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Abstract

We study the identification of a nonseparable function that relates a continuous

outcome to a continuous endogenous variable. We suppose to have in hand an in-

strument, and assume monotonicity in both the first stage and the outcome equation.

We show that the combination of these restrictions has a large identifying power: full

identification can be achieved even though the instrument is discrete. This conclusion

highlights the importance of justifying monotonicity restrictions in economic appli-

cations. To prove our results, we rely on group and dynamical systems theories. The

identification of the model depends on the properties of the orbits of a group generated

by a well defined set of identified functions. Two cases are distinguished, depending

on whether there exists a function in this group which admits a fixed point. In the

first case, the univariate model is fully identified. In the second one, the univariate

model is identified on a countable set with a binary instrument and fully identified

in general when the instrument takes at least three values. We partially extend these

results to multivariate endogenous variables.
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1 Introduction

In this paper, we study the identification of a nonseparable model with a continuous en-
dogenous variable when an instrument is available. This issue is important because usual
assumptions such as linearity or separability of the error terms are seldom justified by
theory, and are also likely to fail in practice. To investigate this question, two main ap-
proaches have been taken (see, e.g., Matzkin, 2007, for a more complete discussion). The
first is based on estimating equations (see, e.g., Newey and Powell, 2003 or Chernozhukov
and Hansen, 2005), the second on control variable approaches (see, e.g., Newey et al.,
1999, Florens et al., 2008, Imbens and Newey, 2009 and Hoderlein and Sasaki, 2011a). A
common feature of both approaches is that when the endogenous variable is continuous,
the instrument should be continuous to achieve identification. We alleviate this restriction
here. This can be useful because in many cases, we have at our disposal only discrete
instruments. Typical examples are policy reforms or randomizations in the treatment or
control group in experiments. More precisely, we show that imposing a monotonicity con-
dition on the outcome equation, as Chernozhukov and Hansen (2005), but also on the first
stage equation, as Imbens and Newey (2009), is sufficient to get partial or full identification
when the instrument is discrete.

The ideas behind these results are the following. Using monotonicity in the first stage, and
following the control function approach, we consider a change in the endogenous variable
X due to a change in the instrument but not to a modification of the control variable.
Such a change is exogenous and the associated shift in X from x to x′ = s(x) is identified.
Observing its effect on the outcome, one can relate, under monotonicity in the outcome
equation, the structural function g at x with itself at x′ = s(x). Considering all the
functions s associated with any change in the value of the instrument, we show that the
problem of identifying g is closely related to the properties of S, the group generated by
all compositions of these functions s. Basically, a function in S can be interpreted as the
effect of a new, binary, instrument. If the group is “rich” enough, any possible exogenous
shift can be approximated by an element of this group, as if we had at hand a continuous
instrument.

Studying the properties of this group, we distinguish whether X is univariate or not, and
whether a freeness condition is satisfied or not. This latter property means that no function
in S different from the identity function admits a fixed point. With a binary instrument,
it is equivalent to monotonicity of the instrument, a condition close to the one of Imbens
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and Angrist (1994) but directly testable here. When X is univariate and the instrument is
binary, we show that the model is identified on a countable set only under freeness, but fully
identified otherwise. Hence, the intuition that monotonicity helps for identification, which
may be conveyed by the result of Imbens and Angrist (1994) with dummy endogenous
variables, is reversed here. On the other hand, when the instrument takes three values
or more, the model is fully identified in general, whether freeness holds or not. Finally,
when X is multivariate, the properties of the group become more complicated and it seems
difficult to obtain a full classification. We show that full identification can still be achieved,
but under additional restrictions.

Overall, our results emphasize the important identification power of monotonicity condi-
tions. Without monotonicity on the first-stage and on the outcome equation, results of
Chesher et al. (2011) suggest that we generally end up with partial identification. Hoder-
lein and Sasaki (2011a) also prove that an index monotonicity on the first stage equation
is necessary for some quantities to identify local partial effects. With one monotonicity
restriction, either on the first stage or on the outcome equation, point identification is
achieved only with a continuous instrument (see Chernozhukov and Hansen, 2005, Cher-
nozhukov et al., 2007, Imbens and Newey, 2009 and Hoderlein and Sasaki, 2011a).1 With
monotonicity on both equations, we show that full identification can be achieved with a
discrete instrument. In a related paper, Torgovitsky (2011) obtains a similar result under
an intersection condition. His condition can be interpreted as a particular case of the non-
freeness property. All these results show that monotonicity conditions are not innocuous,
as already pointed out by Imbens (2007). They either imply that heterogeneity is univari-
ate or that it can be aggregated in a single dimension. Such restrictions can be appealing
for some applications, but also rule out important frameworks such as random coefficient
models or simultaneous equations.

The paper is organized as follows. Section 2 presents the model. Section 3 describes our
identification strategy and its link with group theory. Our main identification results, in
the univariate case, are presented in Section 4. Section 5 considers the multivariate case.
Section 6 concludes.

1The results of Hoderlein and Sasaki (2011b) imply that some marginal effects can be bounded with a
discrete instrument under monotonicity on the first stage.
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2 The model

Let Y denote a real outcome, X ∈ Rd be the endogenous variable and Z be the instrument.
For the sake of simplicity, we do not introduce exogenous covariates hereafter, but our
analysis holds with such covariates by simply conditioning on them. We consider the
following triangular nonseparable model:

Y = g(X, ε)

X = h(Z, η).
(2.1)

Such a model is also considered by, e.g., Chernozhukov and Hansen (2005), Florens et al.
(2008), Imbens and Newey (2009) and Torgovitsky (2011).2 We aim at recovering the
function g from the distribution of (X, Y, Z). We suppose to have at our disposal a discrete
instrument variable Z ∈ {1, ..., K}, K ≥ 2.3

Our first assumption is the exogeneity of the instrument. Such an assumption is standard
and also posit by Florens et al. (2008), Imbens and Newey (2009) or Hoderlein and Sasaki
(2011a). It is however stronger than the “weak” exogeneity condition Z ⊥⊥ ε supposed by
Chernozhukov and Hansen (2005) or Chesher (2010).

Assumption 1 (Exogeneity) Z ⊥⊥ (ε, η).

The crucial assumption is the following dual monotonicity condition. Subsequently, we
denote by X the interior of the support of X.

Assumption 2 (Dual strict monotonicity) ε ∈ R, η = (η1, ..., ηd) ∈ Rd, h(Z, η) =

(h1(Z, η1), ..., hd(Z, ηd)) and for all (x, z,m) ∈ X × {1, ..., K} × {1, ...d}, u 7→ g(x, u)

and v 7→ hm(z, v) are strictly increasing.

This assumption gathers together the monotonicity on the outcome equation supposed by
Chernozhukov and Hansen (2005), and monotonicity on the first stage used by Imbens and
Newey (2009). Monotonicity in the outcome equation is typically satisfied in the additive
model g(X, ε) = ν(X) + ε or in transformation models g(X, ε) = µ(ν(X) + ε), where µ is

2As Chernozhukov and Hansen (2005), we could consider a more general model with potential outcomes
Yx = g(x, εx) under a rank similarity condition on the residuals. All our results below apply to this more
general setting.

