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Abstract

Difference-in-differences (DID) is a method to evaluate the effect of a treatment. In
its basic version, a “control group” is untreated at two dates, whereas a “treatment group”
becomes fully treated at the second date. However, in many applications of the DID
method, the treatment rate only increases more in the treatment group. In such fuzzy
designs, a popular estimator of the treatment effect is the DID of the outcome divided by
the DID of the treatment. We show that this ratio identifies a local average treatment
effect only if the effect of the treatment is stable over time, and if the effect of the treatment
is the same in the treatment and in the control group. We then propose two alternative
estimands that do not rely on any assumption on treatment effects, and that can be used
when the treatment rate does not change over time in the control group. We prove that
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revisit Duflo (2001).
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1 Introduction

Difference-in-differences (DID) is a method to estimate the effect of a treatment. In its basic
version, a “control group” is untreated at two dates, whereas a “treatment group” becomes
treated at the second date. If the trend on the mean outcome without treatment is the same
in both groups, the so-called common trend assumption, one can estimate the effect of the
treatment by comparing the evolution of the mean outcome in the two groups.

However, in many applications of the DID method, the share of treated units increases more in
some groups than in others between the two dates, but no group experiences a sharp change in
treatment, and no group remains fully untreated. In such fuzzy designs, a popular estimator of
treatment effects is the DID of the outcome divided by the DID of the treatment, the so-called
Wald-DID estimator. In de Chaisemartin and D’Haultfœuille (2016), we show that 10.1% of
all papers published by the American Economic Review between 2010 and 2012 use fuzzy DID
designs, and estimate either a simple Wald-DID or a weighted average of Wald-DIDs.

To our knowledge, no paper has studied treatment effect identification and estimation in
fuzzy DID designs. This is the purpose of this paper. Hereafter, let “switchers” refer to units
that become treated at the second date. Our main parameter of interest is the local average
treatment effect (LATE) of treatment group switchers.

First, we consider the case where the share of treated units does not change over time in
the control group. In this case, we start by showing that the Wald-DID estimand identifies
our parameter of interest if the usual common trend assumption holds, and if the average
treatment effect of units treated at both dates is stable over time. This stable treatment effect
assumption is not required for identification in sharp DID designs. It is often implausible:
we review below some applications where the effect of the treatment is likely to change over
time. Then, we show that two alternative estimands identify our parameter of interest even
if the effect of the treatment changes over time. The first one, the time-corrected Wald ratio
(Wald-TC), relies on common trend assumptions within subgroups of units sharing the same
treatment at the first date. The second one, the changes-in-changes Wald ratio (Wald-CIC),
generalizes the changes-in-changes (CIC) estimand introduced by Athey and Imbens (2006)
to fuzzy designs. It relies on a “common change” assumption which is invariant to the scaling
of the outcome, contrary to common trends, but which also imposes restrictions on the full
distribution of the potential outcomes while common trends only imposes a restriction on
their mean. We discuss below the respective advantages and drawbacks of the Wald-TC and
Wald-CIC estimands.

Second, we consider the case where the share of treated units changes over time in the control
group. In this case, we show that the Wald-DID estimand identifies the LATE of treatment
group switchers if the aforementioned common trend and stable treatment effect assumptions
are satisfied, and if the LATEs of treatment and control group switchers are equal. Here as
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well, this homogeneous treatment effect assumption is often implausible. We also show that
under the assumptions underlying the Wald-TC and Wald-CIC estimands, our parameter of
interest is partially identified. The smaller the change of the share of treated units in the
control group, the tighter the bounds.

We extend these results in several directions. We start by showing how our results can be
used in applications with more than two groups. We also show that our results extend to
applications with a non-binary treatment variable. Finally, we consider estimators of the
Wald-DID, Wald-TC, and Wald-CIC, and we derive their limiting distributions.1

We use our results to revisit findings in Duflo (2001) on returns to education in Indonesia.
Years of schooling increased substantially in the control group used by the author. Hence, for
her Wald-DID to identify the switchers’ LATE, returns to schooling should be homogeneous in
her treatment and control groups. As we argue in more detail later, this assumption might not
be applicable in this context. The bounds we propose do not rely on this assumption, but they
are wide and uninformative, here again because schooling increased in the author’s control
group. Therefore, we form a new control group where years of schooling did not change. The
Wald-DID with our new groups is twice as large as the author’s original estimate. But it is still
likely to be biased, as it relies on the assumption that returns to schooling are stable between
birth cohorts, which rules out decreasing returns to experience. The Wald-TC and Wald-CIC
do not rely on such a restriction. They are very close to each other, and lie in-between the
author’s estimate and the Wald-DID.

Overall, our paper shows that researchers who use the DID method with fuzzy groups can
obtain estimates not resting on the assumption that treatment effects are stable and homo-
geneous, provided they can find a control group whose exposure to the treatment does not
change over time. There are applications where such control groups are readily available (see
Field, 2007 or Gentzkow et al., 2011, which we revisit in our supplementary material). In other
applications, the control groups need to be estimated. We propose a method to estimate the
control groups that can be used when the number of groups is small relative to the size of
each group. Studying how to estimate the control groups when the number of groups is large
relative to their size, as is the case in Duflo (2001), is left for future work.

Though we are the first to study fuzzy DID estimators in models with heterogeneous treatment
effects, our paper is related to several other papers in the DID literature. Blundell et al.
(2004) and Abadie (2005) consider a conditional version of the common trend assumption
in sharp DID designs, and adjust for covariates using propensity score methods. Our Wald-
DID estimator with covariates is related to their estimators. Bonhomme and Sauder (2011)
consider a linear model allowing for heterogeneous effects of time, and show that in sharp
designs it can be identified if the idiosyncratic shocks are independent of the treatment and

1A Stata package computing the estimators is available on the authors’ webpages.
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of the individual effects. Our Wald-CIC estimator builds on Athey and Imbens (2006). In
work posterior to ours, D’Haultfœuille et al. (2015) study the possibly nonlinear effects of a
continuous treatment, and propose an estimator related to our Wald-CIC estimator.

The remainder of the paper is organized as follows. Section 2 presents our main identification
results in a simple setting with two groups, two periods, and a binary treatment. Section
3 presents extensions of those main identification results. Section 4 presents estimation and
inference. In section 5 we revisit results from Duflo (2001). Section 6 concludes. The appendix
gathers the main proofs. For brevity, further identification and inference results, two additional
empirical applications, and additional proofs are deferred to our supplementary material.

2 Identification

2.1 Framework

We are interested in measuring the effect of a treatment D on some outcome. For now, we
assume that the treatment is binary. Y (1) and Y (0) denote the two potential outcomes of the
same unit with and without treatment. The observed outcome is Y = DY (1) + (1−D)Y (0).

Hereafter, we consider a model best suited for repeated cross sections. This model also ap-
plies to single cross sections where cohort of birth plays the role of time, as in Duflo (2001) for
instance. The extension to panel data is sketched in Subsection 3.4 and developed in our sup-
plementary material. We assume that the data can be divided into “time periods” represented
by a random variable T , and into groups represented by a random variable G. In this section,
we focus on the simplest possible case where there are only two groups, a “treatment” and a
“control” group, and two periods of time. G is a dummy for units in the treatment group and
T is a dummy for the second period.

We now introduce the notation we use throughout the paper. For any random variable R,
let S(R) denote its support. Let also Rgt and Rdgt be two other random variables such
that Rgt ∼ R|G = g, T = t and Rdgt ∼ R|D = d,G = g, T = t, where ∼ denotes equality in
distribution. For instance, it follows from those definitions that E(R11) = E(R|G = 1, T = 1),
while E(R011) = E(R|D = 0, G = 1, T = 1). For any event or random variable A, let FR

and FR|A denote the cumulative distribution function (cdf) of R and its cdf conditional on
A.2 Finally, for any increasing function F on the real line, we denote by F−1 its generalized
inverse, F−1(q) = inf {x ∈ R : F (x) ≥ q}. In particular, F−1R is the quantile function of the
random variable R.

Contrary to the standard “sharp” DID setting where D = G×T , we consider a “fuzzy” setting
where D 6= G × T . Some units may be treated in the control group or at period 0, and

2With a slight abuse of notation, P (A)FR|A should be understood as 0 when A is an event and P (A) = 0.
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some units may remain untreated in the treatment group at period 1. Still, we consider two
assumptions on the evolution of the share of treated units in the treatment and control groups.

Assumption 1 (Fuzzy design)
E(D11) > E(D10), and E(D11)− E(D10) > E(D01)− E(D00).

Assumption 2 (Stable percentage of treated units in the control group)
0 < E(D01) = E(D00) < 1.

Assumption 1 is just a way to define the treatment and the control group in our fuzzy setting.
The treatment group is the one experiencing the larger increase of its treatment rate. If the
treatment rate decreases in both groups, one can redefine the treatment variable as D̃ = 1−D.
Thus, Assumption 1 only rules out the case where the two groups experience the same evolution
of their treatment rates. Assumption 2 corresponds to the special case where the percentage
of treated units does not change between period 0 and 1 in the control group.

We consider the following treatment participation equation.

Assumption 3 (Treatment participation equation)
D = 1{V ≥ vGT }, with V ⊥⊥ T |G.

Assumption 3 imposes a latent index model for the treatment (see, e.g., Vytlacil, 2002),
where V may be interpreted as a unit’s propensity to be treated, and where the threshold for
treatment participation depends both on time and group. This participation equation implies
that within each group, units can switch treatment in only one direction. For instance, once
combined with Assumption 1, Assumption 3 implies that in the treatment group there are
no units switching from treatment to non treatment between period 0 and 1. Assuming
that treatment is monotonous with respect to time is not necessary for our results to hold (see
Subsection 3.4 for further detail on this point). However, this greatly simplifies the exposition.

We now define our parameters of interest. For that purpose, let us introduce

D(t) = 1{V ≥ vGt}.

In repeated cross sections, D(0) and D(1) denote the treatment status of a unit at period 0
and 1, respectively, and only D = D(T ) is observed. In single cross sections where cohort of
birth plays the role of time, D(t) denotes instead the potential treatment of a unit had she
been born at T = t. Here again, only D = D(T ) is observed. Let S = {D(0) < D(1), G = 1}.
S stands for treatment group units going from non treatment to treatment between period 0
and 1, hereafter referred to as the “treatment group switchers”. Our parameters of interest are
their Local Average Treatment Effect (LATE) and Local Quantile Treatment Effects (LQTE),
which are respectively defined by

∆ = E (Y11(1)− Y11(0)|S) ,

τq = F−1Y11(1)|S(q)− F−1Y11(0)|S(q), q ∈ (0, 1).
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We focus on these parameters for two reasons. First, there are instances where treatment
group switchers are the only units affected by some policy, implying that they are the relevant
subgroup one should consider to assess its effects. Consider for instance a policy whereby in
T = 1, the treatment group becomes eligible to some treatment for which it was not eligible
in T = 0 (see, e.g., Field, 2007). In this example, treatment group switchers are all the units
in that group treated in T = 1. Those units are affected by the policy: without it, they
would have remained untreated. Moreover, nobody else is affected by the policy. Second,
identifying treatment effects in the whole population would require additional conditions,
on top of those we consider below. In the example above, the policy extension does not
provide any information on treatment effects in the control group, because this group does
not experience any change.

