sharp bounds on the effect of grade retention are computed
using the 3rd grade test score as an instrument. Overall, the short-term impact of grade
retention seems more likely to be positive, a result in line with that of Jacob and Lefgren
(2004) for third-graders in Chicago.

The rest of the paper is structured as follows. Section 2 is devoted to identification issues.
Estimation methods are described in Section 3. Monte Carlo results are presented in
Section 4, and the application to grade retention is developed in Section 5. The appendix
contains all proofs.
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2 Identification

2.1 The setting and main result

Let D, Y and Z denote respectively the selection dummy variable, the dependent variable
and the instrument. The first assumptions define the selection problem.

Assumption 1 We observe D and (Y, Z) when D = 1. Y is not observed when D = 0.

Assumption 2 The distribution of Z is identified.

Assumptions 1 and 2 are satisfied when only Y is missing, as in selection or item nonre-
sponse problems. It also encompasses the case of unit nonresponse, in which (Y, Z) are
missing when D = 0. In this latter situation, auxiliary information on Z is needed to sat-
isfy Assumption 2. This information typically comes from refreshment samples, censuses
or administrative data. In these two latter cases, assuming the identifiability of the whole
distribution of Z may be overly strong, and we will see in Subsection 2.4 that it may be
replaced by the knowledge of some moments of Z, at the price of imposing parametric
restrictions.

Assumptions 1 and 2 alone are not sufficient to point identify the distribution of (D, Y, Z).
More structure on the dependence between these variables is needed. If selection directly
depends on Y , the usual assumption of exogenous selection fails, and it may be difficult to
find an instrument that affects the selection variable but not the outcome. On the other
hand, a variable Z related to Y but not to D may be available in this case. More precisely,
we assume the following:5

Assumption 3 D ⊥⊥ Z |Y .

This assumption was also considered by Chen (2001), Tang et al. (2003), Hemvanich (2004)
and Ramalho and Smith (2007) in a nonresponse framework. It is also a special case of
Assumption (41) of Manski (1994). It can be interpreted as follows. The selection equation
depends on Y , which is missing when D = 0 and thus cannot be identified with the data
alone. On the other hand, if an instrument that affects Y but not directly D is available,

5We could refine this assumption by supposing that D ⊥⊥ Z |Y,X where X denote covariates whose
distribution is identified. The subsequent analysis would then be conditional on X. We do not introduce
such covariates until Subsection 2.4 in order to ease exposition.
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one can identify this selection equation in a similar way to usual instrumental regressions.
For instance, suppose that (D, Y, Z) satisfy the nonparametric system Y = ϕ (Z, ε)

D = ψ(Y, η).
(2.1)

Then Assumption 3 holds under an independence condition, as the following result shows.

Proposition 2.1 Suppose that system (2.1) holds with η ⊥⊥ (Z, ε). Then Assumption 3
holds.

By letting ψ(y, η) = 1{η ≤ P (D = 1|Y = y)}, we can suppose without loss of generality
that η is independent of Y .6 The exclusion restriction amounts to reinforcing this into a
conditional independence between η and (Y, Z).

As indicated previously, a dependence condition between Y and Z is required to achieve
the identification of the model. We rely afterwards on a completeness condition. For
any random variable T and q > 0, let Lq

T denote the space of real functions g satisfying
E(|g(T )|q) < +∞. Let us also denote B the set of real functions g such that g(Y ) is
bounded below almost surely and g ∈ L1

Y .

Assumption 4 Y is B-complete for Z, i.e., for all g ∈ B,(
E(g(Y )|Z) = 0 a.s.

)
=⇒

(
g(Y ) = 0 a.s.

)
. (2.2)

Assumption 4 is weaker than the usual completeness condition, which requires that (2.2)
holds for any g ∈ L1

Y , but stronger than bounded completeness, which is equivalent to
(2.2) for bounded functions only (see, e.g., Mattner, 1993, for a discussion on the difference
between completeness and bounded completeness). The standard completeness condition
is used in nonparametric instrumental regression settings under additive separability (see
Newey and Powell, 2003, Darolles et al., 2006) and in nonclassical measurement error
problems (see Chen and Hu, 2006 and Hu and Schennach, 2008),7 while the bounded
completeness condition is used for instance by Blundell et al. (2007).

Completeness can be easily characterized when Y and Z have finite supports. Indeed, let-
ting (y1, ..., ys) and (z1, ..., zt) denote these supports, this condition amounts to rank(M) =

6In this case, ψ is not necessarily structural.
7Indeed, Assumption 2.4 of Chen and Hu (2006) and Assumption 2 of Hu and Schennach (2008) are

equivalent, under technical conditions, to a completeness condition.
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s, where M is the matrix of typical element P (Y = yi|Z = zj) (see Newey and Powell,
2003). Hence, the support of Z must be at least as rich as the one of Y (t ≥ s), and the
dependence between the two variables must be strong enough for s linearly independent
conditional distributions to exist. In this case, completeness is equivalent to bounded com-
pleteness. Completeness or bounded completeness are much more difficult to characterize
when the support of Y or Z is infinite and only sufficient conditions have been obtained so
far. Both hold when the density of Y conditional on Z belongs to an exponential family
(see Newey and Powell, 2003). Assumption 4 is also satisfied under an additive decompo-
sition, a large support assumption and technical restrictions on ε in system (2.1), as shown
in the following proposition.

Proposition 2.2 Consider system (2.1) with Y ∈ R and suppose that:

a) (Additive decomposition) ϕ(Z, ε) = µ(ν(Z) + ε) and Z ⊥⊥ ε.

b) (Large support) The measure of ν(Z) is continuous with respect to the Lebesgue measure
and the support of ν(Z) is R almost surely.

c) (Regularity conditions on ε) The distribution of ε admits a continuous density fε with
respect to the Lebesgue measure. Moreover, fε(0) > 0 and there exists α > 2 such that
t 7→ tαfε(t) is bounded. Lastly, the characteristic function of ε does not vanish and is
infinitely often differentiable in R\A for some finite set A.

Then Y is B−complete for Z.

The additive decomposition and the large support condition are identical to Assumptions
A1 and A2 made by D’Haultfœuille (2008) to study completeness and bounded complete-
ness.8 The regularity conditions on ε are satisfied for many distributions such as the normal
ones, the student distributions with degrees of freedom greater than one9 and the stable
distributions with characteristic exponent greater than one. Interestingly, these regular-
ity conditions are hardly stronger than the one needed to achieve bounded completeness,
namely, the zero freeness of the characteristic function of ε (see D’Haultfœuille, 2008,

8The additive decomposition considered here encompasses many nonlinear models, beyond the non-
parametric additive models for which µ(x) = x. Usual ordered choice models correspond to µ(x) =∑K

k=1 k1]αk−1;αk](x) (where 1A(x) = 1 if x ∈ A, 0 otherwise) for some given thresholds α0 = −∞ <

α1 < ... < αK = +∞. Simple Tobit models correspond to µ(x) = max(0, x). Duration models like the
accelerated failure time model (for which µ(x) = exp(x)) or the proportional hazard model (for which µ

is an unknown increasing function and −ε is distributed according to a Gompertz distribution) also fit in
this framework.

9See, e.g., Mattner (1992) for a proof that the conditions on the characteristic function of student
distributions are satisfied.
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Theorem 2.1). Hence, in this framework at least, B-completeness appears to be almost
equivalent to bounded completeness.

Because identification is based on inverse probability-weighted moment conditions, we make
the following assumption.

Assumption 5 P (Y ) > 0 almost surely.

This assumption is similar to the common support condition in the treatment effect lit-
erature. It does not hold if D is a deterministic function of Y , as in simple truncation
models where D = 1{Y ≥ y0}, y0 denoting a fixed threshold. It also fails for random
truncation models of the form D = 1{Y ≥ η} if η is strictly greater than the infimum of
Y . In Example 2 below, this would be the case if the reservation wage η of individuals
were always greater than the lowest potential wage Y .

Theorem 2.3 If Assumptions 1-5 hold, then the distribution of (D, Y, Z) is identified.

Basically, the idea of the proof is the following. Under Assumption 3 and 4, the equation
in Q

E

(
D

Q(Y )

∣∣∣∣Z) = 1 (2.3)

has a unique solution, P . Identification of P follows because the left-hand side is identified
for any given Q. Once P is known, it is easy to show that the distribution of (D, Y, Z) is
identified. We now present several potential applications of this framework.