3Our analysis also covers continuous instruments. It suffices to pick K values of such instruments. In
such cases however, identification can be achieved under fewer restrictions on g or h. See e.g. Chernozhukov
and Hansen (2005), Imbens and Newey (2009) and Hoderlein and Sasaki (2011a).
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strictly increasing. More generally, dual monotonicity imposes two things. First, the error
terms should be scalar. Second, it defines a one-to-one mapping between (X, Y ) and (ε, η)

for a given value of Z. This condition can be reasonable for some applications, but are
not satisfied in all cases. Random coefficient models are a first counterexample. It also
rules out Chesher (2003)’s setting, where η affects directly the outcome equation. Finally,
it cannot handle simultaneity problems, as discussed by Imbens (2007).

We also impose the following common support condition.

Assumption 3 (Common support) Support(X|Z = z) =
∏d

m=1[xm, xm] with −∞ ≤ xm <

xm ≤ ∞ independent of z.

This assumption allows the support of X conditional on Z = z to be either bounded or
unbounded. On the other hand, it should not depend on z. As shown in our supplementary
material, much of the analysis below can be adapted without this restriction, at the price
of an additional complexity.

Finally, we impose the following continuity conditions.

Assumption 4 (Continuity conditions) (i) η is continuously distributed, (ii) (u, v) 7→
Fε|η=v(u) is continuous and strictly increasing in u for all v ∈ Support(η), (iii) g(., .) and
h(z, .) are continuous on X × Support(ε) and Support(η) respectively.

Conditions (i) and (ii) ensure that X and Y conditional on (X,Z) are continuously dis-
tributed. Condition (iii) excludes discontinuous effects of X on Y . It is important as we
often obtain identification of g(., u) on dense subsets of X . By continuity, this ensures
that g is identified everywhere. We finally impose continuity of g(., u) on the interior X
of the support of X, but not on the whole support. This is important to encompass linear
models with unbounded X, and, more generally, models where g(., u) tends to infinity at
the boundaries.

3 The identification strategy

3.1 Reformulation of the identification problem

As mentioned previously, we suppose to observe Y , X and Z, and seek to recover the
function g. First, applying the idea of the control function approach, we identify exogenous
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changes in X by moving Z while keeping η constant. Formally, for all (x, i, j) ∈ X ×
{1, ..., K}2, let

sij(x) = h(j, h−1(i, x)),

where h−1(i, x) =
(
h−11 (i, x1), ..., h

−1
d (i, xd)

)
and h−1m (i, .) denotes the inverse of hm(i, .).

sij(x) − x is the shift in X when Z moves from i to j while η remains constant, equal to
h−1(i, x) = h−1(j, sij(x)). Let similarly sijm(xm) = hm(j, h−1m (i, xm)) denote the shift in
Xm when Z moves from i to j. By strict monotonicity and independence,

P (Xm ≤ xm|Z = i) = P (ηm ≤ h−1m (i, xm)|Z = i)

= P (ηm ≤ h−1m (j, sijm(xm))|Z = i)

= P (ηm ≤ h−1m (j, sijm(xm))|Z = j)

= P (Xm ≤ sijm(xm)|Z = j).

The first equality is satisfied by the strict monotonicity of hm. The second equality holds
by definition of sijm. The third equality stems from the independence between Z and η

(Assumption 1). Hence sijm is identified by sijm = F−1Xm|Z=j ◦ FXm|Z=i, where ◦ denote the
composition operator. Because sij(x) = (sij1(x1), ..., sijd(xd)), sij is also identified.

Observing the effect of such a change on Y , one can relate g(x, u) and g(sij(x), u), using
the dual monotonicity condition. Indeed,

FY |X=x,Z=i(g(x, u)) = P (Y ≤ g(x, u)|η = h−1(i, x), Z = i)

= P (ε ≤ u|η = h−1(i, x), Z = i)

= P (ε ≤ u|η = h−1(i, x), Z = j)

= P (Y ≤ g(sij(x), u)|X = sij(x), Z = j)

= FY |X=sij(x),Z=j(g(sij(x), u)).

The first equality is satisfied because (X = x, Z = i) is equivalent, by strict monotonicity of
h, to (η = h−1(i, x), Z = i). The second equality holds because g(x, .) is strictly increasing
(Assumption 2). Hence, the dual monotonicity ensures that, conditional on Z = i, there
is a one-to-one mapping between the distribution of Y conditional on X and that of ε
conditional on η. The third equality stems from the independence between Z and (ε, η)

(Assumption 1), which implies that ε is independent of Z conditional on η. The last
equalities apply the same reasoning as the first ones, but the other way around.

By Assumptions 2 and 4, y 7→ FY |X=x,Z=i(y) is strictly increasing for all (x, i).4 Hence, its
4As before, FY |X=x,Z=i(y) = Fε|η=h−1(i,x)(g

−1(x, y)), where g−1(x, .) denotes the inverse of g(x, .).
FY |X=x,Z=i(.) is thus the composition of two strictly increasing functions.
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inverse exists, and

g(sij(x), u) = F−1Y |X=sij(x),Z=j
◦ FY |X=x,Z=i(g(x, u)). (3.1)

Hence, if g(x, .) is identified for a given x ∈ X , then g(sij(x), .) is also identified. We state
this in the following lemma.

Lemma 3.1 If, for a given x ∈ X , g(x, .) is identified, then g(sij(x), .) is also identified
for all (i, j) ∈ {1, ..., K}2.

This lemma is at the basis of our identification results. It does not hold in Chernozhukov
and Hansen (2005) or Imbens and Newey (2009) where only one monotonicity condition
is imposed. It does however apply to the framework of Chesher (2003) where a dual
monotonicity condition is also assumed.5 Nevertheless, our induction technique presented
below fails to hold in his model.

3.2 Link with group theory

It is well known that a normalization on g and ε is possible. More precisely, for any
strictly increasing function f , g and ε are observationally equivalent to g̃ and ε̃, with
g(X, ε) = g̃(X, f−1(ε)) and ε = f(ε̃). The usual choice of f is Fε̃, which amounts to
supposing that ε is uniformly distributed. To derive our results, it is more convenient to
choose f = Fε̃|X=x0 for a given x0 ∈ X , so that the distribution of ε conditional onX = x0 is
uniform. This normalization implies that g(x0, .) is identified by g(x0, u) = F−1Y |X=x0

(u). We
then identify, by Lemma 3.1, g(sij(x0), u), but also g(sij◦skl(x0), u) or g(sij◦skl◦smn(x0), u).
By induction, g(., u) is actually identified on all compositions of the (sij)(i,j)∈{1,...,K}2 taken
at x0. Let S denote this set of functions. Because, by Assumptions 2 and 3, the functions
sij are bijections onto X , S has a group structure (see Appendix A for definitions related
to groups). A function s = si1j1 ◦ ... ◦ sipjp in S can be interpreted as the effect of a new
binary instrument Zs , which corresponds to successive shifts of Z (from i1 to j1 first, then
from i2 to j2 etc).

g(., u) is thus identified on the set

Ox0 = {s(x0) : s ∈ S},
5More precisely, in his setting, Y = g(X, ε, η), and one can prove that g(sij(x), u, h

−1(i, x)) =

F−1Y |X=sij(x),Z=j ◦ FY |X=x,Z=i(g(x, u, h
−1(i, x))).
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which is called the orbit of x0. By continuity of g(., u), g(., u) is actually identified on the
closure Ox0 of Ox0 .

