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Abstract

This paper considers the identification and estimation of an extension of Roy’s
model (1951) of sectoral choice, which includes a non-pecuniary component in the
selection equation and allows for uncertainty on potential earnings. We focus on
the identification of the non-pecuniary component, which is key to disentangle
the relative importance of monetary incentives versus preferences in the context
of sorting across sectors. By making the most of the structure of the selection
equation, we show that this component is point identified from the knowledge of
the covariate effects on earnings, as soon as one covariate is continuous. Notably,
and in contrast to most results on the identification of Roy models, this implies
that identification can be achieved without any exclusion restriction nor large
support condition on the covariates. As a byproduct, bounds are obtained on the
distribution of the ex ante monetary returns. We propose a three-stage semipara-
metric estimation procedure for this model, which yields root-n consistent and
asymptotically normal estimators. Finally, we apply our results to the educa-
tional context, by providing new evidence from French data that non-pecuniary
factors are a key determinant of higher education attendance decisions.
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1 Introduction

Self-selection is probably one of the major issue economists have to deal with when
trying to measure causal effects such as, among others, wage returns to education, mi-
gration and occupation wage premia. The seminal Roy’s model (1951) of occupational
choice can be seen as an extreme setting of self-selection, where agents choose between
two sectors by maximizing their wage. The idea underlying this model has been very
influential in the analysis of choices of participation to the labor market (Heckman,
1974), union versus nonunion status (Lee, 1978, Robinson & Tomes, 1984), public ver-
sus private sector (Dustmann & van Soest, 1998), college attendance (Willis & Rosen,
1979), migration (Borjas, 1987), training program participation (Ashenfelter & Card,
1985, Ham & LaLonde, 1996) as well as occupation (Dolton et al., 1989).

The standard Roy model, is, however, restrictive in at least two dimensions. First, non-
pecuniary aspects matter much in general. For instance, in the context of educational
choice, it is most often assumed that individuals consider not only the investment value
of schooling, which is related to wage returns, but also the non-pecuniary consumption
value of schooling, which relates to preferences and schooling ability. Recent empir-
ical evidence suggests that these non-pecuniary factors are indeed a key determinant
of schooling decisions (see, e.g., Carneiro et al., 2003, Arcidiacono, 2004, and Beffy
et al., 2012). Non-pecuniary aspects such as working conditions may also matter when
choosing an occupation. Similarly, migration decisions are likely to be driven both by
monetary returns and the psychic costs associated with the decision to migrate (see,
e.g., Bayer et al., 2011). Second, as emphasized by a recent stream of the literature
on schooling choices (see Cunha & Heckman, 2007, for a survey), agents most often do
not anticipate perfectly their potential earnings in each sector at the moment of their
decision. Because of this ex ante uncertainty, their decision depends on expectations of
these potential earnings rather than on their true values.

This paper focuses on the identification of the non-pecuniary factors in an extended
Roy model including these two aspects.1 The model we consider in the paper includes
a non-pecuniary component which is allowed to vary across individuals according to
observed covariates. Namely, denoting by Yd the potential earnings in sector d ∈ {0, 1}
(and by D the corresponding random variable), I the information set of the agent at
the time of the choice and G(X) the non-pecuniary component, we consider throughout

1The seminal work by Heckman & Honoré (1990) examines the identification of the standard Roy
model (see Buera, 2006, for an extension to non-separable functional forms for the potential outcomes).
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the paper a selection equation of the form:

D = 1{E(Y1|I) > E(Y0|I) +G(X)}

While much emphasis has been put in the literature on the identification of the distri-
bution of the potential earnings (Y0, Y1) in the presence of endogenous selection, still
relatively little attention has been geared towards the selection process itself. However,
as put forward by Cunha & Heckman (2007), providing evidence on the structural
determinants of sectoral choice, which correspond to what agents act on, is of clear
interest. In particular, identifying the non-pecuniary factors is key to disentangle the
relative importance of monetary incentives versus preferences in the context of sorting
across sectors.

By making the most of the structure of the selection process, we show that this non-
pecuniary component is point identified from the knowledge of the covariate effects on
earnings, as soon as one covariate is continuous. When all covariates are discrete, our
strategy can be naturally adapted to yield informative bounds. We then propose two
alternative strategies for identifying the covariate effects on sector-specific earnings.
The first one is based on exclusion restrictions. It requires either a “standard” instru-
ment, i.e. a variable affecting the selection probability but not the potential earnings,
or sector-specific variables a la Heckman & Sedlacek (1985, 1990). The second strategy
builds on an argument at infinity for the potential outcomes, relying on a result from
a companion paper (D’Haultfoeuille & Maurel, 2012). This latter approach does not
require any exclusion restriction, nor any large support on the covariates. Taken to-
gether, these results imply that the non-pecuniary component can be identified without
any exclusion restriction nor large support condition on the covariates. This conclu-
sion contrasts sharply with the identification results for generalized Roy models, which
allow for unobserved determinants of the non-pecuniary component. As stressed by
French & Taber (2011), identification of this more general class of models hinges on the
availability of exclusion restrictions and large support regressors. Overall, this is a key
advantage of our model relative to the generalized Roy specification (see Heckman &
Vytlacil, 2007 and French & Taber, 2011). Importantly, we also provide some evidence
suggesting that, in the case where the data is actually generated from a generalized
Roy model, the misspecification bias on the non-pecuniary component is likely to be
negligible relative to the finite sample estimation error.

As a byproduct of this analysis, we obtain informative bounds on the distribution of
the ex ante returns, which correspond to the monetary returns expected by the agent at
the time of the choice and are also equal, in our setting, to marginal treatment effects
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evaluated at certain margins. We also provide support conditions under which these
bounds shrink to a point. In particular, standard average treatment effect parameters
are point identified if the probability of selection ranges from zero to one, a result in
line with that of Heckman & Vytlacil (2005) in the case of local instrumental variable
strategies. Noteworthy, unlike Carneiro et al. (2003) and Cunha & Heckman (2007)
who impose less structure on the selection equation, the ex ante returns are identified
without any exclusion restriction. To the extent that convincing exclusion restrictions
may in practice be hard to come by, we view this as a clear benefit from using our
framework.

In a recent article investigating the identification of an extended Roy model with a focus
on non-pecuniary factors, Bayer et al. (2011) also propose a strategy which does not
require any exclusion restriction nor large support condition. However, they specify
an extended Roy model which does not account for ex ante uncertainty on the out-
comes and restrict the alternative-specific non-pecuniary factors to be constant across
individuals. Their model also differs from ours in that they consider a setting with po-
tentially more than two sectors, so that our framework does not nest their model. They
show that the non-pecuniary factors as well as the unconditional wage distributions are
identified provided that the distribution of monetary returns has a finite lower bound.
Although appealing in that neither exclusion restrictions nor strong support conditions
are required, the finite lower bound condition may be restrictive and the strategy hard
to apply in practice, notably when using log wages which do not have a natural lower
bound, as for instance in Willis & Rosen (1979) and in our application.2

Apart from identification, we propose a three-stage semiparametric estimation proce-
dure under an index restriction on the effects of covariates. The first two stages allow
us to estimate the covariate effects on potential earnings and correspond to Newey’s
method (2009) for estimating semiparametric selection models. The originality of the
proposed estimation procedure lies in its third stage, which is devoted to the non-
pecuniary component. This stage simply amounts to estimating a linear instrumental
model. The difference with a standard IV approach is that both the dependent variable
and one of the regressors have to be estimated, this involving in particular a nonpara-
metric regression on generated covariates. We show that the corresponding estimator
is root-n consistent and asymptotically normal.