Example 1: nonignorable nonresponse

In this case, the outcome Y is observed only if the individual responds to the survey or a
given question in the questionnaire (D = 1). One aims at recovering the full distribution
of Y , given that nonresponse directly depends on Y . For instance, accepting to respond
to the question, “Have you taken drugs at least once during the last month?” is likely to
depend on the answer Y (1=Yes, 0=No) itself. The method can be applied if an instrument
affects Y but not directly D. In the drugs example, local drug prices affect drug use but are
unlikely to directly influence survey response. Note that in this example where Y is binary,
the completeness condition is easy to check, since it is equivalent to a nonzero correlation
between Y and the instrument.
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Example 2: Roy model with an unobserved sector

In this example, let Y denote the wage an individual can obtain in sector 1, and η be
the corresponding wage in sector 0. The individual chooses the sector that offers him the
higher wage. Y is observed if sector 1 is chosen but η is never observed. Thus, in this
case D = 1{Y ≥ η}.10 For instance, Y may represent the potential wage of an individual,
which is observed only if the person enters the labor market, while η denotes his reservation
wage. The aim is to recover the distribution of Y , or the effect of covariates X on Y . The
usual exclusion restriction requires the existence of a variable that affects η but not Y . On
the other hand, the strategy above can be applied if an instrument Z, which affects the
potential wage but not directly the reservation wage, is available, so that η is independent
of Z conditional on Y (or conditional on (X, Y ) if one adds covariates). A possible example
of such an instrument is the local unemployment rate (see Haurin and Sridhar, 2003, for
evidence that the local unemployment rate does not affect the reservation wage).11

Example 3: Sample from one response stratum

In this example, a researcher seeks to study the effect of Y on a binary variable D but
observes Y only for the stratum D = 1.12 Our instrumental strategy relies on the existence
of an instrument Z that affects Y but not D directly and whose distribution is identified.
Suppose for instance that one wants to study the efficiency of vaccination in a developing
country, but only data on ill people are available, and the vaccination rate in the population
is unknown. In this case, D is the dummy variable of being ill, while Y is the dummy of
being vaccinated. If there has been an important vaccination campaign after a given date,
one can use the dummy of being born after this date as an instrument.13 Once more, the
completeness condition is satisfied as soon as the correlation between Y and the instrument
is not zero.

This example also includes truncated count data models. In this case, the aim is to recover
the effect of Y on an integer-valued variableN , given that Y is observed only whenN > 0.14

10Following the previous discussion, Assumption 5 will be satisfied if η can be lower than any value of
Y , with a positive probability.

11No statistical test for completeness conditions has been developed yet in the case where Y is continuous.
Thus, Assumption 4 has to be maintained in this example. However, one can test the implications of
Assumption 4 by checking, for instance, that E(Y |Z) is not a constant function.

12In this case, Y is a covariate rather than an outcome. The notation Y is maintained for notational
consistency with Assumption 1.

13If the risk of disease is related to age as well, one can use only the individuals born just before and
just after the beginning of the campaign, as in regression discontinuity designs.

14Hence, D = 1{N > 0} here and recovering P (N = k|Y ) for all k ∈ N amounts to identifying
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Consider for instance the estimation of the price elasticity of a good through the use of
retail data.15 If we observe the quantities sold N and the sales N × Y , but not directly
the prices Y , then these prices can be deduced only when the quantities sold are positive.
The framework can be applied if there is an instrument that affects the prices but not
directly the demand, and whose distribution is identified. Production cost shifters such as
the prices of the inputs may be good candidates.

2.2 Testability

In some contexts, the conditional independence assumption may seem overly strong. An
interesting feature of this assumption, yet, is that it is refutable, contrary to the usual
missing-at-random assumption. First, equation (2.3) may have no solution. This is espe-
cially clear when Y and Z have finite supports. If, indeed, Y and Z take respectively s

and t distinct values, with t > s, then (2.3) can be written as a system of t equations with
s unknown parameters, so that the model is overidentified.

But even if s = t, the model is testable since the solution Q of equation (2.3) has to be
a positive probability, i.e., Q(y) ∈ (0, 1] for all y.16 Consider the illustrative case where
(Y, Z) ∈ {0, 1}2. Let p(y, z) = P (D = 1, Y = y|Z = z), α = 1/Q(0) and β = 1/Q(1).
Then, as soon as p(0, 0)p(1, 1) 6= p(0, 1)p(1, 0), that is to say, under the completeness
condition, equation (2.3) is equivalent to

α =
p(1, 1)− p(1, 0)

p(0, 0)p(1, 1)− p(0, 1)p(1, 0)
,

β =
p(0, 0)− p(0, 1)

p(0, 0)p(1, 1)− p(0, 1)p(1, 0)
.

Hence, when p(1, 1) − p(1, 0) and p(0, 0) − p(0, 1) have opposite signs, for instance, As-
sumption 3 is rejected. Basically, this happens when z 7→ P (D = 1|Y = y, Z = z) varies
too much compared to z 7→ P (Y = y|Z = z).

Now, when a solution Q ∈ (0, 1] of equation (2.3) does exist, one can expect that Assump-
tion 3 cannot be rejected, since intuitively, this equation makes use of all the available

P (D = 1|Y ). Note that this example differs from the simple truncation model D = 1{Y ≥ s} described
above. In particular, Assumption 5 will hold as long as P (N = 0|Y ) < 1 almost surely.

15As discussed by Grogger and Carson (1991), truncated counts arise more generally with data from
surveys that ask participants about their number of participations, or administrative records in which
inclusion in the database depends on having engaged in the activity of interest.

16If the completeness condition does not hold, Q may not be unique. Then at least one of the solutions
has to belong to (0, 1].

10



information. Theorem 2.4 formalizes this idea.

Theorem 2.4 Suppose that Assumptions 1, 2 and 5 hold. Then Assumption 3 can be
rejected if and only if there exists no solution to equation (2.3) that belongs to (0, 1].

When Y is discrete and takes values in {y1, ..., ys}, a statistical test of Assumption 3, under
the maintained assumption of completeness, amounts to testing the multiple inequality
constraints f(yj) ≥ 1 for j = 1, ..., s, with f = 1/P . Such a test can be implemented
with the GMM estimator of P presented in Subsection 3.1 below.17 The situation is
more involved when Y is continuous. Under Assumptions 1-5 and additional technical
conditions, a consistent nonparametric estimator f̂ of f is developed in Subsection 3.2.
This estimator is constrained to belong to [1,M ] with M > 1. It should be possible to
develop a consistent, unconstrained estimator f̃ of f . Then a test of Assumption 3 could be
based on the distance between f̂ and f̃ since, under Assumption 3, f̃(y) should be greater
than one for most values of y, and the distance between the two should therefore be close
to zero.18

2.3 Set identification without conditional independence

A second interesting feature of equation (2.3) is that it provides an informative bound on
some parameters of interest under monotonicity conditions, which are far weaker than the
conditional independence condition of Assumption 3. Because monotonicity conditions are
only meaningful in ordered sets, we focus on the case where (Y, Z) ∈ R2. Let Z̃ denote a
variable that may differ from Z and whose distribution is also identified. Assumption 3 is
replaced by the following ones.

Assumption 3’ z 7→ P (D = 1|Y, Z = z) is increasing almost surely.

Assumption 6 y 7→ P (D = 1|Y = y, Z̃) is increasing almost surely.

Assumption 3’ weakens the conditional independence between the selection variable and
the instrument set in Assumption 3 to a monotone dependence. It is also a variant of the
usual instrumental condition which assumes that the instrument affects the probability
of selection but is independent of the outcome. Here, the effect on the probability of

17See, e.g., Gouriéroux and Monfort (1995, Section 21.4) for details on multiple inequality tests.
18The critical region of such a test would depend on the asymptotic distribution of (f̂ , f̃), whose deriva-

tion is beyond the scope of the paper.
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selection is restricted to be monotonic, but no independence condition between Y and
Z is needed. Assumption 6 weakens the missing-at-random assumption to a monotone
dependence between the selection variable and the outcome.

Theorem 2.5 below provides bounds on parameters of the form E(h(Y )) for h ∈ HY or
h ∈ HY Z , with

HT = {h ∈ L1
T and h is increasing} (T = Y or Z),

HY Z = {h ∈ L1
Y /∃h̃ ∈ HZ/h(Y ) = E(h̃(Z)|D = 1, Y )}.

The set HY includes, among others, functions of the form h(y) = λy with λ > 0 and
indicator functions hu(y) = 1{y ≥ u}, so that parameters of the form E(h(Y )), h ∈ HY ,
include the survival function of Y taken at any point. The set HY Z is more abstract. In an
informal way, HY Z increases as the dependence between Y and Z becomes stronger. As a
simple illustration, this set only includes constant functions when Y and Z are independent
(conditional on D = 1) but is equal to HY when Y = Z. More formally, HY Z is a subset
of the range of the conditional expectation operator g 7→ (y 7→ E(g(Z)|D = 1, Y = y)),
which itself is linked to the null space of this operator. When (Y, Z) has finite support,
the dimension of the range increases as the dimension of the null space decreases. Thus,
at least in finite dimensions, HY Z will be maximal if the conditional expectation operator
is injective, that is to say under a completeness condition on Y and Z.