Lemma 3.2 Under Assumptions 1-4, g(., .) is identified on (Ox0 ∩ X )× (0, 1).

This result shows that g(., u) is fully identified on X when X ⊂ Ox0 . Otherwise, we may
still achieve full identification by “connecting” orbits.

Lemma 3.3 For any x, if Assumptions 1-4 hold and Ox0 ∩Ox∩X 6= ∅, g(., .) is identified
on (Ox ∩ X )× (0, 1).

The proof of the lemma, and all subsequent proofs, are deferred to Appendix B. The
intuition behind is that by Lemma 3.2, we can identify g(., u) at x∗ ∈ Ox0 ∩ Ox ∩ X . By
“inverting” our induction method, we then recover g(x, u) using g(x∗, u).

An important consequence is that studying the identification of g amounts to determining
the orbits and their connections. In turn, these orbits and connections are related to the
following freeness and nonfreenes properties.6

Definition 3.1

Freeness property: there exists no s ∈ S different from the identity function that admits
a fixed point.
Nonfreeness property: there exists s ∈ S different from the identity function which
admits a positive and finite number of fixed points.

Whether freeness or nonfreeness holds depends on the way the instrument affects X. With
a binary instrument (K = 2), S is generated by a unique function s12. Freeness is then
equivalent to s12 admitting no fixed point, or s12 being the identity function. The latter case
corresponds to an instrument independent of X, which is not informative. Otherwise, we
either have h(1, .) > h(2, .) or h(2, .) > h(1, .). This can be interpreted as an homogeneity
of the instrument: all individuals either react positively or negatively to the instrument.
It may also be seen as an extension, in a continuous setting, of the monotonicity condition
considered by Imbens and Angrist (1994) for dummy endogenous variables. The important
difference with their condition, however, is that we can test it directly in the data, by
checking whether FX|Z=1 stochastically dominates (or is dominated by) FX|Z=2 at the first-
order.

6Nonfreeness is not, with this definition, the strict opposite of freeness. We rule out situations where all
elements of S cross an infinite number of times the identity function, without being the identity functions.
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As an illustration, suppose that we are interested in measuring the effect of unemployment
duration X on an health index Y , using a policy change on unemployment benefits as
an instrument Z. Suppose that the hazard rate of X conditional on Z = z satisfies a
Cox model λz(t) = λ0(t) exp(−cbz(t)), where λ0 is the baseline hazard and bz(t) denotes
unemployment benefits at date t under policy status z.7 It is easy to see that if b1(t) < b2(t)

for all t, FX|Z=2 stochastically dominates FX|Z=1. The freeness property holds because all
unemployed people have less incentives to find a job. Suppose on the other hand that
before a reform, unemployment benefits were constant over time, b1(t) = b1, while after,
they decrease over time, so that b2(t) = b211{t ≤ t0} + b221{t > t0} for a given threshold
t0, with b21 > b1 > b22. The new policy is thus more generous for short periods of
unemployment, and less generous for longer ones. Because of this pattern, FX|Z=1 and
FX|Z=2 generally cross.8

When K ≥ 3, freeness can still be interpreted as an homogenous effect of the instrument
Z on X. Any instrument Zs corresponding to the exogenous shift s should either have a
strictly positive, negative or null effect on all individuals. It is thus impossible to yield an
heterogenous effect on X. Generalized location models are examples of first stage equations
satisfying this restriction.

Theorem 3.2 Suppose that
h(Z, η) = µ(ν(Z) + η), (3.2)

where Z ⊥⊥ η, Support(η) = R and µ is a strictly increasing function from R to X . The
freeness property holds.

Model (3.2) holds for instance in the previous example of unemployment duration when
bz(t) = az + b(t), namely when unemployment benefits under the different policies differ
by the same constant over time. With K ≥ 3, nonfreeness does not reduce to a crossing
condition on the (sij)i 6=j, because all functions in S should be considered. We develop
in the supplementary material an exemple, still with unemployment benefits, where the
(sij)i 6=j do not cross, but s31 ◦ s212 admits one fixed point.

7This toy model is useful to discuss the economic contents of our assumptions but does not pretend to
be fully realistic.

8For a proof when λ0(.) is constant, see the supplementary material.
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4 Results in the univariate case

We first consider the univariate case where X = (x, x), for which the topology of the orbits
is more simple.

4.1 Identification under freeness

With a binary instrument (K = 2), S is generated by a unique function s12. The orbit of x0
is discrete, and consists of the monotonic sequence (xk)k∈Z defined by xk = sk12(x0). Figure
1 depicts the correspondence between this sequence and the identification of g(., u). The
left graph shows how to build (xk)k∈Z by applying s12(.) successively. The dashed curve in
the right graph depicts the true function x 7→ g(x, u) whereas the black points correspond
to the sequence where g(., u) is identified. By Lemma 3.1, we can indeed identify g(xk, u)

as soon as g(xk−1, u) has been recovered. One may expect that g(., u) is identified only on
this sequence. Theorem 4.1 formalizes this result.9

(.)12s

1x

0x

)( 0121 xsx 

)( 0

2

122 xsx 

2x

1x2x
)(.,ug

)( 0

1

121 xsx 

 

)( 0

2

122 xsx 

 

1x

2x

1x

0x

),( 0 uxg ),( 1 uxg

),( 1 uxg ),( 2 uxg 

2x

Figure 1: Identification under the freeness property, K = 2.

9When s12 is the identity function, we identify g(., u) only at x0. We thus get no information, which
makes sense since the instrument is independent of X.
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Theorem 4.1 If K = 2 and if Assumptions 1-4 and the freeness property hold, g(x, u) is
identified for any u ∈ (0, 1) if and only if x ∈ {xk : k ∈ Z}.

A consequence of Theorem 4.1 is that g is fully identified and even overidentified in general
when g belongs to a parametric family. Similarly, if one imposes shape restrictions such
as monotonicity or concavity, g would be point identified on {xk : k ∈ Z} and partially
identified elsewhere. On the other hand, without further restriction, g(x, u) can be chosen
freely outside of {xk : k ∈ Z}. To fully identify g, one has to fix entirely g(., u) on the inter-
val [x0, x1). We illustrate this nonidentification part of Theorem 4.1 in the supplementary
material, through the example of an additively separable model.

Choosing a different starting point x0 leads to a different sequence where g(., u) is iden-
tified.10 One may thus be worried about the choice of x0. It is however important to
understand that this is not an issue when considering policy relevant parameters. Theorem
4.2 shows indeed that some average and quantile treatment effects on the subpopulation
defined by X = x are identified, whether x belongs or not to {xk : k ∈ Z}.

Theorem 4.2 If K = 2 and if Assumptions 1-4 and the freeness property hold, the average
treatment effect ∆ATE

ij (x) = E
(
g(sj12(x), ε)− g(si12(x), ε)|X = x

)
and the quantile treat-

ment effect ∆QTE
ij (τ) = F−1

g(sj12(x),ε)|X=x
(τ) − F−1

g(si12(x),ε)|X=x
(τ) are identified for all x ∈ X

and all τ ∈ (0, 1).