Eventually, we apply our estimation procedure to the context of higher education atten-
2Bayer et al. (2011) alternatively prove identification assuming independence between the potential

wages. We do not make this assumption in the paper.
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dance decisions in France over the nineties. We estimate semiparametrically a model a
la Willis & Rosen (1979), which is extended to account for non-pecuniary factors driving
the attendance decision. We use respectively the local average incomes for high school
and higher education graduates as sector-specific regressors, this yielding identification
of the covariate effects on earnings. As could be expected, we cannot reject (at the 10%
level) the hypothesis that the local average income for high school graduates only affects
the probability of attendance through the ex ante returns to higher education. This
allows us to apply a constrained version of our estimator, leading to substantial gains of
precision. Consistent with the recent evidence on this question, our results suggest that
non-pecuniary factors are a key determinant of the decision to attend higher education.
We find in particular that 10% of the individuals attending higher education choose to
do so in spite of negative ex ante monetary returns to education. Besides, it follows
from our estimates that the higher education attendance rate would fall from 83.1%
to 72% if non-pecuniary factors did not exist. This decrease is eight time larger than
the one associated with a 10% permanent decrease in labor market earnings of higher
education attendees.

The remainder of the paper is organized as follows. Section 2 presents the extended Roy
model which is considered throughout the paper, derives our key identification results
for the non-pecuniary component and the distribution of the ex ante returns before
discussing the identification of the covariate effects on earnings. Section 3 develops a
semiparametric estimation procedure for this model, and proves the root-n consistency
and asymptotic normality of the proposed estimators. Section 4 applies the preceding
estimators to investigate the influence of non-pecuniary factors on higher education
attendance decision in France. Finally, Section 5 concludes. The online appendix
collects Monte Carlo simulations, the proofs of our results as well as additional details
on the application.

2 Identification

2.1 The setting

We consider an extension of the Roy model which is obtained by including ex ante
uncertainty as well as non-pecuniary factors in the seminal Roy’s model (1951) of oc-
cupational choice. Suppose that there are two sectors 0 and 1 in the economy, and let
Yk, k ∈ {0, 1}, denote the individual’s potential earnings in sector k. These earnings
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are not perfectly observed by the individual at the time of her decision. Instead, she can
only compute the expectation E(Yk|X, η0, η1), where X ∈ Rp are covariates observed
by the econometrician and (η0, η1) are sector-specific productivity terms known by the
agent at the time of the choice but unobserved by the econometrician. We maintain
the following assumption throughout the paper.

Assumption 2.1 (Additive decomposition) We have, for k ∈ {0, 1}, E(Yk|X, η0, η1) =
E(Yk|X, ηk) = ψk(X) + ηk. Moreover, X ⊥⊥ (η0, η1).

The independence assumption (X ⊥⊥ (η0, η1)) is commonly made when studying sample
selection models (see, e.g., Powell, 1994) or Roy models (see, e.g., Heckman & Honoré,
1990, for the standard Roy model and French & Taber, 2011, for generalized Roy
models). We shall discuss further in the paper how this assumption could be weakened.

We let hereafter νk = Yk−E(Yk|X, η0, η1) denote the unexpected shock on Yk and εk =
ηk + νk denote the sector-specific residual.3 Noteworthy, apart from the independence
assumption, we do not impose any restriction on (η0, η1, ν0, ν1), thus departing from,
e.g., Carneiro et al. (2003) who posit a factor structure on the unobservables. Such a
restriction is useful to identify the joint distribution of (η0, η1, ν0, ν1), and thus to test
for comparative advantage or to assess the importance of unobserved heterogeneity (see
Cunha & Heckman, 2007). We do not consider these issues here.

Unlike Roy’s original model, we do not suppose that the sectoral choice is based only
on income maximization. Instead, we suppose that each individual chooses to enter
the sector which yields the highest expected utility, with the expected utility in sector
k writing as Uk = E(Yk|X, η0, η1) + Gk(X). Uk is assumed to be given by the sum
of sector-specific expected earnings E(Yk|X, η0, η1) and the non-pecuniary component
associated with sector k, Gk(X), which is supposed to depend on the covariates X.
Assuming additive separability between the expected earnings and the non-pecuniary
component of utility is standard for the generalizations of the Roy model considered in
the literature.4 This separability assumption, which is required to obtain an additive
separable form between X and η∆ in the selection index, is key for our identification
strategy.5 Along with the covariates X, the econometrician observes the chosen sector

3Part of the residual νk may correspond to a measurement error rather than an unexpected shock.
We use the latter interpretation throughout the paper for convenience of exposition only.

4Note that −Gk(X) can be seen as a cost of entry into sector k. This interpretation is put forward
in the treatment effect literature relying on generalized Roy models.

5This echoes the fact that additive separability in the selection index is crucial for the identification
results obtained in the Marginal Treatment Effects literature (see, e.g., Heckman & Vytlacil,2005).
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D, which satisfies

D = 1{U1 > U0}

= 1{η∆ > ψ0(X)− ψ1(X) +G(X)}, (2.1)

where G(X) = (G0 − G1)(X) and η∆ = η1 − η0. Finally, the econometrician also
observes the earnings in the chosen sector, that is

Y = DY1 + (1−D)Y0.

This model is known in the literature as the extended Roy model, whose identification
is also considered, in a version without ex ante uncertainty, by Heckman & Vytlacil
(2007). Bayer et al. (2011) examine the identification of an extended Roy model without
ex ante uncertainty as well, which allows for more than two sectors and includes a non-
pecuniary intercept for each sector. In a recent paper, Fox & Gandhi (2011) extend
this model by allowing for random functions in the selection equation.6 The model
presented above can be applied to various economic settings, including sectoral choice
in the labor market, immigration or higher education attendance decisions (see our
application in Section 5). A central contribution of this paper is to show that, by
making the most of the extended Roy structure, the identification of the covariate
effects on earnings directly entails the identification of the non-pecuniary component. In
particular, unlike in Heckman & Vytlacil (2007) and Fox & Gandhi (2011), no exclusion
restriction between G and (ψ0, ψ1) is needed.

2.2 Identification of the non-pecuniary component

Since our main contribution relates to the identification of the non-pecuniary com-
ponent, we first discuss this issue, and suppose for now that the covariate effects on
earnings (ψ0, ψ1) are known. Discussion of the identification of (ψ0, ψ1) is deferred to
Subsection 2.4.7 Our identification strategy for the non-pecuniary component fully re-
lies on the detailed structure of the model, and in particular on the link between the
residuals in the outcome equations and the one in the selection equation. We first sup-
pose that conditional on the other components of X, at least one component Xj, say

6However, as is the case for the model we consider, Fox & Gandhi (2011) rule out the existence of
additive errors for the non-pecuniary components entering the selection model.

7What we mean by identification throughout the paper is that these functions are uniquely defined
almost everywhere by the model and the data generating process. “Almost everywhere” can be replaced
by “everywhere” under for instance continuity conditions.
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X1, is continuous, and we let X = (X1, X−1) (and we let similarly x = (x1, x−1)). We
also impose a mild regularity condition on T = ψ0 − ψ1, G and the error terms of the
outcome equation. Assumption 2.3 below is a technical condition which is usual in Roy
or competing risks models (see, e.g., Heckman & Honoré, 1990, or Lee, 2006).

Assumption 2.2 For all x−1 in the support of X−1, the distribution of X1 conditional
on X−1 = x−1 is continuous and T (., x−1) and G(., x−1) are differentiable on the support
of X1 conditional on X−1.

Assumption 2.3 (Restrictions on the errors, 1) E(|εk|) < ∞ for k ∈ {0, 1}. The
distribution of η∆ admits a continuous density fη∆ with respect to the Lebesgue measure
and for all u ∈ R, fη∆(u) > 0.