It seems difficult to test formally that h ∈ HY Z for a given, increasing, function h. On the
other hand, we can test the stronger condition:

E(Z|D = 1, Y ) = α+ βh(Y ), β > 0. (2.4)

Tests of such functional forms are described for instance by Yatchew (1998, Subsection
4.2).

We assume afterwards that equation (2.3) has at least one solution.19 If the constant
function P (D = 1) is a solution, we let Q(Y ) = P (D = 1); otherwise, Q is any of the
solutions.

Theorem 2.5 Suppose that P (D = 1) > 0 and Assumptions 1 and 2 hold for Z and Z̃.
Then:
a) Under Assumption 6, E [h(Y )] ≤ E

[
E(h(Y )|Z̃,D = 1)

]
for all h ∈ HY . Moreover, this

upper bound is sharp.
19On the other hand, the solution need not be unique, so that the completeness condition is not required

here.
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b) Under Assumptions 3’, E [Dh(Y )/Q(Y )] ≤ E [h(Y )] for all functions h ∈ HY Z. More-
over, this lower bound is sharp provided that at least one solution Q belongs to (0; 1].
c) For all functions h ∈ L1

Y , these three expectations are equal when D ⊥⊥ (Y, Z, Z̃) or
when Z = Z̃ = Y .

Part a) of Theorem 2.5 is not specific to the methodology developed here and is rather
intuitive. Part b), on the other hand, entails that the moment condition used here leads
to a sharp lower bound on E[h(Y )]. This lower bound does not depend on the choice of
Q so that no completeness condition is required. The bound also holds even if no solution
Q belongs to (0; 1]. In this case however, the bound may not be sharp because one could
exploit the fact that the conditional independence assumption is rejected by the data.

An important consequence of Theorem 2.5 is that for all functions h ∈ HY ∩ HY Z , we
can obtain a bounded identification interval for E(h(Y )). This occurs even if h(Y ) is
unbounded. In this sense, the result is similar to Proposition 2, Corollary 2 of Manski
and Pepper (2000), under a different set of assumptions. In particular, we do not rely on
the monotone treatment response condition, which is difficult to adapt to selection models
or nonresponse problems. Moreover, the monotone treatment response assumption can be
strong in the context of treatment effects. In the Roy model with an unobserved sector
developed in Example 2, this assumption implies that Y ≥ η (or η ≥ Y ) almost surely, so
that in equilibrium only one sector is chosen, which seems a rather unrealistic situation.
Assumption 3’ is different in that it assumes that the probability of selection increases with
the instrument. This assumption is rather weak and should be satisfied in many contexts
including treatment effects estimation, or estimation of parameters under nonignorable
missing data. In Example 2 above, one may use standard instruments such as non-wage
income or the number of children.

As part c) shows, the interval is reduced to a point if D is fully missing at random. Hence,
the length of the interval can be interpreted as a measure of the severity of the selection
problem. Because the interval is also reduced to a point when Z = Z̃ = Y , its length also
reflects the quality of the chosen instruments. As the dependence between (Z, Z̃) and Y

increases, parameters of the distribution of Y can be better predicted from the distribution
of the instruments. Moreover, the upper (resp. lower) inequality turns into an equality
whenever Y ⊥⊥ D|Z̃ (resp. Z ⊥⊥ D|Y ). Hence, Z and Z̃ must be chosen differently since
Z̃ intends to reduce selection on unobservables correlated with the outcome, whereas Z
should be as independent of the selection variable as possible, given Y .
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As noted before, HY Z increases as the dependence between Y and Z becomes stronger.
Hence, the choice of the instrument also matters for the range of applications of the lower
bound. If it seems difficult, without further restrictions, to describe the set HY ∩HY Z of
functions h such that an interval can be built on E [h(Y )], this set will contain at least all
functions h(y) = λy with λ > 0 under the testable linear condition that E(Z|D = 1, Y ) =

α + βY (with β > 0). In this case in particular, E[Y ] can be bounded below and above.
If Y and Z exhibit a positive dependence, the following proposition states that the set
HY ∩HY Z will be equal to HY Z .

Proposition 2.6 Suppose that for all z, y 7→ FZ|Y =y,D=1(z) is decreasing. Then HY Z ⊂
HY .

2.4 Parametric identification

Nonparametric identification relies on the unicity of a functional equation. However, one
may be reluctant to use nonparametric estimators in practice, because of the curse of
dimensionality for instance. Furthermore, Assumption 2 may be too strong in some cir-
cumstances. Suppose for instance that the instrument is observed only when D = 1 (as in
the cases of unit nonresponse or panel attrition) but that some auxiliary information on
this instrument is available. This auxiliary information may not be sufficient to identify
the full distribution of Z. If Z is multivariate and its different components are observed
in different sources that cannot be matched, only the marginal distributions are identified.
If the instrument is measured with a zero mean error in these auxiliary data, only E(Z)

can be recovered. When Assumption 2 fails to hold but E(Z) is known, Theorem 2.7
below shows that identification can still be obtained, under parametric restrictions on P .
It generalizes a result of Nevo (2002) to the case where Y 6= Z. The ideas behind are
also very similar to the method of generalized calibration developed by Deville (2002) in a
survey sampling framework to handle nonignorable nonresponse with instruments. Deville
(2002), however, does not address the issue of identification of P .

Since we consider a parametric framework, we explicitly add covariates X. In the following,
we suppose that V = (X ′, Y ′)′ ∈ Rp and W = (X ′, Z ′)′ ∈ Rq. The identification result is
based on the following assumptions.

Assumption 2’ a) E(W ) is known. b) P (D = 1|V ) = F (V ′β0) where F is a known,
differentiable and strictly increasing function from R to (0, 1). c) For all δ ∈ Rp, P (V ′δ =

0|D = 1) = 1 implies that δ = 0.

14



Assumption 3’ D ⊥⊥ Z|V .

Assumption 4’ rank(E(DWV ′F ′(V ′β0)/F
2(V ′β0))) = p.

Assumption 4” E(Z|D = 1, V ) = Γ1X + Γ2Y where Γ2 is full rank.

Assumption 2’ weakens Assumption 2 on data availability, at the price of imposing a
parametric restriction on P . Such a restriction is satisfied for instance if the selection
equation is a logit or probit model. Like Assumption 4 in the nonparametric setting,
Assumption 4’ is the rank condition. As usual, this condition implies that q ≥ p. Finally,
Assumption 4” is a special case of Assumption 4’, which restricts the regression of Z on V
to be linear.

Theorem 2.7 If Assumptions 1, 2’ and 3’ are satisfied, then:
a) β0 is locally identified if and only if Assumption 4’ holds.
b) If Assumption 4” holds, β0 is globally identified.

Local identification is obtained under a condition very similar to the rank condition in linear
instrumental regressions. Theorem 2.7 also provides a sufficient and testable condition that
ensures the global identification of β0.

3 Estimation

We now turn to the parametric and nonparametric estimation of P . The first assumption
describes the sampling process.

Assumption 7 We observe a sample ((D1, X1, Y
∗
1 , Z1), ..., (Dn, Xn, Y

∗
n , Zn)) of indepen-

dent copies of (D,X, Y ∗, Z), with Y ∗ = DY .

The i.i.d. assumption is standard but can be weakened without affecting the consistency
or the rate of convergence of the estimators. We also suppose, for the sake of simplicity,
that Z is observed for both D = 1 and D = 0.

3.1 Parametric estimation

It follows from Theorem 2.3 that when Y has a finite support {y1, ..., ys}, the equation

E

(
D∑s

k=1 P (yk)1{Y = yk}
− 1

∣∣∣∣Z) = 0
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provides the identification of the parameters (P (yk))1≤k≤s if Assumptions 3, 4 and 5 hold.
Hence, consistent and asymptotically normal estimators can be obtained by GMM. Simi-
larly, if P satisfies the restrictions of Assumption 2’, then

E

[(
D

F (V ′β0)
− 1

)
W

]
= 0. (3.1)

Moreover, the proof of Theorem 2.7 (see equation (6.11)) ensures that under Assumption
4”, β0 is globally identified by (3.1). Thus GMM estimators can also be used in this context.