We can identify treatment effects corresponding to exogenous shifts identical to those
produced by one or multiple changes in Z. On the other hand, we cannot identify average
marginal effects E (∂g/∂x(x, ε)|X = x), because, basically, the binary instrument is not
able to reproduce an exogenous infinitesimal change in X.

When K ≥ 3, the situation is quite different from the binary case, because the orbit of x0
does not reduce to a monotonous sequence. Figure 2 illustrates this point. As previously
x1 = s12(x0) > x0 lies in Ox0 . Suppose also that we apply s−113 to x1, and then s12. We
obtain in this illustration a point x2 ∈ Ox0 that lies between x0 and x1. We are thus able to
get some information inside (x0, x1). The description of all the points that can be reached
this way depends on the following assumption.

10This does not contradict Theorem 4.1. The normalization allows one to fix g(., u) at one value only.
Fixing g at two different values amounts to imposing restrictions on the function, even though such
restrictions cannot be rejected by the data.
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Figure 2: Some points in the orbit of x0 under the freeness property, K ≥ 3.

Assumption 5 (Regularity and non-periodicity) There exists (i, j, k) ∈ {1, ..., K}3 such
that h(i, .), h(j, .) and h(k, .) are C2 diffeomorphisms and for all (m,n) ∈ Z2, (m,n) 6=
(0, 0), smij 6= snik.

The regularity condition is necessary to avoid complications due to irregularities in the
derivatives of h(z, .).11 The non-periodicity assumption, on the other hand, is a rank
condition. It states that the effect of moving from Z = i to Z = j is “truly” different
from the effect of a shift from Z = i to Z = k. If non-periodicity fails to hold, so that for
any (i, j, k) ∈ {1, ..., K}2 there exists (m,n) such that smij = snik, we are actually back to
the binary case and g is identified on a sequence of points only. It can be proved indeed
that the group S is generated by a unique s, which can be interpreted as the effect of a
(new) binary instrument. In the generalized location models considered above where we
set, without loss of generality, ν(1) = 0, non-periodicity holds if there exists j ∈ {2, ..., K}
such that ν(j)/ν(2) 6∈ Q.

As previously mentioned, a function s in S can be interpreted as the effect of a new
instrument Zs. Assumption 5 ensures that we will be able to build instruments that have

11The orbits may neither be discrete nor dense, but related to Cantor sets (see, e.g., Ghys, 2001,
Proposition 5.6).
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infinitesimal effect in X. It is thus as if we were able to construct a continuous instrument
from the discrete observed ones, which will insure full identification of the model. Formally,
Theorem 4.3 below shows that if Assumption 5 holds, the orbit Ox0 is dense in the support
of X. g is then fully identified by Lemma 3.2.

Theorem 4.3 If K ≥ 3 and if Assumptions 1-5 and the freeness property hold, g is fully
identified on X .

The proof of Theorem 4.3 relies on Hölder’s and Denjoy’s theorems, two deep results in
group and dynamical systems theories. By Denjoy’s theorem, in particular, Ox0 is either
discrete or dense in the support of X, depending on whether a scalar called the rotation
number is rational or not. Assumption 5 ensures that this number is irrational, establishing
the density of Ox0 . Interestingly, the proof shows that only three different values of Z are
needed to achieve point identification of g(., .). If K ≥ 4 and Assumption 5 holds for four
indices or more (say 1, 2, 3, 4), we can identify g(., .) by using different subsets of this set
(1, 2, 3 and 2, 3, 4 for instance). If the model is not true, the functions that we recover
using these different subsets do not coincide in general. This means that the model is
overidentified (testable) in general when K ≥ 4.

While in the binary case, freeness is equivalent to a stochastic dominance condition, there
is no such simple characterization when K ≥ 3. To test for it, we can rely on the fact that,
by Hölder’s theorem, every elements of S commute. Hence, if K = 3 for instance, we can
test for the simpler condition s12 ◦ s13 = s13 ◦ s12.

4.2 Identification under nonfreeness

Studying, as under the freeness property, the topology of the orbit Ox0 can be interesting.
In particular, when K ≥ 3, we can combine the functions sij to create “new” instruments.
As soon as these instruments induce infinitesimal changes in X, we will obtain full identi-
fication. There is however a more direct approach under nonfreeness because infinitesimal
changes are observed around the fixed points and because all points can be linked with
these fixed points. This allows us to connect different orbits together and to obtain full
identification directly, even when K = 2.

To illustrate this idea, let consider a function s that has only one fixed point xf , with
s(x) > x for x < xf and s(x) < x otherwise (see Figure 3). For any value of x, xf =

limk→∞ s
k(x), and xf ∈ Ox. Given x0, g(., u) is identified at sk(x0) and, by continuity, at
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xf . Using Lemma 3.3, we can identify g(x, u) for all x because xf ∈ Ox. The model is
thus fully identified.

Theorem 4.4 If Assumptions 1-4 and the nonfreeness property hold, g is fully identified
on X .

(.)s

1x
0x

)( 0xsx f



fx
)(.,ug

1x

fx

0x

),( uxg f ),( uxgx

x

Figure 3: Full identification under nonfreeness.

This theorem implies in particular that the model is fully identified with a binary instru-
ment when FX|Z=1 and FX|Z=2 cross, i.e. when the homogenous effect of Z discussed above
fails to hold. The intuition conveyed by the result of Imbens and Angrist (1994) that an
homogenous effect helps for identification is actually reversed. Our result is, on the other
hand, in lines with Theorem 2 of Hoderlein and Sasaki (2011b). Within Model (2.1) and
under monotonicity of h but not g, they show that some marginal effects are point identi-
fied when FX|Z=i and FX|Z=j cross for some (i, j), while they are only partially identified
otherwise.

Corollary 4.5 Suppose that there exists (i, j) ∈ {1, ..., K}2 such that FX|Z=i and FX|Z=j
cross at least once and at most a finite number of times on X . Then g is fully identified
on X .
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This “crossing case” is studied by Torgovitsky (2011), who also shows, in a closely related
paper, that the model is fully identified thanks to crossing points.12 It is also related to
the main result of Guerre et al. (2009), who shows identification of an auction model with
(discrete) variations in the number of players.

If, in the case of a binary instrument, the “crossing” condition is equivalent to nonfreeness,
this is not the case anymore when K ≥ 3. As previously explained, reasoning on S is then
important because non freeness is much weaker than the simple “crossing” condition. It
may hold even if none of the functions FX|Z=i and FX|Z=j cross, meaning that none of the
sij (i 6= j) admits a fixed point (see the supplementary material for an example).

5 The multivariate case

In the multivariate case, the topology of the orbits is more complicated than before and a
full classification is difficult to obtain. Yet, Lemmas 3.2 and 3.3 are still valid and previous
ideas can be partially extended.

5.1 Identification under freeness

Let us suppose first that the freeness property holds. When K = 2, we get a similar result
as in Theorem 4.1: g(., u) is identified on the sequence {sk12(x0), k ∈ Z} only.

The case K ≥ 3 is far more delicate. In particular, the powerful tools that we used in the
univariate case, namely Hölder’s and Denjoy’s theorems, do not apply anymore. Hölder’s
theorem states that if freeness holds for a group of functions on the real line, all functions
of this group commute. Thanks to this property, we can reduce our study to the unit
circle. This result does not hold however for functions of several variables.13 Moreover,
in the multivariate case, even if we were able to come back to the unit circle on each
coordinate, Denjoy’s theorem would only prove density on each of these coordinates but
not on the cartesian product of these unit circles, which would be necessary to establish
full identification.