2.2 The Wald differences-in-differences estimand

We first investigate the commonly used strategy of running an IV regression of the outcome
on the treatment with time and group as included instruments, and the interaction of the
two as the excluded instrument. The estimand arising from this regression is the Wald-DID
defined by WDID = DIDY /DIDD, where for any random variable R we let

DIDR = E(R11)− E(R10)− (E(R01)− E(R00)) .

Let also S′ = {D(0) 6= D(1), G = 0} denote the control group switchers. Control group
switchers are defined by D(0) 6= D(1) because the treatment rate may decrease in this
group, thus implying that switchers may go from being treated to being untreated between
period 0 and 1.3 Let ∆′ = E (Y01(1)− Y01(0)|S′) denote their LATE. Finally, let α =

(P (D11 = 1)− P (D10 = 1)) /DIDD.

We consider the following assumptions, under which we can relate WDID to ∆ and ∆′.

Assumption 4 (Common trends)

E(Y (0)|G,T = 1)− E(Y (0)|G,T = 0) does not depend on G.

Assumption 5 (Stable treatment effect over time)

For all d ∈ S(D),4 E(Y (d)−Y (0)|G,T = 1, D(0) = d) = E(Y (d)−Y (0)|G,T = 0, D(0) = d).

Assumption 6 (Homogeneous treatment effect between groups)

∆ = ∆′.

3On the other hand, Assumptions 1 and 3 ensure that treatment group switchers can only go from being
untreated to being treated, which is why they are defined by D(0) < D(1).

4When the treatment is binary, Assumption 5 only requires that the equation therein holds for d = 1.
Writing Assumption 5 this way ensures it carries through to the case of a non-binary treatment.
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Assumption 4 requires that the mean of Y (0) follow the same evolution over time in the
treatment and control groups. This assumption is not specific to the fuzzy settings we are
considering here: DID in sharp settings also rely on this assumption (see, e.g., Abadie, 2005).
Assumption 5 requires that in both groups, the average effect of going from 0 to d units of
treatment among units with D(0) = d is stable over time. This is equivalent to assuming that
among these units, the mean of Y (d) and Y (0) follow the same evolution over time:

E(Y (d)|G,T = 1, D(0) = d)− E(Y (d)|G,T = 0, D(0) = d)

= E(Y (0)|G,T = 1, D(0) = d)− E(Y (0)|G,T = 0, D(0) = d). (1)

This stable treatment effect condition, which is also equivalent to imposing a common trend
condition for all potential outcomes Y (d), is very different from Assumption 4, the only con-
dition required for identification in sharp DID settings. Assumption 6 requires that in both
groups, switchers have the same LATE. This assumption is also specific to fuzzy settings: it
is not required for identification in sharp DID settings.

Theorem 2.1

1. If Assumptions 1 and 3-5 are satisfied, then

WDID =α∆ + (1− α)∆′.

2. If Assumption 2 or 6 further holds, then

WDID =∆.

When the treatment rate increases in the control group, E(D01) − E(D00) > 0, so α > 1.
Therefore, under Assumptions 1 and 3-5 the Wald-DID is equal to a weighted difference of the
LATEs of treatment and control group switchers in period 1. In both groups, the evolution of
the mean outcome between period 0 and 1 is the sum of three things: the change in the mean
of Y (0) for units untreated at T = 0; the change in the mean of Y (1) for units treated at
T = 0; the average effect of the treatment for switchers. Under Assumptions 4 and 5, changes
in the mean of Y (0) and Y (1) in both groups cancel out. The Wald-DID is finally equal to
the weighted difference between the LATEs of treatment and control group switchers. This
weighted difference does not satisfy the no sign-reversal property: it may be negative even
if the treatment effect is positive for everybody in the population. If one is ready to further
assume that Assumption 6 is satisfied, this weighted difference simplifies into ∆.5

5Under this assumption, the Wald-DID actually identifies the LATE of all switchers, not only of those in the
treatment group. There are instances where this LATE measures the effect of the policy under consideration,
because treatment and control group switchers are the only units affected by this policy. Consider for instance
the case of a policy whereby a new treatment is introduced in both groups in T = 1 (see Enikolopov et al.,
2011). In this example, treatment and control group switchers are all the units treated in T = 1. These units
are affected by the policy (without it, they would have remained untreated) and nobody else is affected by it.
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When the treatment rate diminishes in the control group, E(D01) − E(D00) < 0, so α < 1.
Therefore, under Assumptions 1 and 3-5 the Wald-DID is equal to a weighted average of the
LATEs of treatment and control group switchers in period 1. This quantity satisfies the no
sign-reversal property, but it still differs from ∆ unless here as well one is ready to further
assume that Assumption 6 is satisfied.

When the treatment rate is stable in the control group, α = 1 so the Wald-DID is equal to ∆

under Assumptions 1 and 3-5 alone. But even then, the Wald-DID relies on the assumption
that in both groups, the average treatment effect among units treated at T = 0 remains stable
over time. This assumption is necessary. Under Assumptions 1 and 3-4 alone, the Wald-DID
is equal to ∆ plus a bias term involving several LATEs. Unless this combination of LATEs
cancels out exactly, the Wald-DID differs from ∆. We give the formula of the bias term in
the end of the proof of Theorem 2.1.

2.3 The time-corrected Wald estimand

In this section, we consider a first alternative estimand of ∆. Instead of relying on Assumptions
4 and 5, it is based on the following condition:

Assumption 4’ (Conditional common trends)

For all d ∈ S(D), E(Y (d)|G,T = 1, D(0) = d)−E(Y (d)|G,T = 0, D(0) = d) does not depend
on G.

Assumption 4’ requires that the mean of Y (0) (resp. Y (1)) follows the same evolution over
time among treatment and control group units that were untreated (resp. treated) at T = 0.

Let δd = E(Yd01)− E(Yd00) denote the change in the mean outcome between period 0 and 1
for control group units with treatment status d. Then, let

WTC =
E(Y11)− E(Y10 + δD10)

E(D11)− E(D10)
.

WTC stands for “time-corrected Wald”.

Theorem 2.2 If Assumptions 1-3, and 4’ are satisfied, then WTC = ∆.

Note that

WTC =
E(Y |G = 1, T = 1)− E(Y + (1−D)δ0 +Dδ1|G = 1, T = 0)

E(D|G = 1, T = 1)− E(D|G = 1, T = 0)
.

This is almost the Wald ratio in the treatment group with time as the instrument, except
that we have Y + (1 − D)δ0 + Dδ1 instead of Y in the second term of the numerator. This
difference arises because time is not a standard instrument: it can directly affect the outcome.
When the treatment rate is stable in the control group, we can identify the trends on Y (0) and
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Y (1) by looking at how the mean outcome of untreated and treated units changes over time
in this group. Under Assumption 4’, these trends are the same in the two groups. As a result,
we can add these changes to the outcome of untreated and treated units in the treatment
group in period 0, to recover the mean outcome we would have observed in this group in
period 1 if switchers had not changed their treatment between the two periods. This is what
(1−D)δ0 +Dδ1 does. Therefore, the numerator of WTC compares the mean outcome in the
treatment group in period 1 to the counterfactual mean we would have observed if switchers
had remained untreated. Once normalized, this yields the LATE of treatment group switchers.

2.4 The changes-in-changes estimands

In this section, we consider a second alternative estimand of ∆ for continuous outcomes, as
well as estimands of the LQTE. They rely on the following condition.

Assumption 7 (Monotonicity and time invariance of unobservables)

Y (d) = hd(Ud, T ), with Ud ∈ R and hd(u, t) strictly increasing in u for all (d, t) ∈ S((D,T )).
Moreover, Ud ⊥⊥ T |G,D(0).

Assumptions 3 and 7 generalize the CIC model in Athey and Imbens (2006) to fuzzy settings.
Assumptions 3 and 7 imply Ud ⊥⊥ T |G. Therefore, they require that at each period, both
potential outcomes are strictly increasing functions of a scalar unobserved heterogeneity term
whose distribution is stationary over time, as in Athey and Imbens (2006). But Assumption
7 also imposes Ud ⊥⊥ T |G,D(0): the distribution of Ud must be stationary within subgroup
of units sharing the same treatment status at T = 0.

We also impose the assumption below, which is testable in the data.

Assumption 8 (Data restrictions)

1. S(Ydgt) = S(Y ) for (d, g, t) ∈ S((D,G, T )), and S(Y ) is a closed interval of R.

2. FYdgt
is continuous on R and strictly increasing on S(Y ), for (d, g, t) ∈ S((D,G, T )).

The first condition requires that the outcome have the same support in each of the eight
treatment × group × period cells. Athey and Imbens (2006) make a similar assumption.6

Note that this condition does not restrict the outcome to have bounded support: for instance,
[0,+∞) is a closed interval of R. The second condition requires that the distribution of Y
be continuous with positive density in each of the eight groups × periods × treatment status

6Common support conditions might not be satisfied when outcome distributions differ in the treatment and
control groups, the very situations where the Wald-CIC estimand we propose below might be more appealing
than the Wald-DID or Wald-TC (see Subsection 2.5). Athey and Imbens (2006) show that in such instances,
quantile treatment effects are still point identified over a large set of quantiles, while the average treatment
effect can be bounded. Even though we do not present them here, similar results apply in fuzzy settings.
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cells. With a discrete outcome, Athey and Imbens (2006) show that one can bound treatment
effects under their assumptions. Similar results apply in fuzzy settings, but for the sake of
brevity we do not present them here.

Let Qd(y) = F−1Yd01
◦FYd00

(y) be the quantile-quantile transform of Y from period 0 to 1 in the
control group conditional on D = d. This transform maps y at rank q in period 0 into the
corresponding y′ at rank q in period 1. Let also

FCIC,d(y) =
P (D11 = d)FYd11

(y)− P (D10 = d)FQd(Yd10)(y)

P (D11 = d)− P (D10 = d)
,

WCIC =
E(Y11)− E(QD10(Y10))

E(D11)− E(D10)
.

Theorem 2.3 If Assumptions 1-3, and 7-8 are satisfied, then WCIC = ∆ and F−1CIC,1(q) −
F−1CIC,0(q) = τq.

This result combines ideas from Imbens and Rubin (1997) and Athey and Imbens (2006). We
seek to recover the distribution of, say, Y (1) among switchers in the treatment group × period
1 cell. On that purpose, we start from the distribution of Y among all treated observations of
this cell. Those include both switchers and units already treated at T = 0. Consequently, we
must “withdraw” from this distribution that of units treated at T = 0, exactly as in Imbens
and Rubin (1997). But this last distribution is not observed. To reconstruct it, we adapt the
ideas in Athey and Imbens (2006) and apply the quantile-quantile transform from period 0
to 1 among treated observations in the control group to the distribution of Y among treated
units in the treatment group in period 0.

Intuitively, the quantile-quantile transform uses a double-matching to reconstruct the unob-
served distribution. Consider a treated unit in the treatment group × period 0 cell. She is first
matched to a treated unit in the control group × period 0 cell with same y. Those two units
are observed at the same period of time and are both treated. Therefore, under Assumption
7 they must have the same u1. Second, the control × period 0 unit is matched to her rank
counterpart among treated units of the control group × period 1 cell. We denote by y∗ the
outcome of this last observation. Because U1 ⊥⊥ T |G,D(0) = 1, under Assumption 2 those
two observations must also have the same u1. Consequently, y∗ = h1(u1, 1), which means that
y∗ is the outcome that the treatment × period 0 cell unit would have obtained in period 1.