3.2 Nonparametric estimation

If Y has continuous components and one is reluctant to rely on parametric restrictions on
P , then the situation is more involved because a function, and not only parameters, must
be estimated by conditional moment conditions. The same issue arises in nonparamet-
ric instrumental regression (see, e.g., Newey and Powell, 2003, Hall and Horowitz, 2005,
Darolles et al., 2006 and Horowitz and Lee, 2007). For the sake of simplicity, we assume
that there is no covariate X and that (Y, Z) ∈ [0, 1]2. Moreover, we only prove consis-
tency, since the paper is mainly focused on identification. The rate of convergence could
be obtained by adapting the arguments of Hall and Horowitz (2005).

Let us denote f = 1/P and let T be the linear operator defined by

T φ(z) = E(Dφ(Y ∗)|Z = z).

Then equation (2.3) may be written as

T f = 1.

We rely on this equation for estimating f . Because the problem is ill-posed, regularization
is needed to ensure consistency of the estimator. We adopt here a Tikhonov regularization,
as Hall and Horowitz (2005), Darolles et al. (2006) and Horowitz and Lee (2007). First,
let us consider the kernel estimator of T :

T̂ φ(z) =

∑n
i=1Diφ(Y ∗

i )Khn(z − Zi)∑n
i=1Khn(z − Zi)

.

For any 1 < M <∞, let us define DM as the subset of real measurable functions φ defined
on [0, 1] and such that M ≥ φ(Y ) ≥ 1 almost surely. For any square integrable function φ
defined on [0, 1], let ||φ||2 =

∫ 1

0
φ(u)2du. Our estimator of f satisfies

f̂ ∈ arg min
φ∈DM

∥∥T̂ φ− 1
∥∥2

+ αn

∥∥φ∥∥2
,
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where αn is a regularization parameter which prevents the solution from being unstable (see,
e.g., Carrasco et al., 2006, for a discussion on regularization in ill-posed inverse problems).
Under the assumptions below, the minimization problem always admits a solution, but it
may not be unique (see Bissantz et al., 2004). In this case, f̂ can be any solution. The
consistency result relies on the following assumptions.

Assumption 8 a) f ∈ DM . b) The distribution of (Y, Z) is continuous with respect to
the Lebesgue measure and the marginal densities fY and fZ satisfy supy∈[0,1] fY (y) < +∞
and infz∈[0,1] fZ(z) > 0.

Assumption 9 For all h > 0 and u ∈ R, Kh(u) = K1(u/h) where K1 is positive,∫
K1(u)du = 1 and

∫
uK1(u)du = 0.

Assumption 10 αn → 0, h2
n + 1/(nhn) → 0 and (h2

n + 1/(nhn))/αn → 0.

Assumption 8-a) strengthens Assumption 5. Assumption 9 is weak and standard in non-
parametric estimation. Assumption 10, which is identical to Assumption 3 of Horowitz and
Lee (2007), is also standard. It implies that the bandwidth hn tends to zero at a slower
rate than 1/n, and that the regularization parameter αn tends to zero at a slower rate than
h2

n.20

Theorem 3.1 Under Assumptions 3-4 and 7-10,

lim
n→∞

E
(∥∥f̂ − f

∥∥2
)

= 0.

Theorem 3.1 implies that
∥∥f̂ − f

∥∥2 converges in probability to zero. Inverse probability
weighting procedures can now be used to estimate parameters on the whole population. Let
f̂−i denote the estimator of f obtained with the sample (Dj, Y

∗
j , Zj)j 6=i. For any g ∈ L2

Y,Z

and θ = E(g(Y, Z)), define

θ̂ =
1

n

n∑
i=1

Dif̂
−i(Y ∗

i )g(Y ∗
i , Zi).

Corollary 3.2 ensures that θ̂ is consistent.

Corollary 3.2 Suppose that Assumptions 3, 4 and 7-10 hold. Then

lim
n→∞

E
(
|θ̂ − θ|

)
= 0.

20We suppose here that αn is a deterministic sequence. See, e.g., Gagliardini and Scaillet (2006) for a
data-driven selection procedure.
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4 Monte Carlo simulations

In this section, we investigate the finite sample properties of parametric and nonparametric
estimators of P and inverse probability-weighted estimators of E[g(Y )]. Let us consider
the following model: {

Y = Λ(Λ−1(Z) + ε)

D = 1{P (Y ) ≥ η},
(4.1)

where Λ(x) = 1/(1 + exp(−x)) is the logistic cumulative distribution function, P (y) =

1 − 0.6/(1 + 19y2) , (Z, ε, η) are mutually independent, Z ∼ U [0, 1], ε ∼ N(0, 1) and
η ∼ U [0, 1].21 The function P was chosen to match the estimate of P in the application (see
Figure 2 below). Within this framework, Assumptions 3 and 4 are satisfied by Propositions
2.1 and 2.2. One can also show that Assumption 8 holds. In particular, f(y) = 1/P (y) ≤
2.5. Finally, P (D = 1) ' 0.8, so that approximately 20% of the Y ’s are missing.

Estimator Statistic n = 100 n = 200 n = 500 n = 1, 000

f̂1 MISE 0.1978 0.1532 0.1058 0.0791
f̂2 0.2010 0.1478 0.1017 0.0758
f̂3 1.9343 0.3697 0.0673 0.0286

θ̂1 RMSE 0.0330 0.0252 0.0155 0.0120
(bias) (-0.0081) (-0.0066) (-0.0061) (-0.0058)

θ̂2 0.0373 0.0275 0.0174 0.0139
(-0.0191) (-0.0130) (-0.0099) (-0.0091)

θ̂3 0.0316 0.0238 0.0140 0.0104
(0.0001) (-0.0005) (-0.0002) (-0.0001)

θ̂4 RMSE 0.0338 0.0253 0.0154 0.0112

The results are obtained with 1,000 simulations for each sample size. The bias

of θ̂4 is not indicated as this estimator is unbiased.

Table 1: Performances of the parametric and nonparametric estimators.

We consider two nonparametric estimators f̂1 and f̂2 of f that share the same regularization
parameter, αn = 0.05 × n−1/5 but have different bandwidths, namely h1n = 0.03 × n−1/5

and h2n = 0.02 × n−1/5. We also consider a parametric estimator f̂3 that belongs to the
21The model amounts to assuming a linear dependence between Λ−1(Y ) and Λ−1(Z). We work with

(Y, Z) rather than (Λ−1(Y ),Λ−1(Z)) to be consistent with the previous assumption that (Y, Z) ∈ [0, 1]2.
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following flexible parametric family:

f(y; β) = 1 + exp

(
−β0 −

4∑
k=1

y1{y ≥ ak}βk

)
, (4.2)

where β = (β0, ..., β4), a1 = −∞ and (a2, a3, a4) are the estimated quartiles of the distribu-
tion of Y conditional on D = 1. β is estimated by GMM, using the instrumental variables
1 and (Z1{Z ≥ ci})1≤i≤k, where c1 = −∞ and the (c2, c3, c4) are the estimated quartiles
of Z. We measure the accuracy of the three estimators of f by the usual mean integrated
square error (MISE):

MISE(f̂) = E

(∫ 1

0

(f̂(u)− f(u))2du

)
.

We also consider inverse probability-weighted estimators of θ = E(Y ) = 1/2. Let us define,
for k ∈ {1, 2, 3},

θ̂k =
1

n

n∑
k=1

Dif̂k(Y
∗
i )Y ∗

i .

We also compute the infeasible estimator

θ̂4 =
1

n

n∑
k=1

Dif(Y ∗
i )Y ∗

i .

The accuracy of each estimator is described through its bias and root mean square error
(RMSE). Results are displayed in Table 1. On average, f̂2 outperforms f̂1 and also the
parametric estimator f̂3 for small sample sizes. f̂3 is, indeed, somewhat erratic for small
n but is far more accurate than the nonparametric estimators for larger n. It seems, in
this design, that the bias due to the parametric misspecification is negligible compared to
the accuracy gains obtained by the parametric procedure. The corresponding estimator
θ̂3 is also the most precise one, even in small samples. θ̂1 outperforms θ̂2, confirming the
idea that a better first-step nonparametric estimator does not necessarily result in a better
second-step estimator. Finally, θ̂4 is less accurate than θ̂3 and is comparable with θ̂1.
Estimating f in a first step may actually yield a lower asymptotic variance than the one
of θ̂4, similarly to what happens in the estimation of average treatment effects using the
propensity score.22

22Indeed, Hirano et al. (2003) show that an inverse probability-weighted estimator of average treatment
effects based on an estimated propensity score is asymptotically efficient, whereas the estimator based on
the true propensity score may not.
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5 Application

5.1 Introduction

In this section, we apply the strategy developed above to estimate bounds on the short-term
effects of grade retention among 5th-grade students in France. Whereas most countries have
almost completely given up grade retention as an educational policy,23 the level of grade
retention in France is still high. In 2002, for instance, a quarter of students had repeated
grades at least once in primary school (see Troncin, 2004). Nonetheless, there has been no
serious attempt to measure the impact of grade retention on student achievement in the
French educational system.24

The study is based on a panel of the French Ministry of Education, which follows 9,641
children who entered the first grade of primary school in 1997. Data consist of schooling
trajectories and standardized test scores at the beginning of the 3rd grade (variable Z)
and the 6th grade (variable Y for the 2002 test and Y1 for the 2003 test).25 As the 6th
grade test scores are reported only for pupils who reached this grade in 2002 or in 2003,
the initial sample contains 7,175 students who were in the 5th grade in 2001 and in the 6th
grade in 2002 or 2003.26 23.8% of these data are excluded because of missing test scores
in the 3rd or 6th grades. The final sample consists of 5,467 children. Among them, 2.2%
were retained in the 5th grade (D = 0), 6.7% in the 6th grade (D = 1 and D1 = 0) while
the others did not repeat (D = 1 and D1 = 1). Table 2 displays the average test scores on

23A notable exception is the United States where several states have reintroduced this policy by linking
promotion to state or district assessment (see Jacob and Lefgren, 2004).