12Torgovitsky (2011) strengthens Assumption 4 by supposing that the support of X is bounded in at
least one direction and by imposing that g(., u) is continuous on the whole support of X. This allows him
to use, at the limit, a crossing point at one boundary of the support. This assumption however rules out
important models such as the linear one.

13We provide a counterexample in the supplementary material.
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Still the generalized location model provides some interesting insights. Suppose, as in the
univariate case, that

Xm = µm (νm(Z) + ηm) , m = 1...d (5.1)

where µm is strictly increasing and continuous and, without loss of generality, ν1(1) = ... =

νd(1) = 0. We let hereafter A denote the K − 1 × d-matrix of typical (k − 1,m) element
νm(k), for k = 2, ..., K, and Ak the kth line of A. We make the following assumption.

Assumption 6 (Rank and non-periodicity condition) (i) The matrix A has rank d and
(ii) supposing without loss of generality that (A1, ..., Ad) are linearly independent, there
exists i > d such that Ai =

∑d
k=1 λkAk and for all (c1, ..., cd) ∈ Zd, (c1, ..., cd) 6= (0, ..., 0),∑d

k=1 λkck 6∈ Z.

Condition (i) is similar to the standard rank condition in linear IV models, and actually
identical when µ1 = ... = µd = Id, the identity function. Condition (ii) is similar to
the non-periodicity condition imposed in Assumption 5 in the univariate case, and can
be interpreted as another rank condition. It basically states that using a value i of the
instrument, we can yield a binary instrument Zi whose effect is truly distinct from those
we can produce using the first d + 1 values of Z. A necessary condition for Assumption
5 to hold is that K ≥ d + 2, which is logical since full identification was obtained in the
univariate case with K ≥ 3. Theorem 5.1 shows that the model is fully identified under
this condition. Its proof relies on a characterization of additive subgroups of Rd, which can
be found for instance in Bourbaki (1974).

Theorem 5.1 If Equation (5.1) and Assumptions 1-4 and 6 hold, g is fully identified on
X .

5.2 Identification under nonfreeness

Without freeness, we can still use fixed points to achieve identification. However another
element comes into play, namely the attractiveness of these fixed points. Attractiveness is
not an issue in the univariate case since the functions are strictly increasing. Any fixed
point of s can be reached by applying several times either s or s−1 and g is thus identified
at the fixed point.

This is not true anymore in a multidimensional setting, as illustrated in Figure 4. Consider
the bivariate case with K = 2, and let xf = (x1,f , x2,f ) denote a fixed point of s12 =
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(s1,12, s2,12). Suppose first that s1,12(x1) > x1 if and only if x1 < x1,f , while s2,12(x2) < x2

if and only if x2 < x2,f (see Figure 4, case (a)). No sequence (sk12(x))k∈N converges in X .
When x = (x1, x2) ∈ (−∞, x1,f ) × (−∞, x2,f ), for instance, the sequence (sk1,12(x1))k∈N

converges to x1,f but the sequence (sk2,12(x2))k∈N tends to −∞, with (x1,f ,−∞) 6∈ X . On
the other hand, suppose that sm,12(xm) < xm if and only if xm < xm,f , for m ∈ {1, 2}
(Figure 4 case (b)). For any x = (x1, x2), the sequence (s−k12 (x))k∈N converges to xf .

(.)12,1s

fx ,11x

)( case a

)( case b

(.)12,2s

fx ,22x

(.)12,2s

fx ,22x

(.)12,1s

fx ,11x

Figure 4: Illustration of the attractiveness issue under nonfreeness.

In short, a condition on the position of the coordinates of s12 is necessary and sufficient to
secure identification when K = d = 2. The sufficiency part of this result actually extends
to any K and d, as Theorem 5.2 shows.

Theorem 5.2 Under Assumptions 1-4, if there exists s = (s1, ..., sd) ∈ S with exactly one
fixed point xf = (x1,f , ..., xd,f ) and such that for all x = (x1, ..., xd), sgn [(sm(x)− xm)(xm − xm,f )]
does not depend on m ∈ {1, ..., d}, then g is fully identified on X .
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Even if the attractiveness condition may seem restrictive, it is important to note that
only one function in the group has to satisfy this condition. Hence, it may hold even
when no function sij admits an attractive fixed point, because we also have at hand all
the compositions of the sij. To illustrate this idea, consider the generalized location-scale
models of the form

Xm = µm (νm(Z) + σm(Z)ηm) , (5.2)

with σm(Z) > 0 and µm a strictly increasing and continuous function. Without loss of
generality, we set σ1(1) = ... = σd(1) = 1. Unless σm(.) is constant for some m, all the
functions sij admit a unique fixed point, which is not attractive in general. Nevertheless,
under a simple rank condition, the model is fully identified because one can always construct
a function s ∈ S with an attractive fixed point.

Theorem 5.3 If Assumptions 1-4 and Equation (5.2) hold, and the rank of the matrix of
typical (i, j) element lnσi(j+1) is d, there exists s ∈ S that admits a unique and attractive
fixed point. Thus, g is fully identified on X .

6 Concluding remarks

While the previous results show that full or partial identification can be achieved with a
discrete instrument, estimation has not been addressed. Studying inference in this setting
is beyond the scope of this paper, but we indicate a possible estimation method for a binary
instrument, with a sample (Xi, Yi, Zi)i=1...n of independent copies of (X, Y, Z) at hand. The
estimators that we propose follow our constructive identification strategy.

As the identification results differ, testing the freeness property is the first issue to solve.
With a binary instrument, nonfreeness is equivalent to the existence of fixed points for
s12. Let ŝ12(x) = F̂−1X|Z=2 ◦ F̂X|Z=1(x), with F̂X|Z=z (resp. F̂−1X|Z=z) the empirical cdf (resp.
quantile) of X on the subsample for which Z = z. A possible testing procedure is to
accept nonfreeness if and only if the equation ŝ12(x) = x admits at least a solution on a
range [F̂−1X|Z=1(q1n), F̂−1X|Z=1(q2n)], with q1n → 0 and q2n → 1. This range restriction avoids
picking fixed points due to the lack of accuracy of ŝ12 at the tails. We expect such a test
of nonfreeness to be consistent under mild restrictions such as the fact that under the null,
the sign of x 7→ s12(x)− x is nonconstant.

If we accept nonfreeness, we can actually recover the whole function g. Let us suppose for
simplicity that s12 has only one fixed point, and let x0 denote this fixed point. We also
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suppose, without loss of generality that the fixed point is reached by applying s12. Our
normalization implies that g(x0, u) = F−1Y |X=x0

(u). Moreover, using Equation (3.1) and a
direct induction, g writes as :

g(x, u) =
[

lim
k→∞

γkx

]−1
◦ F−1Y |X=x0

(u).

where γx = F−1Y |X=s12(x),Z=2 ◦ FY |X=x,Z=1 and γkx = γsk−1
12 (x) ◦ ... ◦ γx.14

We estimate γkx by
γ̂kx(y) = γ̂ŝk−1

12 (x) ◦ γ̂ŝk−2
12 (x) ◦ ... ◦ γ̂x(y),

where we let
γ̂x(y) = F̂−1Y |X=ŝ12(x),Z=2 ◦ F̂Y |X=x,Z=1(y),

with F̂Y |X=x,Z=z (resp. F̂−1Y |X=x,Z=z) a nonparametric estimator of the conditional cdf (resp.
quantile) of Y .15 We suggest to estimate [limk→∞ γkx]

−1 by γ̂−1knx, with kn tending to infinity
at an appropriate rate. This rate should, as usually, achieve the best balance between
variance (which is large for a large kn) and bias (which is large when kn is small). An
estimator of g is finally given by

ĝ(x, u) = γ̂−1knx ◦ F̂
−1
Y |X=x̂0

(u),

where x̂0 is an estimator of x0. Possible choices include the fixed point of ŝ12 or ŝkn12 (x),
which tend to x0 as n→∞.