Note that

WCIC =
E(Y |G = 1, T = 1)− E((1−D)Q0(Y ) +DQ1(Y )|G = 1, T = 0)

E(D|G = 1, T = 1)− E(D|G = 1, T = 0)
.

Here again, WCIC is almost the standard Wald ratio in the treatment group with T as the
instrument, except that we have (1−D)Q0(Y ) +DQ1(Y ) instead of Y in the second term of
the numerator. (1 −D)Q0(Y ) + DQ1(Y ) accounts for the fact that time directly affects the
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outcome, just as (1−D)δ0+Dδ1 does in theWTC estimand. Under Assumption 4’, the trends
affecting the outcome are identified by additive shifts, while under Assumptions 7-8 they are
identified by possibly non-linear quantile-quantile transforms.

2.5 Discussion

There are many applications where Assumption 5 is implausible, because the effect of the
treatment is likely to change over time. In Section 5 we review a specific example. In such
instances, if the share of treated units is stable over time in the control group, one needs to
choose between the Wald-TC and Wald-CIC estimands. This choice should be based on the
suitability of Assumption 4’ and 7 in the application under consideration. Assumption 4’ is
not invariant to the scaling of the outcome, but it only restricts its mean. Assumption 7
is invariant to the scaling of the outcome, but it restricts its entire distribution. When the
treatment and control groups have different outcome distributions conditional on D in the first
period, the scaling of the outcome might have a large effect on the Wald-TC. The Wald-CIC is
much less sensitive to the scaling of the outcome, so using this estimand might be preferable.
On the other hand, when the two groups have similar outcome distributions conditional on
D in the first period, using the Wald-TC might be preferable as Assumption 4’ only restricts
the mean of the outcome. This choice should also be based on the parameters one seeks to
identify. Under Assumption 7, both the LATE and LQTEs of treatment group switchers are
identified; under Assumption 4’, only the LATE is identified.

In applications where Assumption 5 is plausible, the Wald-DID may be appealing, especially
when the treatment rate decreases in the control group. Indeed, in such instances, the as-
sumptions underlying the Wald-TC and Wald-CIC only lead to partial identification (see
Subsection 3.1). On the other hand, the Wald-DID identifies a weighted average of LATEs
even if Assumption 6 fails to hold.7

3 Extensions

We now consider several extensions. We first show that when the treatment rate is not stable
in the control group, ∆ and τq can still be partially identified under our assumptions. We
then consider applications with multiple groups. Next, we show that our results extend to
ordered, non-binary treatments. Finally we sketch other extensions that are fully developed
in the supplementary material.

7In our supplementary material, we also explain how to use placebo tests to assess the plausibility of
Assumptions 4, 5, 4’, and 7 when more than two periods of data are available.
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3.1 Partial identification with a non stable control group

We first consider partial identification of ∆ and τq when Assumption 2 does not hold. Let us
introduce some additional notation. When the outcome is bounded, let y and y respectively
denote the lower and upper bounds of its support. For any real number x, let M01(x) =

min(1,max(0, x)). For any g ∈ S(G), let λgd = P (Dg1 = d)/P (Dg0 = d) be the ratio of the
shares of units in group g receiving treatment d in period 1 and period 0. For instance, λ00 > 1

when the share of untreated observations increases in the control group between period 0 and
1. Let also

F d01(y) = M01 (1− λ0d(1− FYd01
(y)))−M01(1− λ0d)1{y < y},

F d01(y) = M01 (λ0dFYd01
(y)) + (1−M01(λ0d))1{y ≥ y},

δd =

∫
ydF d01(y)− E(Yd00), δd =

∫
ydF d01(y)− E(Yd00),

We define the bounds obtained under Assumption 4’ (TC bounds hereafter) as follows:

W TC =
E(Y11)− E(Y10 + δD10)

E(D11)− E(D10)
, W TC =

E(Y11)− E(Y10 + δD10
)

E(D11)− E(D10)
.

Next, we define the bounds obtained under Assumptions 7-8 (CIC bounds hereafter). For
d ∈ {0, 1} and any cdf T , let Hd = FYd10

◦ F−1Yd00
and

Gd(T ) = λ0dFYd01
+ (1− λ0d)T, Cd(T ) =

P (D11 = d)FYd11
− P (D10 = d)Hd ◦Gd(T )

P (D11 = d)− P (D10 = d)
,

T d = M01

(
λ0dFYd01

−H−1d (λ1dFYd11
)

λ0d − 1

)
, T d = M01

(
λ0dFYd01

−H−1d (λ1dFYd11
+ (1− λ1d))

λ0d − 1

)
,

FCIC,d(y) = sup
y′≤y

Cd (T d) (y′), FCIC,d(y) = inf
y′≥y

Cd

(
T d

)
(y′).

In the definition of T d and T d, we use the convention that F−1R (q) = inf S(R) for q < 0, and
F−1R (q) = supS(R) for q > 1. We then define the CIC bounds on ∆ and τq by:

WCIC =

∫
ydFCIC,1(y)−

∫
ydFCIC,0(y), WCIC =

∫
ydFCIC,1(y)−

∫
ydFCIC,0(y),

τ q = max(F
−1
CIC,1(q), y)−min(F−1CIC,0(q), y), τ q = min(F−1CIC,1(q), y)−max(F

−1
CIC,0(q), y).

Finally, we introduce the two following conditions, which ensure that the CIC bounds are
well-defined and sharp.

Assumption 9 (Existence of moments)∫
|y|dFCIC,d(y) < +∞ and

∫
|y|dFCIC,d(y) < +∞ for d ∈ {0, 1}.
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Assumption 10 (Increasing bounds)

For (d, g, t) ∈ S((D,G, T )), FYdgt
is continuously differentiable, with positive derivative on

the interior of S(Y ). Moreover, T d, T d, Gd(T d), Gd(T d), Cd(T d) and Cd(T d) are increasing
on S(Y ).

Theorem 3.1 Assume that Assumptions 1 and 3 are satisfied and 0 < P (D01 = 1) 6=
P (D00 = 1) < 1. Then:

1. If Assumption 4’ holds and P (y ≤ Y (d) ≤ y) = 1 for d ∈ {0, 1}, W TC ≤ ∆ ≤W TC .
8

2. If Assumptions 7-9 hold, FY11(d)|S(y) ∈ [FCIC,d(y), FCIC,d(y)] for d ∈ {0, 1}, ∆ ∈
[WCIC ,WCIC ] and τq ∈ [τ q, τ q]. These bounds are sharp if Assumption 10 holds.

The reasoning underlying the TC bounds goes as follows. Assume for instance that the
treatment rate increases in the control group. Then, the difference between E(Y101) and
E(Y100) arises both from the trend on Y (1), and from the fact the former expectation is for
units treated at T = 0 and switchers, while the latter is only for units treated at T = 0.
Therefore, we can no longer identify the trend on Y (1) among units treated at T = 0. But
when the outcome has bounded support, this trend can be bounded, because we know the
percentage of the control group switchers account for. A similar reasoning can be used to
bound the trend on Y (0) among units untreated at T = 0. Eventually, ∆ can also be bounded.
The smaller the change of the treatment rate in the control group, the tighter the bounds.

The reasoning underlying the CIC bounds goes as follows. When 0 < P (D00 = 1) 6= P (D01 =

1) < 1, the second matching described in Subsection 2.4 collapses, because treated (resp.
untreated) observations in the control group are no longer comparable in period 0 and 1 as
explained in the previous paragraph. Therefore, we cannot match period 0 and period 1
observations on their rank anymore. However, we know the percentage of the control group
switchers account for, so we can match period 0 observations to their best- and worst-case
rank counterparts in period 1.

If the support of the outcome is unbounded, FCIC,0 and FCIC,0 are proper cdfs when λ00 > 1,
but they are defective when λ00 < 1. On the contrary, FCIC,1 and FCIC,1 are always proper
cdfs. As a result, when S(Y ) is unbounded and λ00 > 1, the CIC bounds we derive for ∆

and τq are finite under Assumption 9. The TC bounds, on the other hand, are always infinite
when S(Y ) is unbounded.

3.2 Multiple groups

We now consider the case where there are more than two groups but only two time periods in
the data. The case with multiple groups and time periods is considered in the supplementary

8It is not difficult to show that these bounds are sharp. We omit the proof for brevity.
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material. Let G ∈ {0, 1, ..., g} denote the group a unit belongs to. For any g ∈ S(G), let
Sg = {D(0) 6= D(1), G = g} denote units of group g who switch treatment between T = 0

and 1. Let S∗ = ∪gg=0Sg be the union of all switchers. We can partition the groups depending
on whether their treatment rate is stable, increases, or decreases. Specifically, let

Gs = {g ∈ S(G) : E(Dg1) = E(Dg0)}

Gi = {g ∈ S(G) : E(Dg1) > E(Dg0)}

Gd = {g ∈ S(G) : E(Dg1) < E(Dg0)},

and let G∗ = 1{G ∈ Gi} − 1{G ∈ Gd}.

Theorem 3.2 below shows that when there is at least one group in which the treatment rate is
stable, our assumptions allow us to point identify ∆∗ = E(Y (1)−Y (0)|S∗, T = 1), the LATE
of all switchers. Before presenting this result, additional notation is needed. For any random
variable R, g 6= g′ ∈ {−1, 0, 1}2, and d ∈ {0, 1}, let

DID∗R(g, g′) = E(R|G∗ = g, T = 1)− E(R|G∗ = g, T = 0)

− (E(R|G∗ = g′, T = 1)− E(R|G∗ = g′, T = 0)),

δ∗d = E(Y |D = d,G∗ = 0, T = 1)− E(Y |D = d,G∗ = 0, T = 0),

Q∗d(y) = F−1Y |D=d,G∗=0,T=1 ◦ FY |D=d,G∗=0,T=0(y),

W ∗DID(g, g′) =
DID∗Y (g, g′)

DID∗D(g, g′)
,

W ∗TC(g) =
E(Y |G∗ = g, T = 1)− E(Y + δ∗D|G∗ = g, T = 0)

E(D|G∗ = g, T = 1)− E(D|G∗ = g, T = 0)
,

W ∗CIC(g) =
E(Y |G∗ = g, T = 1)− E(Q∗D(Y )|G∗ = g, T = 0)

E(D|G∗ = g, T = 1)− E(D|G∗ = g, T = 0)
.

We also define the following weight:

w10 =
DID∗D(1, 0)P (G∗ = 1)

DID∗D(1, 0)P (G∗ = 1) +DID∗D(0,−1)P (G∗ = −1)
.

We finally define our estimands as W ∗DID = w10W
∗
DID(1, 0) + (1−w10)W

∗
DID(−1, 0), W ∗TC =

w10W
∗
TC(1) + (1− w10)W

∗
TC(−1) and W ∗CIC = w10W

∗
CIC(1) + (1− w10)W

∗
CIC(−1)

Theorem 3.2 Assume that Assumption 3 is satisfied, that Gs 6= ∅, and that G ⊥⊥ T .