We start from the following observations:

E[Dη∆|X] = E [1{η∆ ≥ T (X) +G(X)}η∆|X] =
∫ ∞
T (X)+G(X)

ufη∆(u)du, (2.2)

E[D|X] =
∫ ∞
T (X)+G(X)

fη∆(u)du. (2.3)

By the fundamental theorem of calculus and Assumptions 2.2-2.3, the functions q0(x) =
E(D|X = x) and E[Dη∆|X = x] are continuously differentiable with respect to x1, and

∂E[Dη∆|X = x]
∂x1

= (T (x) +G(x)) ∂q0

∂x1
(x). (2.4)

for almost all x−1 and all x1 in the support of X1 conditional on X−1 = x−1. Because T
and q0 are identified, this equation shows that, provided that ∂q0/∂x1(x) 6= 0, identifi-
cation of G(x) amounts to recovering ∂E[Dη∆|X = x]/∂x1. The key idea, for that pur-
pose, is to relate this term with the residual ε of the (realized) outcome equation. Ob-
serve that by definition of νi and the law of iterated expectations, E(νk|D = k,X) = 0.
As a result, letting ε = Dε1 + (1−D)ε0, we get

E(ε|X) = E[Dε1 + (1−D)ε0|X]

= E[Dη1 + (1−D)η0|X]

= E [Dη∆|X] + E[η0]. (2.5)

Thus, letting g0(x) = E(ε|X = x), we obtain

∂g0

∂x1
(x) = (T (x) +G(x)) ∂q0

∂x1
(x). (2.6)

Since ε = Y −ψD(X) is identified (where we let ψD = Dψ1 + (1−D)ψ0), g0 and q0 are
identified and we can use Equation (2.6) to recover G. The only exception is actually

8



when ∂q0
∂x1

is identically equal to zero, a case which is ruled out by Assumptions 2.3 and
2.4 below. Theorem 2.1 shows that, under these conditions, G is point identified.8

Assumption 2.4 For all x−1 in the support of X−1, the set {x1 : ∂(T+G)
∂x1

(x1, x−1) 6= 0}
is not empty.

Theorem 2.1 Suppose that T is identified and Assumptions 2.1-2.4 hold. Then G is
identified.

The independence condition between X and (η0, η1) plays an important role in the
derivation above. However, this assumption could be weakened to the conditional
independence condition X1 ⊥⊥ (η0, η1)|X−1, without affecting the identification result.
We maintain the stronger independence assumption here for the sake of notational
simplicity.

Now consider the case where no component of X is continuous, so that X has a discrete
distribution. Suppose that it takes M < ∞ values x1, ..., xM . Then one cannot take
the derivative of g0 and q0 anymore. However, the strategy above can be adapted
to yield bounds on G, replacing derivatives with finite differences. First, note that
P (D = 0|X = x) = Fη∆(T (x) + G(x)), with Fη∆ denoting the cumulative distribution
function of η∆. This equality implies that we can sort the xi’s so that T (x1) +G(x1) <
... < T (xM) + G(xM).9 This provides a first set of inequalities on (G(x1), ..., G(xM)).
Besides, letting i < j, we have,

j−1∑
k=i

[T (xk+1) +G(xk+1)] [q0(xk+1)− q0(xk)]

≤ g0(xj)− g0(xi) = −
∫ T (xj)+G(xj)

T (xi)+G(xi)
ufη∆(u)du

≤
j−1∑
k=i

[T (xk) +G(xk)] [q0(xk+1)− q0(xk)] .

These inequalities provide supplementary conditions for (G(x1), ..., G(xM)). Note that
we only get an upper bound for G(x1) and a lower bound for G(xM), but both for
G(x2), ..., G(xM−1).

8If Assumption 2.4 fails to hold, ∂G
∂x1

is still identified (but not G), as it is equal to − ∂T
∂x1

in this
case. Besides, since Assumption 2.4 implies that ∂q0

∂x1
is not identically equal to zero, this restriction

can be tested in the data.
9This is without loss of generality. In case of ties between T (xi) + G(xi) and T (xi+1) + G(xi+1),

one may remove xi+1 from the set of x’s. Then the bounds on G(xi+1) follow directly from those on
G(xi).
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When deriving our estimation procedure in Section 3, consistent with the framework
of our application, we will maintain the assumptions ensuring that the non-pecuniary
component G is point identified. We leave in particular the analysis of set-estimation
of G for further research.

2.3 Distribution of ex ante returns

We now turn to the identification of the distribution of the ex ante returns, ∆ = E(Y1−
Y0|X, η0, η1). The ex ante return is meaningful since it corresponds to what agents act on
(see Cunha & Heckman, 2007). Besides, it corresponds to the ex post return if (i) agents
perfectly observe or anticipate their potential outcomes (in which case ν0 = ν1 = 0) or if
(ii) the idiosyncratic shocks are equal across sectors (ν0 = ν1), as postulated in standard
regression models. Although we have remained completely agnostic on the information
set of the agents, it is possible to point or partially identify the distribution of ∆. The
intuition behind is similar to that underlying the identification of G. ∆ depends on η∆,
which is also the residual of the selection equation. Thus, the observed choice of sector
directly provides information on these ex ante returns. To see this, first recall that

P (D = 0|X) = Fη∆(T (X) +G(X)).

This shows that Fη∆ is identified over the support of T (X)+G(X). Now, the cumulative
distribution function of ∆ (F∆) satisfies

F∆(u) = E [P (η∆ ≤ u+ T (X)|X)]

= E [Fη∆(u+ T (X))] .

Hence, we can identify F∆(u) for all u such that the support of u + T (X) is included
in the support of T (X) +G(X). In particular, the complete distribution of the ex ante
returns ∆ is identified as soon as T (X) +G(X) has a large support. In that case, one
can recover standard treatment effect parameters such as the average treatment effect
or the average treatment on the treated (i.e. for the individuals such that D = 1 here),
by integrating the ex ante returns over the distribution of η∆. Even if this large support
condition fails, it is still possible to point identify a subset of the distribution of the ex
ante returns, and bound F∆(u) for the rest of the distribution.10 Indeed, letting [M,M ]

10Heckman & Vytlacil (2007) also obtain bounds on the average returns without assuming large
support on the selection probability, in the context of an extended Roy model. Their strategy hinges
on an exclusion restriction between the selection equation and the potential outcomes.

10



(resp. [P , P ]) denote the support of T (X) +G(X) (resp. of P (D = 0|X)), we have, by
the monotonicity of Fη∆ , F∆(u) ∈ [F∆(u), F∆(u)], where

F∆(u) = E
(
Fη∆ (u+ T (X))1{u+ T (X) ∈ [M,M ]}

)
+P × P (u+ T (X) > M) + 0× P (u+ T (X) ≤M), (2.7)

F∆(u) = E
(
Fη∆ (u+ T (X))1{u+ T (X) ∈ [M,M ]}

)
+1× P (u+ T (X) > M) + P × P (u+ T (X) ≤M). (2.8)

The distribution of the ex ante treatment effect on the treated can be identified in a
similar way, with

F∆|D=1(u) = E{(Fη∆ (u+ T (X))− P (D = 0|X))× 1{G(X) ≤ u}}
P (D = 1) . (2.9)

In our setting, the ex ante return ∆ is closely related to the marginal treatment effect
∆MTE (Heckman & Vytlacil (2005)). Indeed, denoting by Sη∆ the survival function of
η∆, we have, under Assumption 2.3,

∆MTE(x, u) = E(Y1 − Y0|X = x, Sη∆(η∆) = u)

= ψ1(x)− ψ0(x) + S−1
η∆

(u)

Thus, ∆ = (ψ1 − ψ0)(X) + η∆ coincides with ∆MTE(X,Sη∆(η∆)). Besides, one is able
to identify ∆MTE(x, u) for all u in the support of P (D = 1|X), since in that case there
exists x̃ in the support of X such that S−1

η∆
(u) = (ψ0 − ψ1 +G)(x̃).