If we reject the test, we adopt the freeness framework and identify g only on (sk12(x0))k∈Z.
In this case, it seems appropriate to estimate directly the average and quantile treat-
ment effects ∆ATE

ij (x) and ∆QTE
ij (x).16 Using ∆ATE

ij (x) = E [γjx(Y )− γix(Y )|X = x] and
∆QTE
ij (x, τ) = F−1γjx(Y )|X=x(τ)− F−1γix(Y )|X=x(τ), we can estimate these quantities by

∆̂ATE
ij (x) = Ê [γ̂jx(Y )− γ̂ix(Y )|X = x] ,

∆̂QTE
ij (x, τ) = F̂−1γ̂jx(Y )|X=x(τ)− F̂−1γ̂ix(Y )|X=x(τ),

where γ̂jx is as before and Ê(U |X = x) denotes a nonparametric estimator of E(U |X = x),
for any random variable U .

14See Equations (6.2) and (6.6) in Appendix B for a formal proof.
15Nonparametric quantile estimators are considered for instance by Chandhuri (1991) or Matzkin (2003).
16An estimator of g(sk12(x0), u) can be developed along the same lines.
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Appendix A: definitions related to group theory

In this appendix, we recall some useful definitions on group theory.

A group S is a set endowed with a binary operator ∗ which satisfies three properties. The
first is associativity: for all (s1, s2, s3) ∈ S3, (s1 ∗ s2) ∗ s3 = s1 ∗ (s2 ∗ s3). The second is
the existence of an identity element e ∈ S satisfying s ∗ e = e ∗ s = s for all s ∈ S. The
third is the existence of inverses. Every element s ∈ S admits an element called its inverse
and denoted s−1 which satisfies s ∗ s−1 = s−1 ∗ s = e. The set B of all bijections onto X ,
endowed with the composition operator, is an example of a group.

A subgroup T of S is a subset of S which is itself a group for ∗. If we let (Ti)i∈I denote a
family of subgroups of S, one can check that ∩i∈ITi is also a group. The group generated
by a subset I of S is the intersection of all subgroups of S containing I. By definition, it
is the smallest subgroup of S including I. In the paper, S is the subgroup of B generated
by the functions (sij)(i,j)∈{1,...,K}2 .

We also define the notion of group actions and orbits. For any set A and a group S, a group
action . is a function from S × A to A (denoted by s.x) satisfying, for every (s1, t) ∈ S2

and x ∈ A, (s1 ∗ t).x = s1.(t.x) and e.x = x. The orbit Ox of x ∈ A is then defined by

Ox = {s.x, s ∈ S}.

In the paper, the group action is s.x = s(x) and the orbit of x is the set {s(x), s ∈ S}.

Finally, a group action . is free if s.x = x for some x ∈ A implies that s = e. This definition
coincides, in the setting of the paper, with the freeness property.
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Appendix B: proofs

6.1 Proof of Lemma 3.3

Fix u ∈ (0, 1). First, by Lemma 3.2, we can identify g(., u) at x∗ ∈ Ox0 ∩Ox ∩X . Second,
we show by “inverting” our induction method that we can identify g(x, u) using g(x∗, u).
To see this, note that by definition of x∗, there exists (sn)n∈N in the group such that
x∗ = limn→∞ sn(x). Using Equation (3.1) and a direct induction, there is an identified
function Qnx such that for all n ∈ N,

g(sn(x), u) = Qnx ◦ g(x, u). (6.1)

Hence,
Qnx(y) = g(sn(x), g−1(x, y)),

where g−1(x, .) denotes the inverse of g(x, .). This proves that Qnx converges to a limit
Q∞x, which is strictly increasing as the composition of two strictly increasing function.
Making (6.1) tend to infinity and composing by Q−1∞x, we finally obtain

g(x, u) = Q−1∞x ◦ g(x∗, u). (6.2)

Thus, g(x, u) is identified. The result follows by applying once more Lemma 3.2. �

6.2 Proof of Theorem 3.2

We have h−1(i, x) = −ν(i) + µ−1(x). As a result, sij(x) = µ(ν(j) − ν(i) + µ−1(x)). For
any s ∈ S, there exists (i1, j1, ..., ip, jp) ∈ {1, ..., K}2p such that s = si1j1 ◦ ... ◦ sipjp . By a
straightforward induction, s(x) = µ

(∑K
i=1 ν(i)n(i) + µ−1(x)

)
, where n(i) =

∑p
l=1 1{jl =

i} − 1{il = i}. s(x) = x thus implies that
∑K

i=1 ν(i)n(i) = 0, implying in turn that s is
the identity function. The result follows. �

6.3 Proof of Theorem 4.1

The “if” part follows directly from Lemma 3.2, because Ox0 = {xk : k ∈ Z}. Now let us
turn to the “only if” part, by showing that g(x̃, .) is not identified for any given x̃ 6∈ Ox0 .
For that purpose, we show that for any arbitrary strictly increasing function q, we can
define g̃, Ỹ and ε̃ such that
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(i) g̃(x, u) = g(x, u) for all x ∈ Ox0 and g̃(x̃, u) = q(u);

(ii) Ỹ = g̃(x, ε̃) for all x ∈ X and FỸ |X,Z = FY |X,Z ;

(iii) Assumptions 1-4 are satisfied for the model defined by Ỹ , X, Z, η, ε̃ and g̃.

We first define g̃ so that (i) holds. Let k ∈ Z be such that xk < x̃ < xk+1. We define g̃(., .)

by any continuous function on [xk, xk+1)× (0, 1) such that g̃(x, .) is strictly increasing for
all x ∈ [xk, xk+1), g̃(xk, u) = g(xk, u), g̃(x̃, u) = q(u) and

lim
x→xk+1,u′→u

g̃(x, u′) = g(xk+1, u). (6.3)

We then extend g̃(., .) on X × (0, 1) using inductively

g̃(s12(x), u) = F−1Y |X=sij(x),Z=j
◦ FY |X=x,Z=i(g̃(x, u)), (6.4)

g̃(s−112 (x), u) = F−1Y |X=x,Z=i ◦ FY |X=sij(x),Z=j(g̃(x, u)).

By a straightforward induction, g̃(x, u) = g(x, u) for all x ∈ Ox0 , and (i) is satisfied.
Moreover, the function g̃(x, .) is strictly increasing. Indeed, it is strictly increasing on
[xk, xk+1) and F−1Y |X=sij(x),Z=j

◦ FY |X=x,Z=i is strictly increasing.