1. If Assumptions 4 and 5 are satisfied, W ∗DID = ∆∗.

2. If Assumption 4’ is satisfied, W ∗TC = ∆∗.

3. If Assumptions 7 and 8 are satisfied, W ∗CIC = ∆∗.
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This theorem states that with multiple groups and two periods of time, treatment effects for
switchers are identified if there is at least one group in which the treatment rate is stable over
time. The estimands we propose can then be computed in four steps. First, we form three
“supergroups”, by pooling together the groups where treatment increases (G∗ = 1), those where
it is stable (G∗ = 0), and those where it decreases (G∗ = −1). While in some applications
these three sets of groups are known to the analyst (see e.g. Gentzkow et al., 2011), in other
applications they must be estimated (see our application in Section 5). Second, we compute
the Wald-DID, Wald-TC, or Wald-CIC estimand with G∗ = 1 and G∗ = 0 as the treatment
and control groups. Third, we compute the Wald-DID, Wald-TC, or Wald-CIC estimand with
G∗ = −1 and G∗ = 0 as the treatment and control groups. Finally, we compute a weighted
average of those two estimands.

Theorem 3.2 relies on the assumption that G ⊥⊥ T . This requires that the distribution of
groups be stable over time. This will automatically be satisfied if the data is a balanced panel
and G is time invariant. With repeated cross-sections or cohort data, this assumption might
fail to hold. However, when G is not independent of T , it is still possible to form Wald-DID
and Wald-TC type of estimands identifying ∆∗. We give the formulas of these estimands in
Subsection 1.2 in the supplementary material.

Two last comments on Theorem 3.2 are in order. First, groups where the treatment rate
diminishes can be used as “treatment” groups, just as those where it increases. Indeed, it
is easy to show that all the results from the previous section still hold if the treatment rate
decreases in the treatment group and is stable in the control group. Second, when there are
more than two groups where the treatment rate is stable, our three sets of assumptions become
testable. Under each set of assumptions, using any subset of Gs as the control group should
yield the same estimand for ∆∗.

3.3 Non-binary, ordered treatment

We now consider the case where treatment takes a finite number of ordered values, D ∈
{0, 1, ..., d}. To accommodate this extension, Assumption 3 has to be modified as follows.

Assumption 3’ (Ordered treatment equation)

D =
∑d

d=1 1{V ≥ vdGT }, with −∞ = v0GT < v1GT ... < vd+1
GT = +∞ and V ⊥⊥ T |G. As before,

let D(t) =
∑d

d=1 1{V ≥ vdGt}.

Let & denote stochastic dominance between two random variables, and let ∼ denote equality
in distribution. Let also wd = [P (D11 ≥ d)− P (D10 ≥ d)]/[E(D11)− E(D10)].

Theorem 3.3 Suppose that Assumption 1 and 3’ hold, that D01 ∼ D00, and that D11 & D10.
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1. If Assumptions 4-5 are satisfied,

WDID =
d∑

d=1

wdE(Y11(d)− Y11(d− 1)|D(0) < d ≤ D(1)).

2. If Assumption 4’ is satisfied,

WTC =
d∑

d=1

wdE(Y11(d)− Y11(d− 1)|D(0) < d ≤ D(1)).

3. If Assumptions 7 and 8 are satisfied,

WCIC =
d∑

d=1

wdE(Y11(d)− Y11(d− 1)|D(0) < d ≤ D(1)).

Theorem 3.3 shows that with an ordered treatment, the estimands we considered in the previ-
ous sections are equal to the average causal response (ACR) parameter considered in Angrist
and Imbens (1995). This parameter is a weighted average, over all values of d, of the effect
of increasing treatment from d − 1 to d among switchers whose treatment status goes from
strictly below to above d over time.

For this theorem to hold, two conditions have to be satisfied. First, in the treatment group,
the distribution of treatment in period 1 should dominate stochastically the corresponding
distribution in period 0. Angrist and Imbens (1995) impose a similar stochastic dominance
condition. Actually, this assumption is not necessary for our three estimands to identify a
weighted sum of treatment effects. If it is not satisfied, one still has that WDID, WTC , or
WCIC identify

d∑
d=1

wdE (Y11(d)− Y11(d− 1)|D(0) < d ≤ D(1) ∪D(1) < d ≤ D(0)) ,

which is a weighted sum of treatment effects with some negative weights.

Second, the distribution of treatment should be stable over time in the control group. When
it is not, one can still obtain some identification results. Firstly, Theorem 2.1 generalizes
to non-binary and ordered treatments. When treatment increases in the control group, the
Wald-DID identifies a weighted difference of the ACRs in the treatment and in the control
group; when treatment decreases in the control group, the Wald-DID identifies a weighted
average of these two ACRs. The weights are the same as those in Theorem 2.1. Secondly,
our partial identification results below also generalize to non-binary and ordered treatments.
When the distribution of treatment is not stable over time in the control group, the ACR in
the treatment group can be bounded under Assumption 4’, or Assumptions 7-8, as shown in
Subsection 3.2 of the supplementary material.
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Finally, Theorem 3.3 extends to a continuous treatment. In such instances, one can show that
under an appropriate generalization of Assumption 3, the Wald-DID, Wald-TC, and Wald-CIC
identify a weighted average of the derivative of potential outcomes with respect to treatment,
a parameter that resembles that studied in Angrist et al. (2000).

3.4 Other extensions

In the supplementary material, we present additional extensions that we discuss briefly here.

Multiple groups and multiple periods

With multiple groups and periods, we show that one can gather groups into “supergroups” for
each pair of consecutive dates, depending on whether their treatment increases, is stable, or
decreases. Then, a properly weighted sum of the estimands for each pair of dates identifies a
weighted average of the LATEs of units switching at any point in time.

Particular fuzzy designs

Up to now, we have considered both general fuzzy designs where the P (Dgt = d)s are re-
stricted only by Assumption 1, and the special case where Assumption 2 is satisfied. In our
supplementary material, we consider two other interesting special cases. First, we show that
when P (D00 = 1) = P (D01 = 1) = P (D10 = 1) = 0, identification of the average treatment
effect on the treated can be obtained under the same assumptions as those of the standard
DID or CIC model. Second, we consider the case where P (D00 = 0) = P (D01 = 0) ∈ {0, 1}.
Such situations arise when a policy is extended to a previously ineligible group, or when a
program or a technology previously available in some geographic areas is extended to others
(see e.g. Field, 2007). One can show that Theorem 2.1 still holds in this special case. On
the other hand, Theorems 2.2-2.3 do not hold. In such instances, we obtain identification by
supposing that Y (0) and Y (1) change similarly over time.

Including covariates

We also propose Wald-DID, Wald-TC, and Wald-CIC estimands with covariates. Including
covariates in the analysis has two advantages. First, our estimands with covariates rely on
conditional versions of our assumptions, which might be more plausible than their uncondi-
tional counterparts. Second, there might be instances where P (D00 = d) 6= P (D01 = d) but
P (D00 = d|X) = P (D01 = d|X) > 0 almost surely for some covariates X, meaning that in
the control group, the change in the treatment rate is driven by a change in the distribution
of X. If that is the case, one can use our results with covariates to point identify treatment
effects among switchers, while one would only obtain bounds without covariates.
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Panel data

Finally, we discuss the plausibility of our assumptions when panel data are available. Firstly,
Assumption 3 is well suited for repeated cross sections or cohort data, but less so for panel
data. Then, it implies that within each group units can switch treatment in only one direction,
because V does not depend on time. Actually, this assumption is not necessary for our results
to hold. For instance, Theorem 2.1 still holds if Assumptions 3 and 5 are replaced by

Dit = 1{Vit ≥ vGit}, with Vi1|Gi ∼ Vi0|Gi (2)

and
E(Yi1(1)− Yi1(0)|Gi, Vi1 ≥ vGi0) = E(Yi0(1)− Yi0(0)|Gi, Vi0 ≥ vGi0),

where we index random variables by i to distinguish individual effects from constant terms.
The result applies to treatment and control group switchers, respectively defined as Si =

{Vi1 ∈ [v11, v10), Gi = 1} and S′i = {Vi1 ∈ [min(v01, v00),max(v01, v00)), Gi = 0}. Theorems
2.2 and 2.3 also still hold if Assumption 3 is replaced by Equation (2), under modifications of
Assumptions 4’ and 7 that we present in our supplementary material.

Secondly, we discuss the validity of our estimands under Equation (2) and the following model:

Yit = Λ (αi + γt + [βi + λt]Dit + εit) ,

with

(αi, βi)|Gi, Vi1 ≥ vGi0 ∼ (αi, βi)|Gi, Vi0 ≥ vGi0,

(αi, βi)|Gi, Vi1 < vGi0 ∼ (αi, βi)|Gi, Vi0 < vGi0,

and Λ(.) strictly increasing. We prove that ∆ is identified by the Wald-DID, Wald-TC, or
Wald-CIC estimand under alternative restrictions on Λ(.), λt, and the distribution of εit.

4 Estimation and inference

In this section, we study the asymptotic properties of the estimators corresponding to the es-
timands introduced in Section 2, assuming we have an i.i.d. sample with the same distribution
as (Y,D,G, T ).

Assumption 11 (Independent and identically distributed observations)

(Yi, Di, Gi, Ti)i=1,...,n are i.i.d.

Let Igt = {i : Gi = g, Ti = t} (resp. Idgt = {i : Di = d,Gi = g, Ti = t}) and ngt (resp. ndgt)
denote the size of Igt (resp. Idgt) for all (d, g, t) ∈ {0, 1}3. For d ∈ {0, 1}, let

δ̂d =
1

nd01

∑
i∈Id01

Yi −
1

nd00

∑
i∈Id00

Yi.
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Let

ŴDID =
1

n11

∑
i∈I11 Yi −

1
n10

∑
i∈I10 Yi −

1
n01

∑
i∈I01 Yi + 1

n00

∑
i∈I00 Yi

1
n11

∑
i∈I11 Di − 1

n10

∑
i∈I10 Di − 1

n01

∑
i∈I01 Di + 1

n00

∑
i∈I00 Di

,

ŴTC =

1
n11

∑
i∈I11 Yi −

1
n10

∑
i∈I10

[
Yi + δ̂Di

]
1

n11

∑
i∈I11 Di − 1

n10

∑
i∈I10 Di

denote our Wald-DID and Wald-TC estimators.

Let F̂Ydgt
denote the empirical cdf of Y on the subsample Idgt, F̂Ydgt

(y) =
∑

i∈Idgt 1{Yi ≤
y}/ndgt. Let F̂−1Ydgt

(q) = inf{y : F̂Ydgt
(y) ≥ q} denote the empirical quantile of order q ∈ (0, 1)

of Ydgt. Let Q̂d = F̂−1Yd01
◦ F̂Yd00

denote the estimator of the quantile-quantile transform. Let

ŴCIC =
1

n11

∑
i∈I11 Yi −

1
n10

∑
i∈I10 Q̂Di(Yi)

1
n11

∑
i∈I11 Di − 1

n10

∑
i∈I10 Di

denote the Wald-CIC estimator. Let P̂ (Dgt = d) denote the proportion of units with D = d

in the sample Igt, let Ĥd = F̂Yd10
◦ F̂−1Yd00

, and let

F̂Y11(d)|S =
P̂ (D10 = d)Ĥd ◦ F̂Yd01

− P̂ (D11 = d)F̂Yd11

P̂ (D10 = d)− P̂ (D11 = d)
.