2.4 Identification of the covariate effects on earnings

We now relax the assumption that the covariate effects on earnings are known, and dis-
cuss in this subsection two alternative strategies to identify (ψ0, ψ1). In both strategies,
we impose the following normalization, which is innocuous since adding a constant to
ψk and subtracting it to ηk does not modify the model.

Assumption 2.5 (Normalization) There exists x∗ in the support of X such that ψ0(x∗) =
ψ1(x∗) = 0.

The first and standard approach we focus on is based on exclusion restrictions, in the
same spirit as, e.g., Das et al. (2003). The second hinges on a nonstandard identification
at infinity, with the advantage of not requiring any exclusion restriction. The first
strategy relies on the following assumption.
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Assumption 2.6 (Exclusion restrictions) ψ0 (resp. ψ1) depends only on X̃0 ⊂ X

(resp. on X̃1 ⊂ X). Moreover, X̃0 (resp. X̃1) and P (D = 1|X) are measurably
separated, that is, any function of X̃0 (resp. of X̃1) almost surely equal to a function of
P (D = 1|X) is almost surely constant.

The first part of Assumption 2.6 covers two rather different situations. The first one is
whenX = (X̃0, Z) and X̃1 = X̃0. This corresponds to the standard instrumental setting
in sample selection models, where the instrument Z affects the probability of selection
but not the potential outcomes. In our framework, Z would be a determinant of the
non-pecuniary component but not of the potential earnings. The second situation cor-
responds to the case where X = (X0, X1, Xc), X̃0 = (X0, Xc) and X̃1 = (X1, Xc). This
occurs in the presence of sector-specific regressors. In this case, no exclusion restriction
between the non-pecuniary factors and the potential earnings is required. This kind of
exclusion restrictions was previously used in particular by Heckman & Sedlacek (1985,
1990) when estimating parametrically a multiple-sector Roy model of self-selection in
the labor market. We also use sector-specific regressors in our application.

Intuitively, the measurable separation requirement11 of Assumption 2.6 ensures that
ψ0(X) (or ψ1(X)) and P (D = 1|X) can vary in a sufficiently independent way. This
assumption, also made by Das et al. (2003), is weak when, considering the two cases
above, Z or (X0, X1) is continuous (see Florens et al., 2008, for sufficient conditions
in this case). However, it may not hold when Z (or (X0, X1)) is discrete. As an
illustration, consider a standard instrumental setting where X̃0 and Z are binary and
let Pij = P (D = 1|X̃0 = i, Z = j) for i, j ∈ {0, 1}. Then, provided that P10 and
P11 do not belong to {P00, P01}, there exists a function h such that h(P00) = h(P01)
and h(P10) = h(P11) but h(P00) 6= h(P10). In this case, the function g defined by
g(0) = h(P00) and g(1) = h(P10) is not constant. As a result, X̃0 and P (D = 1|X) are
not measurably separated.

Given the preceding exclusion restrictions and the additive decomposition assumption,
it is possible to identify ψ0 and ψ1 up to location parameters. Then full identification
stems from the normalization of Assumption 2.5. Similarly to Das et al. (2003), Propo-
sition 2.2 below does not provide any result on the location parameters. In general,
such parameters are identified only at infinity under a large support condition, i.e. when
P (D = 1|X) can be arbitrarily close to zero and one (see Heckman, 1990).

Proposition 2.2 Suppose that Assumptions 2.1, 2.3, 2.5 and 2.6 hold. Then ψ0 and
ψ1 are identified.

11We adopt here the terminology of Florens et al. (2008) (see their Assumption A4).
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Proposition 2.2 is similar to Theorem 2.1 of Das et al. (2003), but identification is
shown here without assuming that the regressors are continuous nor that ψ0 and ψ1

are continuously differentiable. The idea behind the proof of Proposition 2.2 is that
E(εk|D = k,X) only depends on P (D = 1|X). We can then rely on the measurable
separability condition of Assumption 2.6 to prove the result. Because identification
is based on P (D = 1|X) only, the structure imposed on the selection equation is
not needed at this stage, whereas, as stressed above, it is crucial to identify the non-
pecuniary component and the distribution of the ex ante returns. Finally, following
Das et al. (2003), one could actually relax the independence condition X ⊥⊥ (η0, η1)
and allow for endogenous covariates X while still identifying ψ0 and ψ1 up to location.
However, it is not clear in this case how to recover the non-pecuniary component G.

We now also show, using a result from a companion paper (D’Haultfoeuille & Maurel,
2012), that ψ0 and ψ1 can be identified at the limit without any exclusion restriction,
under the following restrictions on the error terms.

Assumption 2.7 (Restrictions on the errors, 2) (i) X ⊥⊥ (ε0, ε1), (ii) for k ∈ {0, 1},
the supremum of the support of εk is infinite and there exists bk > 0 such that E(exp(bkεk)) <
∞, (iii) for all u ∈ R,

lim
v→∞

P (ηk − η1−k > u|ηk + νk = v) = 1, k ∈ {0, 1}.

The first restriction reinforces the condition that X ⊥⊥ (η0, η1), by ruling out in par-
ticular heteroskedasticity of the shocks (ν0, ν1). The second restriction is a light tail
condition, which is in practice fairly mild. If we consider the example of log-wages
Yk = lnWk, the assumption is satisfied provided that there exists bk > 0 such that
E(W bk

k ) <∞. Hence, it holds even if wages have fat tails, Pareto-like for instance. The
last restriction can be interpreted as a moderate dependence condition between η0 and
η1, which is not very restrictive either. When (η0, η1, ν0, ν1) is gaussian for instance, one
can show that it is equivalent to cov(η0, η1) < min(V (η0), V (η1)). In particular, when
V (η0) = V (η1), this condition is automatically satisfied, except in the degenerate case
where η0 = η1.

Proposition 2.3 Suppose that Assumptions 2.1, 2.5 and 2.7 hold. Then ψ0 and ψ1

are identified.

This result does not follow from the typical identification at infinity strategy for sample
selection models, which relies on the fact that the selection probability tends to zero or
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one when one of the regressors takes arbitrarily large values. Rather, the intuition can
be described as follows. First, the moderate dependence restriction on (η0, η1), together
with the extended Roy structure of the selection equation, ensures that

lim
y→∞

P (D = k|X = x, Yk = y) = 1, for all x and k ∈ {0, 1}. (2.10)

In other words, individuals whose potential outcome in one sector tends to infinity will
choose this sector with a probability approaching one, whatever their observed charac-
teristics X = x. This is because these individuals will have, with a large probability, a
smaller potential outcome in the other sector, even though the latter may also be large
on average.

In turn, (2.10) implies that the right tails of the observed and potential outcomes are
similar. Formally, one can show that as y →∞,

lim
y→∞

P (Y ≥ y,D = k|X = x)
Sεk

(y − ψk(x)) = 1.

As a result,
lim
y→∞

P (Y ≥ y − ψk(x∗), D = k|X = x)
P (Y ≥ y − ψk(x), D = k|X = x∗) = 1.

It follows from the location normalization imposed in Assumption 2.5 (ψk(x∗) = 0) that

u = ψk(x)⇒ lim
y→∞

P (Y ≥ y,D = k|X = x)
P (Y ≥ y − u,D = k|X = x∗) = 1. (2.11)

Because the function y 7→ P (Y ≥ y,D = k|X = x) is identified for each x, ψk(x)
is identified provided that the converse of (2.11) also holds. The latter implication is
ensured by Assumption 2.7 (ii).

This type of identification at infinity is similar to the one used by Heckman & Honoré
(1989) and Abbring & van den Berg (2003) in the related competing risks model.
Nevertheless, their results cannot be used here because their strategies break down
when turning to extended Roy models.12 An appealing feature of Condition (2.10) is
that it is testable (see D’Haultfoeuille & Maurel, 2012). Besides, this identification
strategy does not rely on any support condition on X. In particular, it may be applied
even if X is discrete.13 On the other hand, estimators corresponding to this setting
have not been derived yet. We therefore restrict in the estimation part (Section 3) to
the case where exclusion restrictions are available.