We now define (Ỹ , ε̃) such that (ii) holds. Consider a random variable ε̃ independent of Z
conditional on η and such that for all (j, x, u) ∈ {1, ..., K} × X × Support(ε),

Fε̃|η=h−1(j,x)(u) = Fε|η=h−1(j,x)(g
−1(x, g̃(x, u))). (6.5)

Letting for all x ∈ X , Ỹ = g̃(x, ε̃), we have

P (Ỹ ≤ y|X = x, Z = j) = P (g̃(x, ε̃) ≤ y|η = h−1(j, x), Z = j)

= P (ε̃ ≤ g̃−1(x, y)|η = h−1(j, x), Z = j)

= P (ε̃ ≤ g̃−1(x, y)|η = h−1(j, x))

= Fε|η=h−1(j,x)(g
−1(x, g̃(x, g̃−1(x, y))))

= Fε|η=h−1(j,x),Z=j(g
−1(x, y))

= FY |X=x,Z=j(y),

and (ii) is satisfied.

Finally, let us prove (iii). First, by construction, ε̃ ⊥⊥ Z|η. Because η ⊥⊥ Z, one can
check easily that (ε̃, η) ⊥⊥ Z, and Assumption 1 is satisfied. Second, we already saw that
the function g̃(x, .) is strictly increasing. Thus Assumption 2 holds. Third, we have to
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verify that Assumption 4, (ii) and (iv) hold, (i) and (iii) being automatically satisfied. g̃
is continuous on [xk, xk+1) × (0, 1). We have g̃(xk+1, u) = g(xk+1, u), so that by (6.3), g̃
is continuous at (xk+1, u) for all u ∈ (0, 1) and when coming on the left with x. To prove
that g̃(., .) is continuous on X × (0, 1), it suffices, by (6.4), to prove that F−1Y |X=sij(x),Z=j

◦
FY |X=x,Z=i is continuous. First, reasoning as in Subsection 3.1,

FY |X=x,Z=i(y) = Fε|η=h−1(i,x)(g
−1(x, y)),

where g−1(x, .) denotes the inverse of g(x, .). Thus, by Assumption 4, (i) and (iv), (x, y) 7→
FY |X=x,Z=i(y) is continuous. Similarly, (x, τ) 7→ F−1Y |X=sij(x),Z=j

(τ) is continuous. As a
result, g̃(., .) is continuous on X ×(0, 1) and Assumption 4, (iv) holds. Finally, the function
(u, v) 7→ Fε|η=v(g

−1(x, g̃(x, u))) is continuous and strictly increasing in u as a composition
of continuous and strictly increasing functions. Thus, by (6.5), Fε̃|η satisfies Assumption
4, (ii). The result follows. �

6.4 Proof of Theorem 4.2

Let γx = F−1Y |X=s12(x),Z=2 ◦ FY |X=x,Z=1 and

γjx = γsj−1
12 (x) ◦ ... ◦ γx (6.6)

for all j > 0. γjx with j < 0 is defined similarly by replacing s12 by s21, and γ0x =Id.
The functions γjx are identified. By a repeated use of Equation (3.1), we get g(sj12(x), ε) =

γjx(g(x, ε)). Hence, for all x, the treatment effects are identified by

∆ATE
ij (x) = E [γjx(Y )− γix(Y )|X = x] (6.7)

∆QTE
ij (x, τ) = F−1γjx(Y )|X=x(τ)− F−1γix(Y )|X=x(τ) � (6.8)

6.5 Proof of Theorem 4.3

Let us first provide an informal outline of the proof. Without loss of generality, we set the
indices (i, j, k) defined in Assumption 5 to 1, 2, 3. We show the result by proving in four
steps that the orbit O′x0 of x0 relative to the group generated by s12 and s13 is dense.17

The first two steps consist of transforming the problem in order to use Denjoy’s theorem,
which applies to a single mapping on the unit circle instead of two functions on X . First,

17The orbit O′x0
is included in the orbit Ox0

because we consider the subgroup generated by s12 and s13
only and not S.
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we show that s12 can be “transformed” into the translation t(x) = x+1 on R, which means
that there is an increasing smooth bijection r from R to X such that s12 = r ◦ t ◦ r−1. We
then consider f = r−1 ◦ s13 ◦ r instead of s13. In the second step, we prove that we can
define a transformation of f , f̃ , on the unit circle [0, 1). In this step we use the fact that
s12 and s13 commute, by Hölder’s theorem. In the third step, we show that we can use
Denjoy’s theorem on f̃ , implying that orbits of f̃ on the unit circle are dense. Finally, in
the fourth step, we show the density of O′x0 by, basically, “unrolling” the unit circle through
successive applications of the translation.

1. s12 can be “transformed” into the translation t.

s12 does not admit any fixed point. Suppose without loss of generality that s12(x) > x

(otherwise it suffices to consider x 7→ x − 1 instead of t(.)). By Assumption 5, s12 =

r(2, .) ◦ r(1, .)−1 is a C2 diffeomorphism on (x, x). We prove that there exists an increasing
C2 diffeomorphism r from R to (x, x) such that s12 = r ◦ t ◦ r−1. Let us consider an
increasing C2 diffeomorphism r̃ defined on [0, 1) such that r̃(0) > x, limx→1 r̃(x) = s12◦r̃(0),
limx→1 r̃

′(x) = [s12 ◦ r̃]′ (0) and limx→1 r̃
′′(x) = [s12 ◦ r̃]′′ (0). Such a r̃ exists. Then define

the function r by r = r̃ on [0, 1) and extend it on the real line, using r(x+ 1) = s12 ◦ r(x)

or r(x) = s−112 ◦ r(x + 1). By construction, r is strictly increasing and C2. Hence, it
admits a limit at −∞ and +∞. Suppose that limx→−∞ r(x) = M > x. Because r(x+ 1) =

s12◦r(x), we would have s12(M) = M , a contradiction. Thus, limx→−∞ r(x) = x. Similarly,
limx→+∞ r(x) = x. Consequently, r is a C2 diffeomorphism from R to (x, x).

2. We can define a transformation f̃ of f = r−1 ◦ s13 ◦ r on the unit circle.

Because freeness holds, by a theorem of Hölder (see, e.g., Ghys, 2001, Theorem 6.10), s12
and s13 commute. This implies that for all x ∈ R,

f(x+1) = f ◦t(x) = r−1◦s13◦r◦r−1◦s12◦r = r−1◦s12◦r◦r−1◦s13◦r = t◦f(x) = f(x)+1.

As a result, letting π(x) denote the fractional part of x,

π(x) = π(y) ⇔ ∃ k ∈ Z / x = y + k

⇒ f(x) = f(y + k) = f(y) + k

⇒ π ◦ f(x) = π ◦ f(y).

This implies that there exists a function f̃ on the unit circle [0, 1) defined by f̃ ◦π = π ◦ f .

We also obtain that f̃ 2 ◦ π = f̃ ◦ π ◦ f = π ◦ f 2, so that, by a direct induction,

f̃n ◦ π = π ◦ fn, ∀n ∈ Z (6.9)
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3. Orbits of f̃ on the unit circle are dense.