Finally, let
τ̂q = F̂−1Y11(1)|S(q)− F̂−1Y11(0)|S(q)

denote the estimator of the LQTE of order q for switchers.

We derive the asymptotic behavior of our CIC estimators under the following assumption,
which is similar to the one made by Athey and Imbens (2006) for the CIC estimators in sharp
settings.

Assumption 12 (Regularity conditions for the CIC estimators)

S(Y ) is a bounded interval [y, y]. Moreover, for all (d, g, t) ∈ {0, 1}3, FYdgt
and FY11(d)|S are

continuously differentiable with strictly positive derivatives on [y, y].

Theorem 4.1 below shows that all our estimators are root-n consistent and asymptotically
normal. We also derive the influence functions of our estimators. However, because these
influence functions take complicated expressions, using the bootstrap might be convenient for
inference. For any statistic T , we let T b denote its bootstrap counterpart. For any root-n
consistent statistic θ̂ estimating consistently θ, we say that the bootstrap is consistent if with
probability one and conditional on the sample,

√
n(θ̂b− θ̂) converges to the same distribution

as the limit distribution of
√
n(θ̂ − θ) (see, e.g., van der Vaart, 2000, Section 23.2.1, for a

formal definition of conditional convergence). Theorem 4.1 implies that bootstrap confidence
intervals are asymptotically valid for all our estimators.
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Theorem 4.1 Suppose that Assumptions 1-3 and 11 hold. Then

1. If E(Y 2) <∞ and Assumptions 4-5 also hold,

√
n
(
ŴDID −∆

)
L−→ N (0, V (ψDID)) ,

where ψDID is defined in Equation (29) in the appendix. Moreover, the bootstrap is
consistent for ŴDID.

2. If E(Y 2) <∞ and Assumption 4’ also holds,

√
n
(
ŴTC −∆

)
L−→ N (0, V (ψTC))

where ψTC is defined in Equation (30) in the appendix. Moreover, the bootstrap is
consistent for ŴTC .

3. If Assumptions 7, 8 and 12 also hold,

√
n
(
ŴCIC −∆

)
L−→ N (0, V (ψCIC)) ,

√
n (τ̂q − τq)

L−→ N (0, V (ψq,CIC)) ,

where ψCIC and ψq,CIC are defined in Equations (31) and (32) in the appendix. More-
over, the bootstrap is consistent for both estimators.

The result is straightforward for ŴDID and ŴTC . Regarding ŴCIC and τ̂q, our proof differs
from the one of Athey and Imbens (2006). It is based on the weak convergence of the empirical
cdfs of the different subgroups, and on a repeated use of the functional delta method. This
approach can be readily applied to other functionals of (FY11(0)|S , FY11(1)|S).

In our supplementary material, we extend the asymptotic theory presented here in several
directions. Firstly, in applications with multiple groups, one sometimes needs to estimate the
supergroups Gs,Gi, and Gd introduced in Subsection 3.2. We propose an estimation procedure,
and show that when the number of groups is fixed, as is the case in the framework we considered
in Subsection 3.2, this first-step estimation of the supergroups does not have any impact on the
asymptotic variances of our estimators. Secondly, we show that we can allow for clustering.
Even with repeated cross section or cohort data, independence is a strong assumption in DID
analysis: clustering at the group level can induce both cross-sectional and serial correlation
within clusters (see e.g. Bertrand et al., 2004). Thirdly, we consider estimators of the bounds
presented in Subsection 3.1 and we derive their limiting distributions. Finally, we consider
estimators incorporating covariates and we also derive their limiting distributions.
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5 Application: returns to schooling in Indonesia

5.1 Results with the same control and treatment groups as in Duflo (2001)

Duflo (2001) uses the 1995 intercensal survey of Indonesia to measures returns to education
among men. In 1973-1974, the Indonesian government launched a major primary school
construction program, the so-called INPRES program. In the author’s analysis, year of birth
plays the role of time, as it determines exposure to the program. The author defines men
born between 1957 and 1962 as her cohort 0, as they had finished primary school by the time
the program was launched. She defines men born between 1968 and 1972 as her cohort 1,
as they entered primary school after the program was launched. The author constructs two
“supergroups” of districts, by regressing the number of primary schools constructed on the
number of school-age children in each district. She defines treatment districts as those with
a positive residual in that regression. She starts by using a simple Wald-DID with her two
groups of districts and cohorts to estimate returns to education. She also estimates a 2SLS
regression of wages on cohort dummies, district dummies, and years of schooling, using the
interaction of cohort 1 and schools constructed in one’s district of birth as the instrument for
years of schooling.

As an alternative, we apply our results to the author’s data. Because years of schooling
changed between cohorts 0 and 1 in her control group, we estimate bounds for returns to
schooling. These bounds are similar to those presented in Subsection 3.1, but account for
the fact that schooling is not binary (see Subsection 3.2 of the supplementary material for
more details). We estimate TC bounds relying on Assumptions 1, 3, and 4’, and CIC bounds
relying on Assumptions 1, 3, and 7-8. Because the support of wages does not have natural
boundaries, we use the lowest and highest wage in the sample.

Results are shown in Table 1.9 The Wald-DID is large. However, it is not significantly different
from 0, which is the reason why the author turns to a 2SLS regression with cohort and district
dummies. The estimate of returns to schooling in that regression is equal to 7.3% and is more
precisely estimated.10

9Our Wald-DID and 2SLS estimates differ slightly from those of in Duflo (2001) because we were not able
to obtain exactly her sample of 31,061 observations.

10This point estimate was significant at the 5% level in the original paper (see the 3rd line and 1st column of
Table 7 in Duflo, 2001). But once clustering standard errors at the district level, which has become standard
practice in DID analysis since Bertrand et al. (2004), it loses some statistical significance.
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Table 1: Returns to education using the groups in Duflo (2001)

Estimate 95% CI
Wald-DID 0.195 [-0.102, 0.491]
2SLS with fixed effects 0.073 [-0.011, 0.157]
TC bounds [-3.70, 2.18] [-5.29, 3.00]
CIC bounds [-5.60, 3.36] [-8.00, 4.63]

Notes. Sample size: 30 828 observations. Confidence intervals account for clustering at the district level.

To identify switchers’ LATE, the Wald-DID and 2SLS estimands rely on the assumption that
returns to education are homogeneous between districts. The INPRES program explains a
small fraction of the differences in increases in schooling between districts. A district-level
regression of the increase in years of schooling between cohort 0 and 1 on primary schools
constructed has an R-squared of 0.03 only. Accordingly, years of schooling increased almost
as much in the author’s control group than in her treatment group: while the average of years
of schooling increased by 0.47 between cohort 0 and 1 in her treatment group, it increased by
0.36 in her control group (see Table 3 in Duflo, 2001). Therefore, one can show that under
Assumptions 1 and 3-5, the author’s Wald-DID is equal to 0.47/0.11×ACR−0.36/0.11×ACR′,
where ACR and ACR′ respectively denote the ACR parameters we introduced in Section 3.3
in her treatment and control groups. If ACR 6= ACR′, this Wald-DID could lie far from both
ACR and ACR′.

However, returns to schooling might differ across districts. In cohort 0, years of schooling were
substantially higher in control than in treatment districts (see Table 3 in Duflo, 2001). This
difference in years of schooling might for instance indicate a higher level of economic devel-
opment in control districts, in which case demand for skilled labor and returns to education
could be higher there.

Our TC and CIC bounds do not rely on this assumption. But because years of schooling
changed substantially in the authors’ control group, they turn out not to be informative. One
could argue that this is due to outliers or measurement error, because we use the minimum
and maximum wages in the sample as estimates of the boundaries of the support of wages.
Using instead the first and third quartile of wages still yields very uninformative bounds: our
TC and CIC bounds are respectively equal to [ -0.79, 0.36] and [ -0.97, 0.35].

Overall, using the treatment and control groups of districts defined in Duflo (2001) either yields
point estimates relying on a questionable assumption, or wide and uninformative bounds.
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5.2 Results with new control and treatment groups

In this subsection, we propose a method to point estimate returns to schooling without assum-
ing that returns are homogeneous between districts or over time. On that purpose, we form
three supergroups of districts depending on whether their average years of schooling increased,
remained stable, or decreased between cohorts 0 and 1. Though this approach is inspired from
the results of Subsection 3.2, a difficulty here is that the supergroups are not known and need
to be estimated. Indeed, years of schooling vary at the individual level, and therefore there is
no group where years of schooling are perfectly stable between cohort 0 and 1. In Subsection
2.1 in our supplementary material, we propose a method to estimate the supergroups, and we
show that when the number of groups is fixed, this first-step estimation does not have any
impact on the asymptotic variances of our estimators. We expect this asymptotic framework
to provide a good approximation of the finite sample behavior of our estimators when the
size of each group is large compared to the total number of groups. However, in Duflo (2001)
there are 284 groups with 109 units on average, so this asymptotic framework is not appro-
priate. Studying how the first-step estimation of the supergroups should be accounted for in
an asymptotic framework where the number of groups goes to infinity is beyond the scope of
this paper. Therefore, what follows is tentative.11

The procedure we use to estimate the supergroups should classify as controls only districts
with a stable distribution of education. Any classification method leads us to make two
types of errors: classify some districts where the distribution of education remained constant
as treatments (type 1 error); and classify some districts where this distribution changed as
controls (type 2 error). Type 1 errors are innocuous. For instance, if Assumptions 4 and 5 are
satisfied, all control districts have the same evolution of their expected outcome. Misclassifying
some as treatment districts leaves our estimators unchanged, up to sampling error. On the
other hand, type 2 errors are a more serious concern. They lead us to include districts where
the true distribution of education was not stable in our super control group, thus violating one
of the requirements of Theorem 3.2. We therefore choose a method based on chi-squared tests
with very liberal level. Specifically, we assign a district to our control group if the p-value of
a chi-squared test comparing the distribution of education between the two cohorts in that
district is greater than 0.5.

We end up with estimated control (Ĝ∗ = 0) and treatment groups (Ĝ∗ = 1 and Ĝ∗ = −1)
respectively made up of 64, 123, and 97 districts. Table 2 shows that in treatment districts
where schooling increased, cohort 1 completed one more year of schooling than cohort 0. In
treatment districts where schooling decreased, cohort 1 completed nine months less of schooling
than cohort 0. Finally, in control districts, the number of years of schooling did not change.

11There are many other applications of the fuzzy DID method where the set of groups where treatment is
stable is known and does not need to be estimated. Examples include Field (2007) or Gentzkow et al. (2011),
which we revisit in our supplementary material.
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Table 2: Years of schooling completed in the new groups of districts

Cohort 0 Cohort 1 Evolution (s.e.)
Districts where schooling increased (Ĝ∗ = 1) 8.65 9.64 0.99 (0.082)
Control districts (Ĝ∗ = 0) 9.60 9.55 -0.05 (0.097)
Districts where schooling decreased (Ĝ∗ = −1) 10.17 9.43 -0.74 (0.080)

Notes. Sample size: 30 828 observations. Standard errors are clustered at the district level.