12Lee (2006) and Lee & Lewbel (2012) obtain identification of competing risks models without using
arguments at the limit. Their strategy cannot be extended easily to extended Roy models either.

13If one of the covariates has large support, one can use alternatively the results of Lewbel (2007)
which also yield identification of the covariate effects on earnings without any instrument for selection.
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3 Semiparametric estimation

Although our identification results hold in a nonparametric setting, we focus here on
semiparametric estimation in order to provide root-n consistent and asymptotically
normal estimators of ψ0, ψ1 and G. More precisely, we consider a class of extended Roy
models with a linear index structure of the form:

Y0 = X ′β0 + ε0

Y1 = X ′β1 + ε1

D = 1{−δ0 +X ′(β1 − β0 − γ0) + η∆ > 0}.
(3.1)

Here, our normalization on ψ0(.) and ψ1(.) is that ψ0(0) = ψ1(0) = 0.14 In our setting,
the non-pecuniary component G(X) is of the form δ0 + X ′γ0. Let γ0j (resp. β0j, β1j)
denote the j-th component of γ0 (resp. β0, β1). We impose the following conditions.

Assumption 3.1 (Exclusion restrictions) There exists j1 and j2 such that β0j1 =
β1j2 = 0, γ0j1 6= β1j1 and γ0j2 6= −β0j2.

Assumption 3.2 (Regularity of X) The support of X is bounded and not contained
in a proper subset of Rp. For all x−1 in the support of X−1, the distribution of X1

conditional on X−1 = x−1 admits a continuously differentiable and positive density on
its support, which is a compact interval independent of x−1. Besides, β11−β01−γ01 6= 0.
Moreover, the support of X ′(β1 − β0 − γ0) is an interval. Finally, for all j, t 7→
E(Xj|X ′(β1 − β0 − γ0) = t) is continuously differentiable.

Assumption 3.3 (i.i.d. sample) We observe a sample (Yi, Xi, Di)1≤i≤n of i.i.d. copies
of (Y,X,D).

Assumption 3.1 corresponds, in this semiparametric framework, to Assumption 2.6.
The case where j1 = j2 corresponds to the standard instrumental variable setting of
sample selection models, while j1 6= j2 applies when some covariates are sector-specific.
Assumption 3.2 corresponds to Assumptions 2.2 and 2.4. It ensures that at least one
covariate is continuous and has a nonzero effect on D (because β11 − β01 − γ01 6= 0).
As shown in Theorem 2.1, this condition is sufficient to provide point identification of
G. We also require the support of X ′(β1 − β0 − γ0) to be an interval. This condition,
together with the requirement that the Xj are not colinear, is sufficient to point identify

14Thus, it may differ from Assumption 2.5 if zero does not belong to the support of X. Yet, this is
still without loss of generality since we do not constraint the expectations of ε0 and ε1 to be zero.
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the single index model on D (see, e.g., Horowitz, 1998) that corresponds to our first
step estimator described below.

Let us assume, without loss of generality, that β11 − β01 − γ01 is strictly positive. We
define ζ0 = (β1− β0− γ0)/(β11− β01− γ01) (so that ζ01 = 1) and η̃∆ = (η∆− δ0)/(β11−
β01 − γ01). We propose a three-stage estimation procedure of the model, where we
estimate first ζ0, then (β0, β1) and finally (δ0, γ0). The first and second stages of our
procedure are not new, and rely on the fact that we can rewrite the model in the
following reduced form:

D = 1{X ′ζ0 + η̃∆ > 0}

Yk = X ′βk + εk, k ∈ {0, 1},
(3.2)

where Yk is observed when D = k, η̃∆ is independent of X and E(εk|D = k,X) only
depends on X ′ζ0.15 Besides, by Assumption 3.1, Xj1 (resp. Xj2) affects selection since
ζ0j1 6= 0 (resp. ζ0j2 6= 0) but not the potential earnings Y0 (resp. Y1). Hence, Equations
(3.2) correspond to Newey (2009)’s selection model and we follow his approach here.
First, we estimate ζ0 by a single index estimator ζ̂, for which we suppose Assumption
3.4 below to be satisfied. This is the case of many semiparametric estimators, such as
the one of Klein & Spady (1993) or Ichimura (1993). Secondly, we estimate β0 and β1

by series estimator, and we suppose that they satisfy Assumption 3.5. This condition
can be obtained under more primitive assumptions (see Newey, 2009, p. S227).

Assumption 3.4 (Regularity of the first stage estimator) There exists (χi)1≤i≤n, i.i.d.
random variables such that E(χi) = 0, E(χiχ′i) exists and is non singular and

ζ̂ − ζ0 = 1
n

n∑
i=1

χi + oP

(
1√
n

)
.

Assumption 3.5 (Regularity of the second stage estimators) Let k ∈ {0, 1}, there
exists (χki)1≤i≤n, i.i.d. random variables such that E(χki) = 0, E(χkiχ′ki) exists and is
non singular and

β̂k − βk = 1
n

n∑
i=1

χki + oP

(
1√
n

)
.

15Indeed, εk = ηk +νk with E(νk|D = k,X) = 0 by definition and E(η1|D = 1, X = x) = E(η1|η̃∆ >

−x′ζ0) (and similarly for k = 0). Note that in general, εk is not independent of X because νk is not.
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The originality of the estimation procedure lies in its third stage, which is devoted to
the estimation of (δ0, γ0). Actually, it suffices to estimate δ0 and α0 ≡ β01 − β11 + γ01,
since γ0 = β1− β0 +α0ζ0. Equations (2.2), (2.3) and (2.5) applied to the current index
model show that E(D|X) and E(ε|X) only depend on U ≡ X ′ζ0. Letting, with a slight
abuse of notation, q0(u) = E(D|U = u) and g0(u) = E(ε|U = u), we have, similarly to
Equation (2.6),

g′0(U) = q′0(U)(δ0 + α0U). (3.3)

Integrating (3.3) between u0 in the support of U and U , we obtain:

g0(U) = λ̃0 + q0(U)δ0 +
[∫ U

u0
uq′0(u)du

]
α0,

where λ̃0 is the constant of integration. An integration by part yields

g0(U) = λ0 + q0(U)δ0 +
[
q0(U)U −

∫ U

u0
q0(u)du

]
α0, (3.4)

where λ0 = λ̃0 − u0q0(u0)α0. In other terms,

ε = λ0 +Dδ0 +
[
DU −

∫ U

u0
q0(u)du

]
α0 + ξ, E(ξ|X) = E(ξ|U) = 0. (3.5)

Let θ0 = (λ0, δ0, α0)′, V = DU −
∫ U
u0
q0(u)du and W = (1, D, V )′, so that ε = W ′θ0 +

ξ. The regressors D and V are endogenous since selection D depends both on U

and η̃∆. We therefore use an IV estimator of θ0 with functions of the index U as
instruments for D and V . To avoid boundary effects, we include some trimming by
considering feasible versions of the instruments Z = 1{X ∈ X}h(U), where h(U) =
(1, h1(U), h2(U))′ ∈ R3 and X is a set included in the support of X and such that
{x′ζ0, x ∈ X} is a closed interval strictly included in the interior of the support of U .16

Then θ0 = E(ZW ′)−1E(Zε), and we estimate it by

θ̂ =
(

1
n

n∑
i=1

ẐiŴ
′
i

)−1 ( 1
n

n∑
i=1

Ẑiε̂i

)
,

where ε̂i = Yi −X ′i(Diβ̂1 + (1−Di)β̂0), Ŵi = (1, Di, V̂i)′ and

V̂i = DiÛi −
∫ Ûi

u0
q̂(u, ζ̂)du,

Ẑi = 1{Xi ∈ X}h
(
Ûi
)
.