24Troncin (2005) measures the effect of grade retention on achievement in the first grade of primary
school using a propensity score matching approach, but he relies on data from only one school. Cosnefroy
and Rocher (2004) study the effect of grade retention on achievement in the 3rd grade with the same
data as here, using a linear regression approach. In other countries, the effects of grade retention are
controversial. Jacob and Lefgren (2004) put forward the possibility for disadvantaged children to catch
up, and Jacob (2005) shows that the threat of grade retention encourages all students to increase their
efforts. On the other hand, many educational and sociological studies underline the harmful effects of
grade retention on the motivation of children (see, e.g., Crahaye, 1996), drop-out rate (see Jimerson et al.,
2002) and even academic performance (see, e.g., the meta-analyses of Holmes, 1989, or Jimerson, 2001).
Nevertheless, most of these studies rely on very few controls (see Lorence, 2006), so that they probably
underestimate the true effect of grade retention on achievement.

25Tests corresponding to a given grade differ partly from year to year. The scores considered here are
built using only common items. The three scores are also standardized on the final sample.

26Other situations correspond to missing data on the trajectories, grade-advanced pupils, pupils retained
before the 5th grade and students in special classrooms.
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Figure 1: Promotion, retention and available test scores.

this sample. The 6th grade test score in 2002 is missing for children retained in the 5th
grade because they only entered this grade in 2003. Similarly, in 2003 the 6th grade test
score is not observed for children who did not repeat since they were in the 7th grade that
year.

As expected, the differences between retained and promoted pupils in terms of test achieve-
ment are large. On average, the 3rd grade test scores of 5th- (resp. 6th-) grade repeaters
are more than 1.5 (resp. more than 1) standard deviations below those of students who did
not repeat. The table also displays the progression of students retained in the 6th grade
during their first year in this grade. This progression is available because these students
take the test twice, at the beginning of their first and second year in the 6th grade (see
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Figure 1). This feature will be useful in the following.

Retained Retained Promoted

in the 5th grade in the 6th grade in both grades

(D = 0) (D = 1, D1 = 0) (D = 1, D1 = 1)

Number of observations 120 365 4982

3rd grade test score Z -1.48 (0.91) -1.02 (0.90) 0.11 (0.94)

2002 6th grade test score Y - -1.32 (0.81) 0.12 (0.93)

2003 6th grade test score Y1 -0.90 (0.87) -0.64 (0.79) -

Table 2: Summary statistics.

We focus here on the average effect of retention in the 5th grade on test score achievement
one year later. Let Y1(1) (resp. Y1(0)) denote the 6th grade test score a student would
have obtained in 2003 if he had been promoted to the 6th grade (resp. retained in the 5th
grade). The parameter of interest is defined as

∆TT = E(Y1(0)− Y1(1)|D = 0). (5.1)

When D = 0, Y1(0) is observed by Y1, but Y1(1) is unobserved. It is difficult to rely
on an instrumental strategy to overcome this counterfactual issue because there is no
exogenous rule driving grade retention decisions in France.27 Therefore, we assume that
the progression of the retained students had they been promoted in the 6th grade can be
bounded in the following way:

0 ≤ E(Y1(1)− Y |D = 0, Y ) ≤ E(Y1(1)− Y |D = 1, D1 = 0, Y ). (5.2)

The lower bound simply states that, on average, retained students would not have done
worse than what they did one year before, had they been promoted. The upper bound
states that, on average, their progression would have been smaller than that of students
with the same initial test score who were promoted in the 6th grade and retained one year
later. The idea behind is that, on average, teachers do not make mistakes by retaining
pupils who would have benefited more from the 6th grade than some of the promoted
students. The two bounds somewhat represent two extreme situations. The lower bound
corresponds to perfect decisions of retention, in that retained students would not have

27As an evidence of the discretionary nature of grade retention in France, an order of the Minister of
Education in 2005 asserts that grade retention should be taken by teachers after discussion with parents,
according to the student’s ability and his progression during the year.
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benefited at all from being promoted. The upper bound corresponds to a fully randomized
choice among students who would have equally benefited from being promoted.

Under condition (5.2), we get

E(Y1|D = 0)− E [h(Y )|D = 0] ≤ ∆TT ≤ E(Y1|D = 0)− E(Y |D = 0), (5.3)

where h(Y ) = E(Y1(1)|D = 1, D1 = 0, Y ). Students retained in the 6th grade take the
standardized test twice, so we observe both Y and Y1(1) for them (Y1(1) = Y1 in this
case), and h is identified. On the other hand, Y is unobserved for students retained in
the 5th grade. Hence, E[h(Y )|D = 0] and E(Y |D = 0) are not identified without further
restrictions. However, we can use the method developed above to point or set identify
them. First, Y , the main determinant of D, is unobserved when D = 0. Second, the
3rd grade test score Z is observed for both values of D and is correlated with Y . We
now discuss two possible strategies, based respectively on the independence assumption
D ⊥⊥ Z|Y and the monotonicity conditions considered in Subsection 2.3.

5.2 Empirical strategies

First strategy: conditional independence

First, let us suppose that grade retention in the 5th grade is independent of the 3rd grade
test score conditional on Y , i.e., a model of the form: Y = ϕ(Z, ε)

D = ψ(Y, η),

where η ⊥⊥ (Z, ε). The completeness condition is also assumed to hold. Informally, both
will be satisfied if the 3rd grade score affects ability at the end of the 5th grade, measured
by Y , but not directly grade retention. Under these assumptions, Theorem 2.3 can be
applied and we can identify E(h(Y )|D = 0) by

E [h(Y )|D = 0] =
1

p
(E[h(Y )]− (1− p)E[h(Y )|D = 1])

=
1

p

(
(1− p)E

[
h(Y )

P (Y )
|D = 1

]
− (1− p)E[h(Y )|D = 1]

)
=

1− p

p
E

[
1− P (Y )

P (Y )
h(Y )|D = 1

]
,
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where p = P (D = 0). E(Y |D = 0) can be identified similarly. Then, using (5.3), we obtain
the following lower and upper bounds on ∆TT :

∆TT
1 = E[Y1|D = 0]− 1− p

p
E

[
1− P (Y )

P (Y )
h(Y )|D = 1

]
, (5.4)

∆
TT

= E[Y1|D = 0]− 1− p

p
E

[
1− P (Y )

P (Y )
Y |D = 1

]
. (5.5)

To estimate these bounds, we first need estimates of h and P . To estimate h, we use a
kernel estimator with a Gaussian kernel and a bandwidth estimated by cross-validation
(see Figure 2). P is estimated using the flexible parametric form P (y; β) = 1/f(y; β) with
f(y; β) defined by (4.2). The same instruments as in the Monte Carlo simulations are
used, except that the thresholds (a2, a3, a4) (resp. (c2, c3, c4)) correspond to the estimated
quantiles of order 8, 16 and 24 of the distribution of Y conditional on D = 1 (resp. of
Z).28 The resulting estimate P (.; β̂) is displayed in Figure 2.29Données h croissante 
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Figure 2: Estimates of h and P .

The estimators of ∆TT
1 and ∆

TT are the empirical analogs of (5.4) and (5.5):

∆̂TT
1 =

1

n0

 ∑
i/Di=0

Y1i −
∑

i/Di=1

P (Yi; β̂)

1− P (Yi; β̂)
ĥ(Yi)

 ,
∆̂

TT
=

1

n0

 ∑
i/Di=0

Y1i −
∑

i/Di=1

P (Yi; β̂)

1− P (Yi; β̂)
Yi

 ,
where n0 denotes the number of pupils who repeated the 5th grade.