We now follow results from Theorem 3.2 to estimate returns to education in Indonesia, treating
our estimated treatment and control groups as if they were the true treatment and control
groups. In Table 3, we report the Wald-DID, Wald-TC, and Wald-CIC estimates we obtain.12

The Wald-DID is large, and suggests returns of 14% per year of schooling. Our Wald-TC
and Wald-CIC estimators are substantially smaller, around 10% per year of schooling. They
significantly differ from the Wald-DID, with t-stats respectively equal to -4.27 and -4.61.

Table 3: Returns to education using our new groups

WDID WTC WCIC

Returns to education 0.140 0.101 0.099
(0.015) (0.017) (0.017)

Notes. Sample size: 30 828 observations. Standard errors are clustered at the district level.

In this application, Assumption 5 is implausible, because it is incompatible with decreasing
returns to experience, while an extensive literature has shown that returns to experience tend
to be decreasing (see Mincer and Jovanovic, 1979, and Willis, 1986, for a survey). The data
used in this application is a single cross-section, the 1995 intercensal survey of Indonesia,
where cohort of birth plays the role of time. Then, Equation (1) shows that Assumption
5 implies, for instance, that the wage gap between high-school graduates in cohort 0 and 1
should remain the same if they had only completed primary school. Had they only completed

12Our Wald-DID estimate is actually a weighted average of the Wald-DID estimate comparing Ĝ∗ = 1 and
Ĝ∗ = 0 and of the Wald-DID estimate comparing Ĝ∗ = −1 and Ĝ∗ = 0. The same holds for the Wald-TC
and Wald-CIC estimates. The formulas of the corresponding estimands are given in Theorem 3.2. Also, to
estimate the numerators of the Wald-CICs, we group schooling into 5 categories (did not complete primary
school, completed primary school, completed middle school, completed high school, completed college). Thus,
we avoid estimating the Qds on small numbers of units. To be consistent, we also use this definition to estimate
the numerators of the Wald-TCs. Using years of schooling hardly changes our Wald-TC estimate.
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primary school, high-school graduates would have joined the labor market earlier, and would
have had more labor market experience in 1995, the year when their wages are measured.
If returns to experience are decreasing, the wage gap between the two cohorts would then
have been lower.13 Therefore, using the Wald-TC or Wald-CIC seems preferable to using the
Wald-DID estimator, as those two estimators do not rule out decreasing returns to experience.

We also conduct placebo tests, which are presented in Subsection 3.3.2 in the supplemen-
tary material. Overall, they lend slightly stronger support to our Wald-TC and Wald-CIC
estimators, though we lack power to make definitive conclusions. In Subsection 3.3.2 of the
supplement, we show that decreasing returns to experience can explain why our placebo DID
tests may have low power. Finally, in Subsection 3.4 of the supplement, we explore the effect of
the first-stage estimation of the supergroups on our final estimators. While the corresponding
theoretical analysis goes beyond the scope of this paper, our robustness checks suggest that
our estimates of returns to schooling are not sensitive to this first-step estimation.

6 Conclusion

In many applications of the DID method, the treatment increases more in the treatment group,
but some units are also treated in the control group, and some units remain untreated in the
treatment group. In such fuzzy designs, a popular estimand of treatment effects is the DID
of the outcome divided by the DID of the treatment, the so-called Wald-DID estimand. We
start by showing that the Wald-DID identifies the LATE of treatment group switchers only
if two restrictions on treatment effects are satisfied, in addition to the usual common trend
assumption. The average treatment effect of units treated at both dates must not change over
time. Moreover, when the share of treated units varies in the control group, the LATEs of
treatment and control group switchers must be equal. Second, we propose two new estimands
that can be used when the share of treated units in the control group is stable, and that do
not rely on any assumption on treatment effects. We use our results to revisit Duflo (2001).

Overall, our paper shows that researchers who use the DID method with fuzzy groups can
obtain estimates not resting on the assumption that treatment effects are stable and homo-
geneous, provided they can find a control group whose exposure to the treatment does not
change over time. When a policy is extended to a previously ineligible subgroup or when
the treatment is assigned at the group level, such control groups are usually readily available.
Examples include Field (2007) or Gentzkow et al. (2011), which we revisit in our supple-
mentary material. When the treatment is assigned at the individual level and no policy rule
warrants that treatment remains stable in some groups, such control groups usually still exist
but they need to be estimated. We propose a method to estimate the control groups that
can be used when the number of groups is small relative to the size of each group. Studying

13In Subsection 3.3.1 of our supplementary material, we prove this point formally.
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how to estimate the control groups when the number of groups is large relative to their size,
as is the case in Duflo (2001), is left for future work. Finally, when researchers cannot find a
control group whose exposure to the treatment is stable over time, our results show that their
conclusions will rest on the assumption that treatment effects are stable and homogeneous.
These assumptions should then be discussed.
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Main proofs

The lemmas prefixed by S are stated and proven in our supplementary material (see de Chaise-
martin and D’Haultfœuille, 2017). To simplify the notation, throughout the proofs we adopt
the following normalization, which is without loss of generality: v10 = v00. For any (d, g, t) ∈
S((D,G, T )), we also let pgt = P (G = g, T = t), pdgt = P (D = d,G = g, T = t),

pd|gt = P (Dgt = d), and Fdgt = FYdgt
. Finally, for any Θ ⊂ Rk, let

◦
Θ denote its interior

and let C0(Θ) and C1(Θ) denote respectively the set of continuous functions and the set of
continuously differentiable functions with strictly positive derivative on Θ. We often use this
notation with Θ = S(Y ), in which case we respectively denote these sets by C0 and C1.

Theorem 2.1

Proof of 1 when p1|01 ≥ p1|00.

It follows from Assumptions 1 and 3 that

p1|11 − p1|10 = P (V ≥ v11|G = 1, T = 1)− P (V ≥ v00|G = 1, T = 0)

= P (S|G = 1). (3)

Moreover,

E(Y11)− E(Y10)

= E (Y11(1) [1{V11 ∈ [v11, v00)}+ 1{V11 ≥ v00}]) + E(Y11(0)1{V11 < v11})

− E(Y10(1)1{V10 ≥ v00})− E(Y10(0)1{V10 < v00})

= E(Y11(1)− Y11(0)|S)P (S|G = 1) + E(Y11(0))− E(Y10(0))

+ E ((Y11(1)− Y11(0))1{V11 ≥ v00})− E ((Y10(1)− Y10(0))1{V10 ≥ v00})

= ∆P (S|G = 1) + E(Y11(0))− E(Y10(0)) (4)

The first equality follows from Assumptions 1 and 3, the second follows from Assumption 3,
and the third follows from Assumptions 3 and 5.
Similarly, one can show that

p1|01 − p1|00 = P (S′|G = 0) (5)

E(Y01)− E(Y00) = ∆′P (S′|G = 0) + E(Y01(0))− E(Y00(0)). (6)

Taking the difference between Equations (4) and (6), and using Assumption 4, we obtain

DIDY = ∆P (S|G = 1)−∆′P (S′|G = 0).

Dividing each side by DIDD and using Equations (3) and (5) yields the result.

Proof of 1 when p1|01 < p1|00
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In this case, reasoning similarly as in the derivation of Equation (3) yields

p1|00 − p1|01 = P (S′|G = 0). (7)

Moreover,

E(Y01)− E(Y00)

= E (Y01(1) [1{V01 ≥ v00} − 1{V01 ∈ [v00, v01)}]) + E (Y01(0)×

[1{V01 ∈ [v00, v01)}+ 1{V01 < v00}])− E (Y00(1)1{V00 ≥ v00})− E (Y00(0)1{V00 < v00})

= −∆′P (S′|G = 1) + E(Y01(0)− Y00(0))

+ E ((Y01(1)− Y01(0)1{V01 ≥ v00})− E ((Y00(1)− Y00(0)1{V00 ≥ v00})

= −∆′P (S′|G = 1) + E(Y01(0)− Y00(0)). (8)

The first equality follows from Assumption 3 and p1|01 < p1|00, the second follows from As-
sumption 3, and the third follows from Assumptions 3 and 5. Taking the difference between
Equations (4) and (8), and using Assumption 4, we obtain

DIDY = ∆P (S|G = 1) + ∆′P (S′|G = 0).

Dividing each side of the previous display by DIDD and using Equations (3) and (7) yields
the result.

Proof of 2
The result follows directly from the first point of the theorem.

Bias term without Assumption 5
Using the Equations above (4) and (8), we obtain that when Assumption 2 holds but Assump-
tion 5 does not,

WDID = ∆ +
1

DIDD

(
(∆11 −∆10)p1|10 − (∆01 −∆00)p1|00

)
,

where ∆gt = E (Ygt(1)− Ygt(0)|D(0) = 1) �

Theorem 2.2

Following the same steps as those used to derive Equation (4), we obtain

E(Y11)− E(Y10)

= E(Y11(1)− Y11(0)|S)P (S|G = 1) + E (Y11(1)− Y10(1)|G = 1, V ≥ v00)P (V ≥ v00|G = 1)

+ E (Y11(0)− Y10(0)|G = 1, V < v00)P (V < v00|G = 1). (9)

Then,

δ1 = E(Y01(1)|G = 0, V ≥ v01)− E(Y00(1)|G = 0, V ≥ v00)

= E(Y01(1)− Y00(1)|G = 0, V ≥ v00). (10)
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The first equality follows from Assumption 3. The second one follows from the fact that
p1|01 = p1|00 combined with Assumption 3 implies that {G = 0, V ≤ v01} = {G = 0, V ≤ v00}.

Similarly,
δ0 = E(Y01(0)− Y00(0)|G = 0, V < v00). (11)

Finally, the result follows combining Equations (9), (10), (11), and Assumption 4’, once noted
that p1|10 = P (V ≥ v00|G = 1) and P (S|G = 1) = p1|11 − p1|10 �

Theorem 2.3

We first prove the following result, which holds irrespective of whether Assumption 2 holds:

FY11(d)|S =
pd|11Fd11 − pd|10Hd ◦

(
λ0dFd01 + (1− λ0d)FY01(d)|S′

)
pd|11 − pd|10

, (12)

where λgd = pd|g1/pd|g0. We establish (12) for d = 0 only, the reasoning is similar for d = 1.
First,

P (S|G = 1, T = 1, V < v00) =
P (S|G = 1)

P (V < v00|G = 1, T = 0)

=
p0|10 − p0|11

p0|10
.

The first equality stems from Assumption 3, the second from Equation (3) and Assumption
3. Moreover,

FY11(0)|V <v00 = P (S|G = 1, T = 1, V < v00)FY11(0)|S

+ (1− P (S|G = 1, T = 1, V < v00))FY11(0)|V <v11

=
p0|10 − p0|11

p0|10
FY11(0)|S +

p0|11

p0|10
F011.

Therefore,

FY11(0)|S =
p0|11F011 − p0|10FY11(0)|V <v00

p0|11 − p0|10
. (13)

Then, we show that for all y ∈ S(Y11(0)|V < v00),

FY11(0)|V <v00 = F010 ◦ F−1000 ◦ FY01(0)|V <v00 . (14)

For all (g, t) ∈ {0, 1}2,

FYgt(0)|V <v00(y) = P (h0(U0, t) ≤ y|G = g, T = t, V < v00)

= P (U0 ≤ h−10 (y, t)|G = g, V < v00)

= FU0|G=g,V <v00(h−10 (y, t)),
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where the first and second equalities follow from Assumption 7. Assumptions 7 and 8 imply
that FU0|G=g,V <v00 is strictly increasing. Hence, its inverse exists and for all q ∈ (0, 1),

F−1Ygt(0)|V <v00
(q) = h0

(
F−1U0|G=g,V <v00

(q), t
)
.