Finally, Ûi = X ′i ζ̂ and

q̂(u, ζ) =
∑n
i=1DiK

(
u−X′

iζ

hn

)
∑n
i=1K

(
u−X′

iζ

hn

) . (3.6)

16This trimming procedure ensures uniform consistency of kernel estimators over {x′ζ0, x ∈ X}.
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where K(.) is a kernel function and hn the bandwidth parameter. The result on the
third step estimator θ̂ relies on the following conditions on h(.) and K(.).

Assumption 3.6 (Restrictions on the kernel) K(.) is nonnegative, zero outside a com-
pact set, continuously twice differentiable on this compact set and satisfies

∫
K(v)dv = 1

and
∫
vK(v)dv = 0. Moreover, K(.) and K ′(.) are zero on the boundary of this compact

set.

Assumption 3.7 (Regular instruments) hk(.) is twice differentiable and |h′′k| is bounded
for k ∈ {1, 2}.

Assumption 3.6 is satisfied for instance by the quartic kernel K(v) = (15/16)(1 −
v2)21[−1,1](v). Assumption 3.7 is imposed to ensure that Ẑi − Zi is small for large
sample sizes, and behaves regularly.

Theorem 3.1 Suppose that nh6
n → ∞, nh8

n → 0 and that Assumptions 2.1, 2.3, 2.4,
3.1-3.7 hold. Then

√
n(θ̂ − θ0) d−→ N

(
0, E(ZW ′)−1V (Zξ + Ω11 + Ω21)E(WZ ′)−1

)
,

where Ω11 is defined by Equation (3.7) in the online appendix and

Ω21 = α0Z(1− F0(U))1{U ≥ u0}(D − q0(U))/f0(U),

F0(.) and f0(.) denoting respectively the cumulative distribution function and the density
of U .

Theorem 3.1 establishes the root-n consistency and asymptotic normality of θ̂. We
prove the result by first remarking that θ̂ is a two-step GMM estimator with a non-
parametric first step estimator (q̂). We then follow Newey & McFadden (1994)’s outline
for establishing asymptotic normality. Some differences arise however because q̂ also
depends on the estimator ζ̂. Theorem 3.1 also shows that the asymptotic variance of
θ̂ depends on the three variables Ω11, Ω21 and Zξ. The first one corresponds to the
contribution of the estimators of the first and second steps. The second one arises
because of the nonparametric estimation of q0(.) in V̂i. The third one corresponds to
the moment estimation of the linear instrumental model (3.5) in the last step.

As the proof of the theorem shows, θ̂ can be linearized. Thus, by Assumptions 3.4 and
3.5, the estimator of γ0, γ̂ = β̂1 − β̂0 + α̂ζ̂, is also root-n consistent and asymptotically
normal.
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Although δ0 and γ0 are identified without any exclusion restriction, imposing restrictions
on γ0 may still be useful to improve the accuracy of the estimators. Suppose that, e.g.,
X1 is excluded from the non-pecuniary component, so that γ01 = 0. In this case, we
get from the second stage α0 = β01− β11. Hence, γ0 = β1− β0 + α0ζ0 can be estimated
using only the first two steps, resulting in general in accuracy gains (see our Monte
Carlo simulations and application below for evidence on this point). The third stage
then boils down to estimating δ0 only, through the instrumental linear model

ε−
[
DU −

∫ U

u0
q0(u)du

]
α0 = λ0 +Dδ0 + ξ, E(ξ|X) = E(ξ|U) = 0, (3.7)

where α0 in the left hand side can now be estimated by β̂01 − β̂11. One can show that
the corresponding estimator is also asymptotically normal.17

Once δ0 and α0 have been estimated, we can also estimate bounds on the distribution
of the ex ante returns ∆, namely F∆(u) = E[Fη∆(u+X ′(β0 − β1))]. For that purpose,
remark that, by (3.1),

P (D = 0|X) = Fη∆ (δ0 +X ′α0ζ0) .

Therefore, we can obtain an estimator F̂η∆(.) on [M̂, M̂ ], the estimated support of
δ0 +X ′α0ζ0, by regressing nonparametrically 1−D on the index δ̂+X ′α̂ζ̂. On [M̂,+∞)
(resp. (−∞, M̂ ]), we simply set estimate Fη∆(.) by [P̂ , 1] (resp. [0, P̂ ]), where P̂

(resp. P̂ ) is the supremum (resp. infimum) of F̂η∆(.) on [M̂, M̂ ]. Finally, we can
estimate F∆(u) and F∆(u) with the empirical analogs of (2.7) and (2.8). Bounds on
the distribution of the ex ante returns for the treated can be estimated similarly, using
(2.9).

4 Application to the decision to attend higher education

4.1 The model and data

In this section, we apply our method to estimate the relative importance of non-
pecuniary factors and monetary returns to education in the decision to attend higher
education in France. We consider here a generalization of the Willis & Rosen’s model
(1979) which accounts for the non-pecuniary consumption value of schooling, in a semi-
parametric setting. After completing secondary education, individuals decide either to

17The proof is very close to the one of Theorem 3.1 and is available from the authors upon request.
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enter directly the labor market with a high school degree (k = 0) or to attend higher
education (k = 1).18 They are supposed to make their decisionD ∈ {0, 1} by comparing
the expected utility Uk of each schooling alternative k, given by

Uk = E(Y ∗k |X, η0, η1) +Gk(X) = ψk(X) + ηk +Gk(X),

where Y ∗k and Gk(X) denote respectively the stream of log-earnings and the consump-
tion value associated with the schooling alternative k. As above, ηk is an individual
productivity term known by the individual at the time of her decision but unobserved
by the econometrician. Thus, the selection equation corresponds exactly to Equation
(2.1).

As opposed in particular to the U.S., tuition fees are very low in most of the French
higher education institutions (on average around 200 euros per year over the period of
interest). This suggests that G0 − G1, which would in principle also account for the
direct costs of post-secondary schooling, can be interpreted in this context as a truly
non-pecuniary component, including taste for schooling and preferences for future non-
wage job attributes (as those may depend on higher education attendance).

We use pooled data from the French Generation 1992 and Generation 1998 surveys
in order to estimate our schooling choice model. These surveys collect information
on individuals who left the French educational system in 1992 and 1998. They both
record educational and labor market histories over the first five years following the exit
from the educational system. The surveys also provide a set of individual covariates
used as controls in our estimation procedure. Our subsample of interest comprises
respondents having at least passed the national high school final examination. Because
the labor market participation rate for this subsample is above 90% over the period of
interest for both genders, we keep both males and females in our final sample. We drop
individuals who only worked as temporary workers or were out of the labor force during
the observation length, as we do not observe any wage for them. This finally leaves us
with a sample of 24,225 individuals.19 Working with many observations is especially
important for the semiparametric estimation procedure to perform well.

Apart from a set of common regressors, including high school track, age in 6th grade,
school leaving year, dummies for being born abroad (same for parents) and living in
the Paris region, gender, parental profession, we include sector-specific variables, by
supposing that the average local log-earnings of high school (resp. higher education)

18The French higher education system includes universities, which do not impose any entry selection,
as well as the Grandes Ecoles and specialized technical colleges, which are selective.

19Descriptives are reported in the online appendix.
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graduates affects ψ0(.) (resp. ψ1(.)) alone. These variables, computed from the French
Labor Force Surveys (1990-2000), are used as proxies for local labor market conditions
(at the level of the French departements, which roughly correspond to U.S. counties) for
high school and higher education graduates. Migration costs imply that labor market
conditions in the places where individuals live while studying are likely to be correlated
with the earnings perceived when entering the labor market.