28We tried several specifications. Final results are not sensitive to the choice of the thresholds.
29This plot corresponds to β̂0 = 3.07, β̂1 = 0.75, β̂2 = 4.13,β̂3 = 34.3, β̂4 = 0.42.
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Second strategy: monotonicity

Basically, the conditional independence condition holds if Y is a perfect measure of ability
at the end of the 5th grade and if teachers only take into account current ability when
deciding whether to retain a student or not. Even if the latter statement is rather plausible,
given that teachers in France usually do not observe children’s ability before they enter
their grade, the former statement seems too restrictive. Lagged test scores probably contain
information on current ability and thus may explain part of grade retention. It also seems
very plausible that both variables have a positive effect on promotion, so that Assumptions
3’ and 6 hold. To provide empirical evidence that supports this claim, we estimate a logit
model for D1 on the sample of students who were promoted in the 6th grade. For these
students, both Y and Z are known. The results, which are reported in Table 3, confirm
the positive effect of both variables. As expected, we also observe a far smaller effect of
the 3rd grade test score.

Variable Estimate (std. err.)

2002 6th grade score Y 1.31 (0.08)
3rd grade score Z 0.23 (0.07)

Table 3: Logit estimation of the probability of promotion in the 6th grade.

To apply Theorem 2.5 and obtain bounds on E(h(Y )|D = 0), we also need to check that
h ∈ HY ∩HY Z . That h is increasing is apparent from Figure 2. To check that h ∈ HY Z ,
we implement, as suggested in Subsection 2.3, the specification test of the form (2.4).30

We obtain a positive and significant slope coefficient in (2.4) and do not reject the linear
specification at the 1% level. Hence, we do not reject the assumption that h ∈ HY Z .

Under Assumptions 3’ and 6, and the condition h ∈ HY ∩HY Z , we can apply Theorem 2.5
to obtain the following bounds on E(h(Y )|D = 0):

1− p

p
E

[
1−Q(Y )

Q(Y )
h(Y )|D = 1

]
≤ E [h(Y )|D = 0] ≤ E [E(h(Y )|Z,D = 1)|D = 0] ,

where Q denotes a solution of E(D/Q(Y )− 1|Z) = 0.31

To get bounds on E(Y |D = 0), we also check that the identity function belongs to HY Z .
This is true if E(Z|D = 1, Y ) = γ + λY with λ > 0. The specification test does not reject

30More precisely, we implement the simple differencing test suggested by Yatchew (1998, p. 701) using
the kernel estimator ĥ instead of h.

31We do not use P here to emphasize the fact that the solution of this equation is not P (D = 1|Y )

anymore. However, both P and Q are estimated by P (.; β̂).
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the null at the level of 5%, so we accept the hypothesis that the identity function belongs
to HY ∩HY Z . Under these assumptions, we get the same upper bound on ∆TT as under
conditional independence, but another lower bound, which satisfies

∆TT
2 = E[Y1|D = 0]− E [E(h(Y )|Z,D = 1)|D = 0] . (5.6)

Moreover, ∆TT
2 and ∆

TT are sharp by Theorem 2.5.

To estimate ∆TT
2 , a kernel estimator ĝ of g(z) = E(h(Y )|Z = z,D = 1) is first estimated

and then plugged into the empirical analog of (5.6):

∆̂TT
2 =

1

n0

 ∑
i/Di=0

Y1i −
∑

i/Di=1

ĝ(Zi)

 .
5.3 Results

The final results are displayed in Table 4. Under the assumption of a fully valid instrument,
the estimated identification interval for ∆TT only covers positive values, so grade retention
results in a positive short-term effect even in the least favorable case.32 The pattern is less
clear if one only relies on monotonicity conditions. If grade retention only depended on
the 3rd grade test score, repeating a grade would be harmful for test achievement. This
assumption does not seem very credible, though. As emphasized previously, the effect of
Y on D is probably much more important than the one of Z. Thus, even in a worst case
scenario the true effect is more likely to be close to ∆̂TT

1 , that is to say around zero.

Estimator Value 95% Confidence interval

∆̂
TT 1.17 (0.24) [0.75,1.67]

∆̂TT
1 0.29 (0.16) [0.02,0.65]

∆̂TT
2 -0.43 (0.06) [-0.53,-0.30]

Standard errors are obtained through bootstrap with 1,000 repli-

cates. Effects are measured in standard deviations terms.

Table 4: Bounds on ∆TT under different assumptions.

In conclusion, and even if the uncertainty in ∆TT is rather large,33 the short-term effect of
grade retention seem more likely to be positive. This result is in line with those found by

32The null hypothesis that the lower bound is negative is rejected at 5%.
33This uncertainty is mainly due to endogenous selection in grade retention, which prevents us from

recovering the counterfactual progression Y1(1) − Y of retained students. This issue accounts for 55% of

26



Jacob and Lefgren (2004) for third-graders in Chicago but is more optimistic than those
found for sixth-graders. This difference might stem from the fact that the grade retention
decision rules are not the same in the two countries. Letting teachers and parents decide
on the basis of their observations during the whole year, and not only on two tests as in
Chicago, may reduce the impact of measurement error on grade retention. On the other
hand, a discretionary process as in France is likely to favor (or penalize) systematically
some subpopulations of students, independently of their ability, and thus to decrease the
efficiency of grade retention. The results suggest that the former effect dominate the latter.

6 Conclusion

This paper considers the issue of endogenous selection. The key assumption for identi-
fication, which contrasts with the usual ones in selection problems, is the independence
between the instrument and the selection variable, conditional on the outcome. A gen-
eral nonparametric identification result is obtained under a completeness condition. This
framework can be applied to a broad class of selection models, including Roy models
with unobserved sectors, nonignorable nonresponse or binary choice models when data are
observed for only one response stratum. Set identification is also considered when the
conditional independence condition fails. Sharp and finite bounds on a class of parameters
of interest are obtained under weaker conditions of monotonicity. These results are applied
to estimate bounds on the effect of grade retention in France.

The paper raises two challenging issues. First, one may wonder whether the ideas developed
here could be adapted to a generalized Roy model in which selection depends on the
predicted dependent variable rather than on the dependent variable itself. In this case,
the conditional independence condition breaks down but the structure of the model may
provide information for point or at least set identification. Second, the sharp upper bounds
are obtained on an abstract set of parameters. Further characterizations of this set appear
desirable, for both theoretic and practical reasons.

the width of the set
[
∆̂TT

2 , ∆̂
TT
]
, while the uncertainty in the true effect of the instrument Z on grade

retention only accounts for 45% of this width.
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Appendix: proofs

Proposition 2.1

Let Ay = {u/ψ(y, u) = 1} and Cy,z = {v/ϕ(z, v) = y}. We get, for all (y, z),

P (D = 1|Y = y, Z = z) = P (η ∈ Ay|Y = y, Z = z)

= P (η ∈ Ay|ε ∈ Cy,z(y, z), Z = z)

= P (η ∈ Ay)

= P (η ∈ Ay|Y = y)

= P (D = 1|Y = y),

where the third and fourth equalities follow from the condition η ⊥⊥ (Z, ε). Thus, Assump-
tion 3 holds �

Proposition 2.2

The proof proceeds in three steps.

1. First, we show that there exist positive c1, c2 and 0 < α′ < α− 2 such that

c1 ≤ (fε ? fα′)(x)× (1 + |x|)α′+1 ≤ c2, (6.1)

where fα′ denotes the density of an α′-stable distribution of characteristic function exp(−|t|α′
),

and ? denotes the convolution product.
To prove (6.1), note that fα′ satisfies, for well-chosen c < C (see e.g. Mattner 1992, p.146),

c ≤ fα′(x)× (1 + |x|)α′+1 ≤ C. (6.2)

Let I = [a, b] ⊂ [−1, 1] denote an interval such that infx∈I fε(x) = m > 0 (such an interval
exists by the regularity conditions). For all x ∈ R and all t ∈ I,

1 + |x− t| ≤ 1 + max(|x− a|, |x− b|)

≤ 1 + |x|+ max(|a|, |b|)

≤ 2(1 + |x|).
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Thus,

(fε ? fα′)(x) ≥
∫

I

fε(t)fα′(x− t)dt

≥ mc

∫
I

dt

(1 + |x− t|)α′+1

≥ mc(b− a)

2α′+1 (1 + |x|)α′+1
.