This implies that for all y ∈ S(Yg1(0)|V < v00),

F−1Yg0(0)|V <v00
◦ FYg1(0)|V <v00(y) = h0(h

−1
0 (y, 1), 0). (15)

By Assumption 8, we have

S(Y010) = S(Y000)

⇒ S(Y10(0)|V < v00) = S(Y00(0)|V < v00)

⇒ S(h0(U0, 0)|V < v00, G = 1, T = 0) = S(h0(U0, 0)|V < v00, G = 0, T = 0)

⇒ S(U0|V < v00, G = 1) = S(U0|V < v00, G = 0)

⇒ S(h0(U0, 1)|V < v00, G = 1, T = 1) = S(h0(U0, 1)|V < v00, G = 0, T = 1)

⇒ S(Y11(0)|V < v00) = S(Y01(0)|V < v00),

where the third and fourth implications follow from Assumption 7. Once combined with
Equation (15), the previous display implies that for all y ∈ S(Y11(0)|V < v00),

F−1Y10(0)|V <v00
◦ FY11(0)|V <v00(y) = F−1Y00(0)|V <v00

◦ FY01(0)|V <v00(y).

This proves Equation (14), because {V < v00, G = g, T = 0} = {D = 0, G = g, T = 0}.

Finally, we show that

FY01(0)|V <v00 = λ00F001 + (1− λ00)FY01(0)|S′ . (16)

Suppose first that λ00 ≤ 1. Then, v01 ≤ v00 and S′ = {V ∈ [v01, v00), G = 0}. Moreover,
reasoning as for P (S|G = 1, V < v00), we get

λ00 =
P (V < v01|G = 0)

P (V < v00|G = 0)
= P (V < v01|G = 0, V < v00),

FY01(0)|V <v00 = λ00F001 + (1− λ00)FY01(0)|S′ .

If λ00 > 1, v01 > v00 and S′ = {V ∈ [v00, v01), G = 0}. We then have

1/λ00 = P (V < v00|G = 0, V < v01),

F001 = 1/λ00FY01(0)|V <v00 + (1− 1/λ00)FY01(0)|S′ ,

so Equation (16) is also satisfied. (12) follows by combining (13), (14) and (16).
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Now, under Assumption 2, λ00 = λ01 = 1. This and the fact that Hd ◦Fd01 = FQd(Yd10) shows
that FY11(d)|S = FCIC,d. This proves that τq = F−1CIC,1(q)− F

−1
CIC,0(q). Moreover,

WCIC =
p1|11

∫
ydFY111(y)− p1|10

∫
ydFQ1(Y101)(y)

p1|11 − p1|10

−
p0|11

∫
ydFY011(y)− p0|10

∫
ydFQ0(Y001)(y)

p0|11 − p0|10

=

∫
ydFCIC,1(y)−

∫
ydFCIC,0(y)

= E(Y11(1)− Y11(0)|S) �

Proof of Theorem 3.1

Proof of 1

We only prove that W TC is a lower bound when λ00 > 1. The proofs for the upper bound
and when λ00 < 1 are symmetric.

We have

E(Y11(1)− Y11(0)|S)P (S|G = 1)

= E(Y11)− E(Y10)− E(Y11(1)− Y10(1)|V ≥ v00)P (V ≥ v00|G = 1)

− E(Y11(0)− Y10(0)|V < v00)P (V < v00|G = 1)

= E(Y11)− E(Y10)− E(Y01(1)− Y00(1)|V ≥ v00)p1|10
− E(Y01(0)− Y00(0)|V < v00)p0|10

= E(Y11)− E(Y10)− (E(Y01(1)|V ≥ v00)− E(Y100)) p1|10

− (E(Y01(0)|V < v00)− E(Y000)) p0|10.

The first equality follows from Equation (9), the second from Assumptions 3 and 4’. Thus,
the proof will be complete if we can show that δ1 and δ0 are respectively upper bounds for
E(Y01(1)|V ≥ v00)− E(Y100) and E(Y01(0)|V < v00)− E(Y000).

When λ00 > 1, Assumption 3 implies that v00 < v01. Then, reasoning as in the proof of
Theorem 2.3, we obtain P (V ≥ v01|G = 0, T = 1, V ≥ v00) = λ01 and

E(Y01(1)|V ≥ v00) = λ01E(Y01(1)|V ≥ v01) + (1− λ01)E(Y01(1)|S′)

≤ λ01E(Y101) + (1− λ01)y =

∫
ydF 101(y).

This proves that δ1 is an upper bound for E(Y01(1)|V ≥ v00)− E(Y100).

Similarly, P (V < v00|G = 0, T = 1, V < v01) = 1/λ00 and

FY001 = 1/λ00FY01(0)|V <v00 + (1− 1/λ00)FY01(0)|S′ .
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Following Horowitz and Manski (1995), the last display implies that

E(Y01(0)|V < v00) ≤
∫
ydF 001(y).

This proves that δ0 is an upper bound for E(Y01(0)|V < v00)− E(Y000).

Proof of 2

Construction of the bounds.

We only establish the validity of the bounds for FY11(0)|S(y). The reasoning is similar for
FY11(1)|S(y). Bounds for ∆ and τq directly follow from those for the cdfs. Hereafter, to
simplify the notation, we let T0 = FY01(0)|S′ . Following the notation introduced in Subsection
3.1 combined with Equations (12) and (16) , we then haveG0(T0) = FY01(0)|V <v00 and C0(T0) =

FY11(0)|S .

We start considering the case where λ00 < 1. We first show that in such instances, 0 ≤
T0, G0(T0), C0(T0) ≤ 1 if and only if

T0 ≤ T0 ≤ T0. (17)

G0(T0) is included between 0 and 1 if and only if

−λ00F001

1− λ00
≤ T0 ≤

1− λ00F001

1− λ00
,

while C0(T0) is included between 0 and 1 if and only if

H−10 (λ10F011)− λ00F001

1− λ00
≤ T0 ≤

H−10 (λ10F011 + (1− λ10))− λ00F001

1− λ00
.

Since −λ00F001/(1− λ00) ≤ 0 and (1− λ00F001)/(1− λ00) ≥ 1, T0, G0(T0) and C0(T0) are all
included between 0 and 1 if and only if

M0

(
H−10 (λ10F011)− λ00F001

1− λ00

)
≤ T0 ≤ m1

(
H−10 (λ10F011 + (1− λ10))− λ00F001

1− λ00

)
, (18)

where M0(x) = max(0, x) and m1(x) = min(1, x). Composing each term of these inequalities
byM0(.) and then by m1(.) yields Equation (17), sinceM0(T0) = m1(T0) = T0 andM0 ◦m1 =

m1 ◦M0.

Now, when λ00 < 1, G0(T0) is increasing in T0, so C0(T0) as well is increasing in T0. Combining
this with (17) implies that for every y′,

C0(T0)(y
′) ≤ C0(T0)(y

′) ≤ C0(T0)(y
′). (19)

Because C0(T0)(y) is a cdf,

C0(T0)(y) = inf
y′≥y

C0(T0)(y
′) ≤ inf

y′≥y
C0(T0)(y

′) = FCIC,0(y).
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This proves the result for the upper bound. The result for the lower bound follows similarly.

Let us now turn to the case where λ00 > 1. Using the same reasoning as above, we get that
G0(T0) and C0(T0) are included between 0 and 1 if and only if

λ00F001 − 1

λ00 − 1
≤ T0 ≤

λ00F001

λ00 − 1
,

λ00F001 −H−10 (λ10F011 + (1− λ10))
λ00 − 1

≤ T0 ≤
λ00F001 −H−10 (λ10F011)

λ00 − 1
.

The inequalities in the first line are not binding since they are implied by those on the second
line. Thus, we also get (18). Hence, 0 ≤ T0, G0(T0), C0(T0) ≤ 1 if and only if

T0 ≤ T0 ≤ T0. (20)

Besides, when λ00 > 1, G0(T0) is decreasing in T0, so C0(T0) is also decreasing in T0. Combin-
ing this with Equation (20) implies that for every y, Equation (19) holds as well. This proves
the result.

Sketch of the proof of sharpness.

The full proof is in the supplementary material (see de Chaisemartin and D’Haultfœuille,
2017). We only consider the sharpness of FCIC,0, the reasoning being similar for the upper
bound. The proof is also similar and actually simpler for d = 1. The corresponding bounds
are proper cdfs, so we do not have to consider converging sequences of cdfs as we do in case
b) below.

a. λ00 > 1. We show that if Assumptions 8-10 hold, then FCIC,0 is sharp. For that purpose,
we construct h̃0, Ũ0, Ṽ such that:

(i) Y = h̃0(Ũ0, T ) when D = 0 and D = 1{Ṽ ≥ vGT };

(ii) (Ũ0, Ṽ ) ⊥⊥ T |G;

(iii) h̃0(., t) is strictly increasing for t ∈ {0, 1};

(iv) F
h̃0(Ũ0,1)|G=0,T=1,Ṽ ∈[v00,v01) = T 0.

Because we can always define Ỹ (0) as h̃0(Ũ0, T ) when D = 1 without contradicting the data,
(i)-(iii) ensures that Assumptions 3 and 7 (for d = 0) are satisfied with h̃0, Ũ0 and Ṽ . (iv)
ensures that the DGP corresponding to (h̃0, Ũ0, Ṽ ) rationalizes the bound.

The construction of h̃0, Ũ0, and Ṽ is long, so its presentation is deferred to the supplementary
material.

b. λ00 < 1. The idea is similar as in the previous case. A difference, however, is that
when λ00 < 1, T 0 is not a proper cdf, but a defective one, since limy→y T 0(y) < 1. As a
result, we cannot define a DGP such that T̃0 = T 0, However, by Lemma S2, there exists a
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sequence (T k
0)k∈N of cdfs such that T k

0 → T 0, G0(T
k
0) is an increasing bijection from S(Y )

to (0, 1) and C0(T
k
0) is increasing and onto (0, 1). We can then construct a sequence of DGP

(h̃k0(., 0), h̃k0(., 1), Ũk
0 , Ṽ

k) such that Points (i) to (iii) listed above hold for every k, and such

that T̃ k
0 = T k

0. Since T
k
0(y) converges to T 0(y) for every y in

◦
S(Y ), we thus define a sequence

of DGP such that T̃ k
0 can be arbitrarily close to T 0 on

◦
S(Y ) for sufficiently large k. Since

C0(.) is continuous, this proves that FCIC,0 is sharp on
◦
S(Y ). Again, this construction is long

and its exposition is deferred to the supplementary material �

Theorem 3.2

We prove the first statement, the second and third following from similar arguments. Under
the assumptions of the theorem, Assumptions 1-5 are satisfied for the treatment and control
groups G∗ = 1 and G∗ = 0. Therefore, it follows from Theorem 2.1 that

W ∗DID(1, 0) = E(Y (1)− Y (0)|S∗, G∗ = 1, T = 1). (21)

Similarly, one can show that

W ∗DID(−1, 0) = E(Y (1)− Y (0)|S∗, G∗ = −1, T = 1). (22)

Moreover, by Assumption 3 and G ⊥⊥ T ,

DID∗D(1, 0)P (G∗ = 1) = [E(D|G∗ = 1, T = 1)− E(D|G∗ = 1, T = 0)]P (G∗ = 1|T = 1)

= P (S∗, G∗ = 1|T = 1).