As already mentioned, we only observe incomes during the first five years in the labor
market, so that we cannot compute the discounted streams of log-earnings Y ∗ = DY ∗1 +
(1 − D)Y ∗0 . To cope with this issue, we estimate a dynamic wage model with sector-
specific returns to experience. Even if we cannot recover Y ∗ with this model because
of uncertainty on future wages, we show in the online appendix that we can identify
a proxy Y satisfying E(Yk|X, η0, η1) = E(Y ∗k |X, η0, η1) (with Y = DY1 + (1 −D)Y0)).
The model may then be written in terms of Yk instead of Y ∗k , and our identification
strategy applies with Y instead of Y ∗.

We estimate the model relying on the three-stage semiparametric procedure detailed
in Section 3. Identification is secured here through the use of the average local log-
earnings of high school and higher education graduates as sector-specific regressors. We
use for the first step a mixture of probit (see Coppejans, 2001) with K1 = 3 mixture
components. The second step is performed with Newey (2009)’s series estimator, with
K2 = 9 approximating terms. We use for the last step the same specifications as in
the Monte Carlo simulations (see the online appendix for details). Finally, to estimate
he bounds on the distribution of the ex ante returns, we consider a kernel estimator of
Fη∆ with a gaussian kernel, and a bandwidth h̃n = 1.6σ(Û)n−1/5.

4.2 Results

We focus hereafter on the estimates of the non-pecuniary components and ex ante
returns. The first step estimates of (ζ, β0, β1) are discussed in the online appendix.
The first column of Table 1 below reports the parameter estimates relative to the non-
pecuniary component G which are obtained with the unconstrained specification. The
coefficients corresponding to the local average income of higher education and high
school graduates are both not significant at the 10% level. This supports the idea
that, as proxies for local labor market conditions, these variables have no clear reason
to enter the non-pecuniary factors and should therefore only affect the probability of
attendance through the ex ante returns. It also indicates that the data is consistent
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with a constrained specification where the coefficient related to the local average income
of high school graduates is set equal to zero.20 As the estimators are more accurate
when using an exclusion restriction on G, we focus on the constrained specification
hereafter.

Several patterns emerge from the constrained estimates of G displayed in the second
column of Table 1. The results suggest that individuals attending a general secondary
schooling track (namely L for Humanities, ES for Economics and Social Sciences and
S for Sciences), relative to a technical or vocational secondary schooling track, value
positively higher education attendance, with the related coefficients being significant at
the 1% level.21 This pattern is consistent with the fact that the courses which are given
in vocational secondary schooling tracks and, to a lesser extent, in technical tracks, are
much more oriented towards the labor market than they are in general tracks. The
positive effect of entering the labor market in 1998 probably reflects the enlargement of
access to higher education which took place in France during the nineties. Individuals
living in the Paris region also have a higher probability to attend higher education
through these non-pecuniary factors, reflecting the large supply of post-secondary in-
stitutions in this area. Parental profession, in particular that of the father, has also
a significant influence on the non-pecuniary determinants of the decision to attend
higher education. For instance, for a given ex ante return to higher education, indi-
viduals whose father is employed, relative to a white collar position, as an executive,
a tradesman or in an intermediate occupation have a higher propensity to enroll in
higher education. This pattern suggests that part of the intergenerational transmission
of human capital acts through non-pecuniary factors affecting the higher education at-
tendance decision. Interestingly also, for a given level of expected monetary returns,
males have a significantly higher probability of attending higher education (with a pa-
rameter significant at the 1% level), possibly reflecting higher educational aspirations
for males than for females. Age in 6th grade, which is used as a proxy for schooling
ability, also affects the attendance decision through non-pecuniary factors. Individuals
who were less than 10 when entering junior high school have for instance a significantly
higher probability to get some post-secondary education. These results may stem from
a positive correlation between schooling ability and taste (or motivation) for schooling.

20We choose to impose the nullity of the coefficient associated with the local average income of high
school graduates rather than the one of higher education graduates since (i) its point estimate in the
unconstrained setting is much smaller and (ii) the latter coefficient is close to the 10% significance
level.

21Recall that G = G0 − G1, so that a negative sign for a given coefficient of G implies a positive
valuation of higher education compared to high school graduation.
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Variable Unconstrained Constrained

Constant (δ0) -0.185 (0.174) -0.026 (0.155)
Local average income
Higher education graduates -0.026 (0.017) -0.014* (0.008)
High school graduates 0.01 (0.012) 0
Secondary schooling track
L -0.288*** (0.087) -0.142*** (0.054)
ES -0.336*** (0.097) -0.172*** (0.058)
S -0.349*** (0.097) -0.175*** (0.061)
Vocational 0.62** (0.248) 0.293* (0.164)
Technical Ref. Ref.
Born abroad -0.084** (0.033) -0.031 (0.021)
Father born abroad -0.034* (0.02) -0.005 (0.011)
Mother born abroad 0.003 (0.014) -0.009 (0.013)
Entering the labor market in 1998 (relative to 1992) -0.272*** (0.084) -0.12** (0.051)
Male -0.062*** (0.015) -0.038*** (0.009)
Father’s profession
Farmer -0.029 (0.02) -0.023 (0.017)
Tradesman -0.053*** (0.02) -0.025** (0.011)
Executive -0.105*** (0.034) -0.054** (0.022)
Intermediate occupation -0.071*** (0.025) -0.035*** (0.011)
Blue collar 0.000 (0.012) -0.004 (0.008)
Other -0.036** (0.015) -0.023** (0.011)
White collar Ref. Ref.
Mother’s profession
Farmer 0.091** (0.039) 0.057 (0.037)
Tradesman 0.021 (0.019) -0.003 (0.011)
Executive -0.056*** (0.02) -0.023* (0.014)
Intermediate occupation -0.018 (0.013) -0.019* (0.011)
Blue collar 0.076*** (0.027) 0.019* (0.01)
Other 0.012 (0.014) -0.01 (0.007)
White collar Ref. Ref.
Age in 6th grade
≤ 10 -0.103*** (0.038) -0.047** (0.024)
11 Ref. Ref.
≥ 12 0.108*** (0.041) 0.056** (0.026)
Paris region -0.082*** (0.025) -0.03** (0.012)
Vocational × ...
Entering the labor market in 1998 0.068** (0.029) 0.034 (0.024)
Male -0.02 (0.021) 0.003 (0.014)
Paris region 0.126*** (0.048) 0.059** (0.029)

Standard errors, presented in parentheses, were computed by bootstrap with 200 sample
replicates. Significance levels: ∗∗∗ (1%), ∗∗ (5%) and ∗ (10%).

Table 1: Determinants of non-pecuniary factors: parameter estimates.



Consistent with the results of the unconstrained specification, the coefficient related
to the local average income of higher education graduates is small, and here only sig-
nificant at the 10% level. Finally, an estimation of the non-pecuniary component of
each individual in the sample reveals that for 84% of them, this component is nega-
tive. Hence, we find, in line with Carneiro et al. (2003), that there is for most of the
individuals what could be referred to as a psychic gain of attending higher education.
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Figure 1: Distribution of the ex ante returns to higher education.

The estimated distributions of the ex ante returns to higher education are displayed in
Figure 1, for the whole sample and for the subsample of higher education attendees.
The streams of earnings were divided by 1,000 for scaling reasons, so that these returns
must be compared to values which range from 0.7 to 2. A first striking point is that
both distributions are point identified for most values. Differences between the upper
and lower bounds appear only for u ≥ 0.36, and still for these values the identifying
interval remains small until u ' 0.65. The upper bound of the distribution can be used
to compute a lower bound E on the average return to higher education E(Y1 − Y0).22

We obtain E ' 0.12, which is quite large since it is close to one standard deviation of
Y . We also observe a large heterogeneity on these returns, with a range on the ex ante
returns E(Y1 − Y0|X, η0, η1) which is similar to the one of Y . This substantial ex ante

22Indeed, an integration by part shows that

E(Y1 − Y0) =
∫ ∞
−∞

[1{u ≥ 0} − F∆(u)] du.