Because s13 and r are increasing C2 diffeomorphisms, so is f . Thus, f̃ is an orientation-
preserving C2 diffeomorphism on the unit circle.18 We can thus apply Denjoy’s theorem
(see, e.g., Navas, 2009, Theorem 3.1.1), and the orbits of any element ẋ ∈ [0, 1) of the
group generated by f̃ are either all finite or all dense. Suppose that they are finite. Then
there exists n ∈ Z∗ such that f̃n(ẋ) = ẋ for all ẋ on the unit circle. Let x ∈ R be such
that π(x) = ẋ. Then, using (6.9), there exists m ∈ Z such that fn(x) = tm(x). Hence,
by definition of f and t, sn13(x) = sm12(x) with n 6= 0, contradicting Assumption 5. We
conclude that any orbit for the group generated by f̃ is dense in [0, 1).

4. O′x0 is dense.
First, O′x0 = r

(
Or−1(x0)

)
, where Or−1(x0) denotes the orbit of r−1(x0) for the group gener-

ated by f and t. Because r is continuous, it suffices to show that Or−1(x0) is dense. For
that purpose, we basically “unroll” the unit circle by successive applications of t.

Fix y ∈ R and consider a neighborhood Vy of y. By definition of the topology on the unit
circle, π(Vy) is a neighborhood of π(y) in the unit circle. Because the orbit of π(r−1(x0))

through f̃ is dense in [0, 1), there exists n ∈ Z such that f̃n ◦ π(r−1(x0)) ∈ π (Vy). Hence,
using Equation 6.9, π ◦ fn(r−1(x0)) ∈ π (Vy), and there exists m ∈ Z such that tm ◦
fn(r−1(x0)) ∈ Vy. This proves that Or−1(x0) is dense on the real line. �

6.6 Proof of Theorem 4.4

Let x1 < ... < xM denote the fixed points of s, x0 = x and xM+1 = x and let i be such
that x0 ∈ [xi, xi+1). Suppose for instance that s(x) > x for all x ∈ (xi, xi+1) (the proof
is identical if s(x) < x). Suppose first that x0 > xi. A straightforward induction shows
that the sequence (sn(x0))n∈N is increasing and bounded by xi+1. Thus, it converges to
l ∈ (xi, xi+1] which satisfies s(l) = l, and l = xi+1. Hence xi+1 ∈ Ox0 . Using similarly the
sequence (s−n(x0))n∈N shows that xi ∈ Ox0 . Thus, by Lemma 3.2, g(., u) is identified at
xi and xi+1. Applying the same reasoning to any x ∈ (xi, xi+1) establishes that xi ∈ Ox.
By Lemma 3.3, g(., u) is identified at x. In a similar way, xi ∈ Ox for all x ∈ (xi−1, xi)

(if i > 0). Hence, g(., u) is identified on (xi−1, xi]. By a straightforward induction, it is
identified on (x, x).

Finally, suppose that x0 = xi. Then, as previously, x0 ∈ Ox for any x ∈ (xi, xi+1), so that
18A map q on the unit circle is orientation-preserving if there exists an increasing function Q on the real

line such that q ◦ π = π ◦Q and Q(x+ 1) = Q(x) + 1.
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by Lemma 3.3 once more we can identify g(x, u) for any x ∈ [xi, xi+1]. We conclude as
before �

6.7 Proof of Theorem 5.1

First, as in the univariate case, functions s ∈ S take the form

s(x1, ..., xd) =

(
µ1

[
K∑
k=2

n(k)ν1(k) + µ−11 (x1)

]
, ..., µd

[
K∑
k=2

n(k)νd(k) + µ−1d (xd)

])
,

for some n = (n(2), ..., n(K)) ∈ ZK−1 . Moreover, any n ∈ ZK−1 corresponds to a function
s ∈ S. We thus have

Ox0 =

{(
µ1

[
K∑
k=2

n(k)ν1(k) + µ−11 (x01)

]
, ..., µd

[
K∑
k=2

n(k)νd(k) + µ−1d (x0d)

])
,

(n(2), ..., n(k)) ∈ ZK−1
}
.

By continuity of µ1, ..., µd, it suffices to show that H = {
∑K

k=2 n(k)A′k−1, n(k) ∈ Z} is
dense in Rd. Because H is an additive subgroup of Rd, it suffices to show (see, e.g.,
Bourbaki, 1974, paragraph 1, n◦3) that

< H, x >⊂ Z =⇒ x = 0, (6.10)

where for any x ∈ Rd,

< H, x >= {h′x, h ∈ H} =

{
K∑
k=2

n(k)Ak−1x, n(k) ∈ Z

}
.

Suppose that < x,H >⊂ Z for some x ∈ Rd. Then Akx ∈ Z for all k = 1, ..., d. Choosing
i > d+ 1 as in Assumption 6, we also have Aix ∈ Z. This implies that

∑d
k=1 λk(Akx) ∈ Z.

Because Akx ∈ Z, Akx = 0 for k = 1, ..., d by Assumption 6. Because (A1, ..., Ad) are
linearly independent, x = 0, implying (6.10) �

6.8 Proof of Theorem 5.2

Suppose without loss of generality that sgn [(sm(xm)− xm)(xm − xm,f )] = −1 for all m =

1...d. To prove Theorem 5.2, it suffices to show that xf = limk→∞ s
k(x) for all x =

(x1, ..., xd) ∈ X , or, equivalently, that for all m = 1...d, xm,f = limk→∞ s
k
m(xm).
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If xm < xm,f , a straightforward induction shows that (skm(x))k∈N is increasing and bounded
above by xm,f . Because s has a unique fixed point, xm,f = limk→∞ s

k
m(xm). Similarly, if

xm > xm,f , skm(x) is decreasing and bounded below by xm,f , and the sequence also converges
to xm,f . �

6.9 Proof of Theorem 5.3

First, some algebra shows that functions s ∈ S take the form

s(x1, ..., xd) =

(
µ1

[
α1 +

(
K∏
k=2

σ1(k)ek

)
µ−11 (x1)

]
, ..., µd

[
αd +

(
K∏
k=2

σd(k)ek

)
µ−1d (xd)

])
,

for some (α1, ..., αd) ∈ Rd and (e2, ..., eK) ∈ ZK−1. Moreover, any e ∈ ZK−1 corresponds to
a function s ∈ S.

Noting βm =
∏K

k=2 σm(k)ek , the function s admits a unique attractive fixed point if, for all
m, 0 < βm < 1. Indeed µm(αm + βmµ

−1
m (xm,f )) = xm,f if and only if µ−1m (xm,f ) = αm

1−βm .
Moreover, µm(α + βµ−1m (xm)) > xm for xm < xm,f . Thus, by Theorem 5.2, it suffices to
show that there exists (e2, ..., eK) ∈ ZK−1 such that(

K∏
k=2

σm(k)ek

)
< 1 for all m ∈ {1, ..., d}. (6.11)

Let M denote the d×K − 1 matrix of typical (i, j) element lnσi(j + 1). Because M is full
rank by assumption, there exists u ∈ RK−1 such that Mu = (1, ..., 1)′. Thus, by density of
QK−1, there exists ũ ∈ QK−1 such thatMũ < 0 ( where the inequality should be understood
componentwise). Moreover, ũ can be written (e2/D, ..., eK/D)′, where (e2, ...eK , D) ∈ ZK .
This implies that M(e2, ...eK)′ < 0 which is equivalent to (6.11). �
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