This proves the first inequality of (6.1). To prove the second, remark that by the regularity
conditions, there exists M such that

(1 + |t|)αfε(t) ≤M. (6.3)

Moreover, for all x ≥ 0 and t < x/2, we get 1 + |x− t| ≥ (1 + x)/2. Thus, using both (6.2)
and (6.3), we get ∫ x/2

−∞
fε(t)fα′(x− t)dt ≤ 2α′+1MC

(1 + x)α′+1

∫ x/2

−∞

dt

(1 + |t|)α

≤ 2α′+1MC

(1 + x)α′+1
2

∫ 0

−∞

dt

(1− t)α

≤ 2α′+2MC

(α− 1)(1 + |x|)α′+1
. (6.4)

Besides, because fα′(x− t) ≤ C and α− 1 > α′ + 1,∫ +∞

x/2

fε(t)fα′(x− t)dt ≤ MC

∫ +∞

x/2

dt

(1 + t)α

≤ 2α−1MC

(1 + x)α−1

≤ 2α−1MC

(1 + |x|)α′+1
.

This, together with (6.4), shows that for all x ≥ 0, there exists a constant C ′ such that
(fε ? fα′)(x) × (1 + |x|)α′+1 ≤ C ′. The same reasoning can be applied to any x < 0, and
the second inequality of (6.1) follows.

2. Now let us show that for any g ∈ B such that E [g(Y )|Z] = 0 a.s., we get, almost
everywhere (a.e. for short),

(g ◦ µ) ? φ = 0, (6.5)

where φ = f−ε ? fα′ .
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By the definition of B, there exists a K such that g(Y ) ≥ K almost surely. Let g̃(u) =

g(µ(u))−K. Using the additive decomposition, we get

E[g(Y )−K|Z] = E[g̃(ν(Z) + ε)|Z]

=

∫
g̃(ν(Z) + u)fε(u)du

=

∫
g̃(u)f−ε(ν(Z)− u)dt.

This implies, by the large support assumption, that

E[g(Y )|Z] = 0 a.s. ⇔
∫
g̃(u)f−ε(t− u)dt = −K a.e.

In other words, g̃ ? f−ε = −K. Let α′ and fα′ be defined as previously. We get, a.e.,

(g̃ ? f−ε) ? fα′ = −K.

Because g̃, f−ε and fα′ are nonnegative functions, we can apply Fubini’s theorem, so that
g̃ ? (f−ε ? fα′) = −K a.e. Equation (6.5) follows.

3. Finally, let us prove that the location family generated by φ is complete. This proves
the result because then, g ◦ µ = 0 a.e. and thus g(Y ) = 0 almost surely. For this purpose,
we check the conditions of Theorem 1.1 of Mattner (1992). First, φ satisfies condition (i)
of this theorem by (6.1) and Proposition 1.2 of Mattner (1992). Second, the characteristic
function Ψφ corresponding to the density φ is as follows:

Ψφ(t) = Ψε(−t)× exp(−|t|α′
), (6.6)

where Ψε denotes the characteristic function of ε. Thus, by the regularity conditions,
Ψφ is infinitely differentiable on R\(A ∪ {0}) and condition (ii) of Mattner’s theorem
holds. Finally, by (6.6) and the regularity conditions, Ψφ does not vanish anywhere. Thus,
Theorem 1.1 in Mattner (1992) can be applied, which concludes the proof �

Theorem 2.3

By Assumption 3 and the definition of P ,

P (D = 1|Z)E

[
1

P (Y )
|D = 1, Z

]
= E

(
D

P (Y )

∣∣∣∣Z)
= E

(
E(D|Y, Z)

P (Y )

∣∣∣∣Z)
= E

(
E(D|Y )

P (Y )

∣∣∣∣Z) .
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Hence,

E

(
D

P (Y )
− 1

∣∣∣∣Z) = 0. (6.7)

By Assumption 2, P (D = 1|Z) can be identified from the data. Thus, for any function R,
E[D/R(Y )− 1|Z] can be computed from the data and any candidate for P must therefore
satisfy equality (6.7). Now let Q be such a candidate and let g = P/Q− 1. g is bounded
below by −1. Moreover, Q must satisfy E[D/Q(Y )] = 1, which can also be written as
E[P (Y )/Q(Y )] = 1. This implies that

E [|g(Y |] ≤ E

[
P (Y )

Q(Y )

]
+ 1 <∞.

Hence, g ∈ B. Moreover,

0 = E

(
D

Q(Y )
− 1

∣∣∣∣Z)
= E

(
P (Y )

Q(Y )
− 1

∣∣∣∣Z)
= E (g(Y )|Z) .

This, together with Assumption 4, implies that g(Y ) = 0 a.s., so that Q(Y ) = P (Y ) a.s.
Thus, P is identified.

To finish the proof, let fD,Y,Z denote the density of (D, Y, Z) with respect to an ap-
propriate measure. fD,Y,Z(1, y, z) is identified by fY,Z|D=1(y, z)P (D = 1). Moreover, by
Assumption 3,

P (y) = P (D = 1|Y = y, Z = z)

=
fD,Y,Z(1, y, z)

fY,Z(y, z)
.

Similarly,

1− P (y) =
fD,Y,Z(0, y, z)

fY,Z(y, z)
.

Thus,

fD,Y,Z(0, y, z) =

[
1− P (y)

P (y)

]
fD,Y,Z(1, y, z).

Hence, the joint distribution of the data is identified �

Theorem 2.4

Part “if” of the theorem is trivial. To prove the “only if” implication, let us consider a
solution Q, which belongs to (0, 1]. Define also a function gD,Y,Z by

gD,Y,Z(d, y, z) =

[
1−Q(y)

Q(y)

]1−d

fY,Z|D=1(y, z)P (D = 1).
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gD,Y,Z is a density (with respect to a convenient measure λ), since it is nonnegative and
integrates to one: ∫

[gD,Y,Z(0, y, z) + gD,Y,Z(1, y, z)] dλ(y, z)

=

∫
fY,Z|D=1(y, z)P (D = 1)

Q(y)
dλ(y, z)

= E

{
E

[
E(D|Y, Z)

Q(Y )
|Z
]}

= 1.

Moreover,
gD,Y,Z(1, y, z) = fY,Z|D=1(y, z)P (D = 1) (6.8)

and

gZ(z) = fZ(z)

∫
fY,Z|D=1(y, z))P (D = 1)

Q(y)fZ(z)
dy

= fZ(z)E

[
E(D|Y, Z)

Q(Y )
|Z
]

= fZ(z).

This last equality, together with (6.8), ensures that gD,Z(d, z) = fD,Z(d, z). Thus, gD,Y,Z

is coherent with the observed data. Finally, because gY (y) = fY |D=1P (D = 1)/Q(y), we
obtain the following after straightforward manipulations:

gD,Z|Y (1, z, y) = Q(y)fZ|Y,D=1(z, y),

gD,Z|Y (0, z, y) = (1−Q(y))fZ|Y,D=1(z, y).

In other words, the corresponding distribution of (D, Y, Z) satisfies the independence con-
dition of Assumption 3. To conclude, if there exists a solution Q to equation (2.3) which
lies in (0, 1], then one can rationalize the observed data by a distribution that satisfies the
independence condition �

Theorem 2.5

We rely on the following standard result, which is proved for the sake of completeness.

Lemma 6.1 Let T denote a real random variable and (h1, h2) ∈ (L2
T )2 be increasing func-

tions. Then cov(h1(T ), h2(T )) ≥ 0.

32



Proof: let (T1, T2) denote two independent copies of T . Then, because both h1 and h2 are
increasing,

(h1(T1)− h1(T2))× (h2(T1)− h2(T2)) ≥ 0.

Thus, taking expectations and using the fact that (T1, T2) are i.i.d, we get

2 {E [h1(T )h2(T )]− E [h1(T )]E [h2(T )]} ≥ 0.

The result follows �

a) By Lemma 6.1 and Assumption 6,

cov(h(Y ), P (D = 1|Y, Z̃)|Z̃) ≥ 0.

Thus,
E(h(Y )|Z̃)P (D = 1|Z̃) ≤ E

(
h(Y )D|Z̃

)
.

This implies that
E(h(Y )|Z̃) ≤ E

(
h(Y )|D = 1, Z̃

)
.

Hence, by integration,
E[h(Y )] ≤ E

[
E
(
h(Y )|D = 1, Z̃

)]
.

Moreover, this upper bound is sharp because the two terms are identical under the untestable
assumption that D ⊥⊥ Y |Z̃.

b) Let h ∈ HY Z and h̃ ∈ HZ be such that h(Y ) = E[h̃(Z)|D = 1, Y ]. We get

E

[
Dh(Y )

Q(Y )

]
− E[h(Y )] = E

[
DE(h̃(Z)|D = 1, Y )

Q(Y )

]
− E[h(Y )]

= E

[
Dh̃(Z)

Q(Y )

]
− E[h(Y )]

= E

[
h̃(Z)E

(
D

Q(Y )
|Z
)]

− E[h(Y )]

= E
[
h̃(Z)

]
− E[h(Y )]

= E
[
E
(
h̃(Z)|Y

)
− E

(
h̃(Z)|D = 1, Y

)]
.