Similarly, DID∗D(0,−1)P (G∗ = −1) = P (S∗, G∗ = −1|T = 1). Combining both equalities,
we obtain

w10 =
P (S∗, G∗ = 1|T = 1)

P (S∗, G∗ = 1|T = 1) + P (S∗, G∗ = −1|T = 1)
= P (G∗ = 1|S∗, T = 1). (23)

The result follows combining Equations (21)-(23) �

Theorem 3.3

We only prove the first statement, the second and third statements follow from similar argu-
ments.

D01 ∼ D00 and D11 & D10 combined with Assumption 3’ imply that

vd01 = vd00, for every d ∈ {1, ..., d} (24)

vd11 ≤ vd10, for every d ∈ {1, ..., d}. (25)
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Then, it follows from Assumption 3’ and Equation (25) that for every d ∈ {1, ..., d},

P (D11 ≥ d)− P (D10 ≥ d) = P (V ≥ vd11|T = 1, G = 1)− P (V ≥ vd10|T = 0, G = 1)

= P (V ∈ [vd11, v
d
10)|G = 1)

= P (D(0) < d ≤ D(1)|G = 1). (26)

Then, for every g ∈ {0, 1},

E(Yg1)− E(Yg0)

=
d∑

d=0

E(Yg1(d)|G = g, V ∈ [vdg1, v
d+1
g1 ))P (V ∈ [vdg1, v

d+1
g1 )|G = g)

−
d∑

d=0

E(Yg0(d)|G = g, V ∈ [vdg0, v
d+1
g0 ))P (V ∈ [vdg0, v

d+1
g0 )|G = g)

=

d∑
d=1

E(Yg1(d)− Yg1(d− 1)|G = g, V ∈ [vdg1, v
d
g0))P (V ∈ [vdg1, v

d
g0)|G = g)

+

d∑
d=0

E(Yg1(d)− Yg0(d)|G = g, V ∈ [vdg0, v
d+1
g0 ))P (V ∈ [vdg0, v

d+1
g0 )|G = g)

=

d∑
d=1

E(Yg1(d)− Yg1(d− 1)|D(0) < d ≤ D(1))P (D(0) < d ≤ D(1)|G = g)

+ E(Yg1(0))− E(Yg0(0)). (27)

The first, second and third equalities respectively follow from Assumption 3’, Equations (24)
and (25) combined with Assumption 3’, and Assumptions 3’ and 5.

Combining Equation (27) with Equation (24) and Assumption 4 imply that

DIDY =

d∑
d=1

E(Y11(d)− Y11(d− 1)|D(0) < d ≤ D(1))P (D(0) < d ≤ D(1)|G = 1).

The result follows from Equation (26), after dividing each side of the previous display by
DIDD �

Theorem 4.1

Proof of 1 and 2

Asymptotic normality is obvious by the central limit theorem and the delta method. Con-
sistency of the bootstrap follows by consistency of the bootstrap for sample means (see, e.g.,
van der Vaart, 2000, Theorem 23.4) and the delta method for bootstrap (van der Vaart, 2000,
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Theorem 23.5). A convenient way to obtain the asymptotic variance is to use repeatedly the
following argument. If

√
n
(
Â−A

)
=

1√
n

n∑
i=1

ai + oP (1) and
√
n
(
B̂ −B

)
=

1√
n

n∑
i=1

bi + oP (1),

then Lemma S3 ensures that

√
n

(
Â

B̂
− A

B

)
=

1√
n

n∑
i=1

ai − (A/B)bi
B

+ oP (1). (28)

This implies for instance that

√
n
(
Ê(Y11)− E(Y11)

)
=

1√
n

n∑
i=1

GiTi(Yi − E(Y11))

p11
+ oP (1),

and similarly for Ê(D11). Applying repeatedly this argument, we obtain, after some algebra,

√
n
(
ŴDID −∆

)
=

1√
n

n∑
i=1

ψDID,i + oP (1),

where, omitting the index i, ψDID is defined by

ψDID =
1

DIDD

[
GT (ε− E(ε11))

p11
− G(1− T )(ε− E(ε10))

p10
− (1−G)T (ε− E(ε01))

p01

+
(1−G)(1− T )(ε− E(ε00))

p00

]
(29)

and ε = Y −∆D. Similarly,

√
n
(
ŴTC −∆

)
=

1√
n

n∑
i=1

ψTC,i + oP (1),

where ψTC is defined by

ψTC =
1

E(D11)− E(D10)

{
GT (ε− E(ε11))

p11
− G(1− T )(ε+ (δ1 − δ0)D − E(ε10 + (δ1 − δ0)D10))

p10

− E(D10)D(1−G)

[
T (Y − E(Y101))

p101
− (1− T )(Y − E(Y100))

p100

]
− (1− E(D10))(1−D)(1−G)

[
T (Y − E(Y001))

p001
− (1− T )(Y − E(Y000))

p000

]}
. (30)

Proof of 3

We first show that (F̂Y11(0)|S , F̂Y11(1)|S) tends to a continuous gaussian process. Let θ̃ =

(F000, F001, ..., F111, λ10, λ11). By Lemma S4, ̂̃θ = (F̂000, F̂001, ..., F̂111, λ̂10, λ̂11) converges to a
continuous gaussian process. Let

πd : (F000, F001, ..., F111, λ10, λ11) 7→ (Fd10, Fd00, Fd01, Fd11, 1, λ1d) , d ∈ {0, 1},
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so that (F̂Y11(0)|S , F̂Y11(1)|S) =
(
R1 ◦ π0(θ̃), R1 ◦ π1(θ̃)

)
, where R1 is defined as in Lemma

S5. πd is Hadamard differentiable as a linear continuous map. Because Fd10, Fd00, Fd01, Fd11

are continuously differentiable with strictly positive derivative by Assumption 12, λ1d > 0, and
λ1d 6= 1 under Assumption 8, R1 is also Hadamard differentiable at (Fd10, Fd00, Fd01, Fd11, 1, λ1d)

tangentially to (C0)4×R2. By the functional delta method (see, e.g., van der Vaart and Well-
ner, 1996, Lemma 3.9.4), (F̂Y11(0)|S , F̂Y11(1)|S) tends to a continuous gaussian process.

Now, by integration by parts for Lebesgue-Stieljes integrals,

∆ =

∫ y

y
FY11(0)|S(y)− FY11(1)|S(y)dy.

Moreover, the map ϕ1 : (F1, F2) 7→
∫
S(Y )(F2(y)−F1(y))dy, defined on the domain of bounded

càdlàg functions, is linear. Because S(Y ) is bounded by Assumption 12, ϕ1 is also con-
tinuous with respect to the supremum norm. It is thus Hadamard differentiable. Because
∆̂ = ϕ1

(
F̂Y11(1)|S , F̂Y11(0)|S

)
, ∆̂ is asymptotically normal by the functional delta method.

The asymptotic normality of τ̂q follows along similar lines. By Assumption 12, FY11(d)|S is
differentiable with strictly positive derivative on its support. Thus, the map (F1, F2) 7→
F−12 (q)− F−11 (q) is Hadamard differentiable at (FY11(0)|S , FY11(1)|S) tangentially to the set of
functions that are continuous at (F−1Y11(0)|S(q), F−1Y11(1)|S(q)) (see Lemma 21.3 in van der Vaart,
2000). By the functional delta method, τ̂q is asymptotically normal.

The validity of the bootstrap follows along the same lines. By Lemma S4, the bootstrap is
consistent for ̂̃θ. Because both the LATE and LQTE are Hadamard differentiable functions of̂̃
θ, as shown above, the result simply follows by the functional delta method for the bootstrap
(see, e.g., van der Vaart, 2000, Theorem 23.9).

Finally, we compute the asymptotic variance of both estimators. The functional delta method
also implies that both estimators are asymptotically linear. To compute their asymptotic
variance, it suffices to provide their asymptotic linear approximation. For that purpose, let us
first linearize FY11(d)|S(y), for all y. It follows from the proof of the first point of Lemma S5 that
the mapping φ1 : (F1, F2, F3) 7→ F1 ◦F−12 ◦F3 is Hadamard differentiable at (Fd10, Fd00, Fd01),
tangentially to (C0)3. Moreover applying the chain rule, we obtain

dφ1(h1, h2, h3) = h1 ◦Q−1d +H ′d ◦ Fd01 ×
[
−h2 ◦Q−1d + h3

]
.

Applied to (F1, F2, F3) = (Fd10, Fd00, Fd01), this and the functional delta method once more
imply that

√
n
(
Ĥd ◦ F̂d01 −Hd ◦ Fd01

)
= dφ1(h1n, h2n, h3n) + oP (1),

where the oP (1) is uniform over y and h1n =
√
n(F̂d10 − Fd10). h2n and h3n are defined

similarly. Furthermore, applying Lemma S3 yields, uniformly over y,

h1n(y) =
1√
n

n∑
i=1

1{Di = d}Gi(1− Ti)(1{Yi ≤ y} − Fd10(y))

pd10
+ oP (1).
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A similar expression holds for h2n and h3n. Hence, by continuity of dφ1, we obtain, after some
algebra,

√
n
(
Ĥd ◦ F̂d01(y)−Hd ◦ Fd01(y)

)
=

1√
n

n∑
i=1

1{Di = d}
{
Gi(1− Ti)(1{Qd(Yi) ≤ y} −Hd ◦ Fd01(y))

pd10
+ (1−Gi)H

′
d ◦ Fd01(y)

×
[
−(1− Ti)(1{Qd(Yi) ≤ y} − Fd01(y))

pd00
+
Ti(1{Yi ≤ y} − Fd01(y))

pd01

]}
+ oP (1),

which holds uniformly over y. Applying repeatedly Lemma S3, we then obtain, after some
algebra,

√
n
(
F̂Y11(d)|S(y)− FY11(d)|S(y)

)
=

1√
n

n∑
i=1

Ψdi(y) + oP (1),

where, omitting the index i,

Ψd(y) =
1

pd|11 − pd|10

{
GT

p11

[
1{D = d}1{Y ≤ y} − pd|11Fd11(y)− FY11(d)|S(y)

(
1{D = d} − pd|11

)]
+
G(1− T )

p10

[
−1{D = d} (1{Qd(Y ) ≤ y} −Hd ◦ Fd01(y)) +

(
1{D = d} − pd|10

) (
FY11(d)|S(y)−Hd ◦ Fd01(y)

)]
+pd|10(1−G)1{D = d}H ′

d ◦ Fd01(y)

[
(1− T )(1{Qd(Y ) ≤ y} − Fd01(y))

pd00
− T (1{Y ≤ y} − Fd01(y))

pd01

]}
.

By the functional delta method, this implies that we can also linearize ŴCIC and τ̂q. Moreover,
we obtain by the chain rule the following influence functions:

ψCIC =

∫
Ψ0(y)−Ψ1(y)dy, (31)

ψq,CIC =

[
Ψ1

fY11(1)|S

]
◦ F−1Y11(1)|S(q)−

[
Ψ0

fY11(0)|S

]
◦ F−1Y11(0)|S(q). (32)
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