This integral can be bounded below by the corresponding integrals on F∆. Note that we cannot obtain
a finite upper bound on E(Y1 − Y0) here because limu→+∞ F̂∆(u) < 1.
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dispersion of the returns to higher education is in line with the conclusion of Cunha &
Heckman (2007, p. 887) on U.S. data.

As expected, the distribution of the ex ante returns is shifted towards the right for the
subsample of higher education attendees, with a close to 10% probability of having a
negative ex ante return, versus 28% for the whole sample. Hence, about 10% of the
individuals attending higher education choose to do so despite a negative ex ante return
to higher education, stressing the important role played by non-pecuniary factors in
this schooling decision. Along those lines, the probability of attending higher education
would fall by 11.1 percentage points (from the predicted access rate, equal to 83.1%, to
the probability of having a positive ex ante return, 72%) if non-pecuniary factors did
not exist. For comparison purposes, this decrease in higher education attendance rate
is notably eight times larger than the 1.4 point decrease which is found to be associated
with a 10% permanent decrease in labor market earnings of higher education attendees.

Quartile Ex ante return Non-pecuniary factors

25% -0.069 -0.430
50% 0.133 -0.326
75% 0.267 -0.191

Table 2: Quartiles of ex ante returns and non-pecuniary factors.

Several other results highlight the influence of non-pecuniary factors, relative to ex ante
monetary returns, in the decision to attend higher education. First, as shown in Table
2, the median non-pecuniary component (-0.326) is, in absolute terms, quantitatively
much larger than the median ex ante return to higher education (0.133). Aside from
their large magnitude, non-pecuniary factors also have a fairly large dispersion, with an
interquartile range equal to 0.239 which is nevertheless smaller than the interquartile
range for ex ante returns (0.336). We also compute the predicted probabilities of higher
education attendance for fixed values of the non-pecuniary factors. If the non-pecuniary
factors of every individual were equal to the first (resp. last) decile of the sample
distribution of these factors, the attendance rate in the population would reach 95.2%
(resp. 63.0%). Hence, the predicted attendance rate would fall by more than 32 points
if G varied from its first to its last decile. Overall, in line with recent evidence by
Carneiro et al. (2003) and Beffy et al. (2012), non-pecuniary factors appear to be a key
determinant of the decision to attend higher education.
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4.3 Robustness checks

4.3.1 Validity of the identification strategy

The validity of the results discussed above hinges on the exclusion restrictions between
sectors. A reason why this identification strategy may not hold is that some individuals
who attended higher education might face labor market conditions similar to the ones
faced for those with a high school level. This might in particular be true for higher
education dropouts. In order to cope with this potential concern, we run our estimates
without the 3, 092 dropouts. By doing so, we focus on higher education graduation
rather than attendance, in a similar spirit as in Carneiro et al. (2003). The resulting
estimates of the non-pecuniary factors (see Panel 1, Table 4 in the online appendix)
are very similar to previously. Secondary schooling track, gender, father’s profession
and year of entry into the labor market remain the main determinants of this non-
pecuniary component. The distribution of the ex ante returns to higher education is
also very similar to previously (see Figure 2 in the online appendix) and remains within
the confidence intervals of that of the baseline specification. Hence, the robustness of
the results to the exclusion of higher education dropouts from the sample supports our
exclusion restrictions.

One might also suspect that variations across departements in sector-specific average
incomes could be correlated with geographical variations in sector-specific labor market
productivity. In an attempt to solve this issue, we add in the regressors the local
proportion of individuals who graduated from high school with honours. This variable,
computed from the Panel 1989 dataset (French Ministry of Education), is used to
control for differences across departements in productivity levels.23 The estimates of the
non-pecuniary factors as well as of the distribution of the ex ante returns to education
(see Panel 2, Table 4 and Figure 2 in the online appendix) are robust to this alternative
specification, suggesting that our estimates are likely not to be biased by this type of
confounding effects.

4.3.2 Misspecification bias

As already stressed, assuming that the non-pecuniary component of the selection equa-
tion varies across individuals according to observed covariates only allows to identify
the model without any exclusion restrictions nor large support condition on the co-
variates. However, this specification may seem too restrictive relative to a generalized

23The Panel 1989 is a longitudinal dataset that follows 22,000 students entering 6th grade in 1989.
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Roy model where the non-pecuniary factors also vary with unobserved characteris-
tics. We examine this issue by computing, under some distributional assumptions, the
misspecification bias on the non-pecuniary component that would arise by using our
estimation procedure when the true structure of the selection equation is that of a
generalized Roy model, where the non-pecuniary component writes G(X) + U , with
U unobserved. We need to impose some further restrictions to compute the misspec-
ification bias B(X) defined by the difference between the non-pecuniary component
obtained with our method (denoted here by G̃(X)) and the deterministic part of the
true non-pecuniary component, G(X). We assume that η∆ and U are independent and
normally distributed, respectively with mean m and 0. Under these assumptions, it
follows from some algebra that:

B(X) = −(G̃(X)−B(X) + T (X)−m) exp
[

(G̃(X)−B(X) + T (X)−m)2

2 ρ

(
1− 1

σ2
η∆

)]
ρ,

where ρ = σ2
U/(σ2

U + σ2
η∆

), σ2
U and σ2

η∆
denoting respectively the variance of U and η∆.

We estimate the bias by solving numerically this equation on the support of X, after
(i) replacing (G̃(X), T (X)) by their estimators obtained with our semiparametric pro-
cedure, (ii) approximating m by E(T (X)) + median(∆) and (iii) calibrating (σ2

U , σ
2
η∆

)
from the estimates provided in Carneiro et al. (2003). (ii) and (iii) are needed since
we do not identify these parameters in our setting. This leads to an average bias equal
to 0.065, corresponding to 40% of the estimated standard error of δ0. Overall, this
suggests that the misspecification bias is actually negligible relative to the finite sample
estimation error on the non-pecuniary component. An important implication is that
we will tend to understate the dispersion of the non-pecuniary component G(X) + U

with our method. This actually strengthens our finding of a substantial dispersion in
the non-pecuniary factors.

5 Conclusion

This paper considers the identification of an extended Roy model, with a focus on the
non-pecuniary component of the selection equation. Recovering this component is key
to disentangle the relative importance of monetary incentives versus preferences in the
context of sorting across sectors. Our main theoretical contribution is to show that we
can identify these non-pecuniary factors, and provide informative bounds on the dis-
tribution of the ex ante monetary returns, without any exclusion restriction nor large
support condition on the covariates. We also develop a three-stage semiparametric es-
timation procedure leading to a root-n consistent and asymptotically normal estimator
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of the non-pecuniary component. We use our approach to quantify the relative im-
portance of non-pecuniary factors and expected returns to schooling in the decision to
attend higher education in France. Consistent with the recent empirical evidence on this
question, our main insight is that non-pecuniary factors are a key determinant of the
attendance decision. From a policy point of view, our results suggest that a moderate
increase in tuition fees, which is currently discussed to help finance the French higher
education system, would only have a small detrimental effect on the higher education
participation rate.
Aside from applying our results to the analysis of, e.g., public versus private sector or
migration decisions, another promising avenue for further research would be to build
on our approach to conduct inference on the relative importance of general vs. specific
human capital through the dependence between the sector-specific unobserved produc-
tivity terms. This dependence has received much attention in competing risks models
(see, e.g., Peterson, 1976, van den Berg, 1997, Abbring & van den Berg, 2003), but
less so in the extensions of Roy models considered in the literature. We leave these
interesting questions for further research.
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