Now, because h̃ and z 7→ P (D = 1|Y, Z = z) are increasing with probability one, we have,
similarly to a),

E(h̃(Z)|D = 1, Y ) ≥ E(h̃(Z)|Y ). (6.9)

Thus,

E

[
Dh(Y )

Q(Y )

]
≤ E[h(Y )]. (6.10)
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Moreover, by Theorem 2.4, if there exists a solution Q to equation (2.3), which lies in
(0, 1], one cannot reject that (6.9) and (6.10) are actually equalities. This implies that
E[Dh(Y )/Q(Y )] is a sharp lower bound of E[h(Y )].

c) If D ⊥⊥ (Y, Z̃), by independence,

E
[
E(h(Y )|D = 1, Z̃)

]
= E [E(h(Y )|Z)] = E [h(Y )] .

Moreover, because P (D = 1) is a solution to (2.3), Q(Y ) = P (D = 1), so that

E

[
Dh(Y )

Q(Y )

]
= E(h(Y )).

Now, if Y = Z̃,
E
[
E(h(Y )|D = 1, Z̃)

]
= E [h(Y )] .

Moreover, because Y = Z, equation (2.3) is equivalent to Q(Y ) = P (D = 1|Y ). Hence,

E

[
Dh(Y )

Q(Y )

]
= E

[
E(D|Y )h(Y )

Q(Y )

]
= E [h(Y )] �

Proposition 2.6

Let h̃ denote an increasing function. We have

E(h̃(Z)|D = 1, Y ) =

∫
h̃(z)dFZ|Y,D=1(z).

Because h̃ is increasing, there exists a positive measure µ such that for all z ≤ z1,

h̃(z1)− h̃(z) =

∫ z1

z

dµ(u).

Thus, for all y and all M ∈ R,

E(h̃(Z)|D = 1, Y = y) =

∫ ∞

M

∫ z

M

dµ(u)dFZ|Y =y,D=1(z)−
∫ M

−∞

∫ M

z

dµ(u)dFZ|Y =y,D=1(z)

+2h̃(M).

Hence, by Fubini’s theorem on nonnegative functions,

E(h̃(Z)|D = 1, Y = y) =

∫ ∞

M

(1−FZ|Y =y,D=1(u))dµ(u)−
∫ M

−∞
FZ|Y =y,D=1(u)dµ(u)+2h̃(M).

Consequently, we get, for all y ≤ y1,

E(h̃(Z)|D = 1, Y = y1)− E(h̃(Z)|D = 1, Y = y)

=

∫
[FZ|D=1,Y =y(u)− FZ|D=1,Y =y1(u)]dµ(u).

By assumption, the right-hand side is nonnegative, and the result follows �
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Theorem 2.7

a) β0 satisfies

E

(
DW

F (V ′β0)

)
= E

(
W

F (V ′β0)
E(D|Z, V )

)
= E

(
W

F (V ′β0)
E(D|V )

)
= E(W ),

where the second equality follows from Assumption 3. Local identification only requires
that the differential of β → E(DW/F (V ′β)) is full rank at β = β0. This differential is
−E(DWV ′F ′(V ′β0)/F

2(V ′β0)), so the result follows from Assumption 4’.

b) Suppose that there exists β such that

E

(
DW

F (V ′β)

)
= E(W ) = E

(
DW

F (V ′β0)

)
. (6.11)

Then
E

((
1

F (V ′β0)
− 1

F (V ′β)

)
W (β0 − β)

∣∣∣∣D = 1

)
= 0.

Thus
E

((
1

F (V ′β0)
− 1

F (V ′β)

)
E(W |V,D = 1)(β0 − β)

∣∣∣∣D = 1

)
= 0.

Now, by Assumption 4”,

E(W |V,D = 1) =

(
Ir 0

Γ1 Γ2

)(
X

Y

)
≡ ΓV,

where Ir is the identity matrix of size r and r is the dimension of X. Moreover, because
Γ2 is full rank, Γ is also full rank. Hence

E

((
1

F (V ′β0)
− 1

F (V ′β)

)
(V ′β0 − V ′β)

∣∣∣∣D = 1

)
= 0.

Because F is strictly increasing, for any x 6= y, (x− y)(1/F (x)− 1/F (y)) < 0, so that

P (V ′(β0 − β) = 0|D = 1) = 1.

By Assumption 2’-c), this implies that β = β0 �

Theorem 3.1.

As Horowitz and Lee (2007), we adapt the proof of Theorem 2 of Bissantz et al. (2004).
By definition of f̂ ,

max
(∥∥T̂ f̂ − 1

∥∥2
, αn

∥∥f̂∥∥2
)
≤
∥∥T̂ f̂ − 1

∥∥2
+ αn

∥∥f̂∥∥2 ≤
∥∥T̂ f − 1

∥∥2
+ αn

∥∥f∥∥2 (6.12)
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Let δn = h2
n + 1/nhn. Because E(

∥∥T̂ f − 1
∥∥2

) = O(δn) (see e.g. Györfi et al., 2002) and
δn/αn → 0, we get

lim supE(
∥∥f̂∥∥2

) ≤
∥∥f∥∥.

Inequalities (6.12) and δn/αn → 0 also imply that E(
∥∥T̂ f̂ − 1

∥∥2
) → 0. DM is weakly

closed as a closed and convex set (see Bissantz et al., 2004). Moreover, for all φ ∈ DM , by
Jensen’s inequality,

(T φ)2 ≤ E(φ(Y )2 |Z).

Hence,

∥∥T φ∥∥2 ≤
∫ [∫

φ(y)2fY |Z(y|z)dy
]
dz

≤
∫
φ(y)2

[∫
fZ|Y (z|y)fY (y)

fZ(z)
dz

]
dy

≤
supy∈[0,1] fY (y)

infz∈[0,1] fZ(z)

∫
φ(y)2dy,

where the second inequality follows from Fubini’s theorem and Bayes’ theorem. By As-
sumption 8-b), there exists therefore a A < +∞ such that∥∥T φ∥∥2 ≤ A

∥∥φ∥∥2
.

This inequality and the linearity of T proves that it is continuous. Hence, T is weakly
continuous. This and the fact that DM is weakly closed ensures that T is weakly sequen-
tially closed (see Bissantz et al., 2004). Consequently, we can apply the end of the proof
of Theorem 2 of Bissantz et al. (2004), and the result follows �

Corollary 3.2

By the triangular inequality,

|θ̂ − θ| ≤ 1

n

n∑
i=1

Di|g(Y ∗
i , Zi)||f̂−i(Y ∗

i )− f(Y ∗
i )|+

∣∣∣∣ 1n
n∑

i=1

Dig(Y
∗
i , Zi)f(Y ∗

i )− θ

∣∣∣∣. (6.13)

By Assumption 8, |Dif(Y ∗
i )| ≤ M . Hence, E[|Dig(Y

∗
i , Zi)f(Y ∗

i )|2] < ∞ and by the weak
law of large numbers,

1

n

n∑
i=1

Dig(Y
∗
i , Zi)f(Y ∗

i )
L2

−→ E(Dg(Y ∗, Z)f(Y ∗)).
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Moreover,

E(Dg(Y ∗, Z)f(Y ∗)) = E(Dg(Y, Z)f(Y ))

= E(E(D|Y, Z)g(Y, Z)f(Y ))

= θ.

Thus, the second term of the right-hand side of (6.13) tends to zero in quadratic mean.

Now, because the (f̂−i(Y ∗
i ))i are identically distributed, the first term T1 of the right-hand

side of (6.13) satisfies

E (|T1|) = E
(
D1|g(Y ∗

1 , Z1)||f̂−1(Y ∗
1 )− f(Y ∗

1 )|
)

≤
√
E (|g(Y ∗

1 , Z1)|2)E
(
|f̂−1(Y ∗

1 )− f(Y ∗
1 )|2

)
,

by the Cauchy-Schwartz inequality. Now, by independence between Y ∗
1 and f̂−1,

E(|f̂−1(Y ∗
1 )− f(Y ∗

1 )|2) ≤ sup
y∈[0,1]

fY (y)E
(
||f̂−1 − f ||2

)
.

Thus, the left-hand side tends to zero by Theorem 3.1. As a consequence, E(|T1|) also
tends to zero. This yields the announced result �
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