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Abstract

In this appendix we discuss some Monte Carlo simulations to evaluate the
accuracy of our three-stage estimator in finite samples. We then provide some
descriptives and details on the computation of the stream of earnings in the
application, as well as additional results and robustness checks. Finally, the third
section is devoted to the proofs of our results.

1 Monte Carlo simulations

In this section, we investigate the finite-sample performance of our semiparametric
estimation procedure by simulating the following model with sector-specific variables,
for four different sample sizes (namely n = 500, n = 1, 000, n = 2, 000 and n = 10, 000):

Y0i = X2iβ02 +X3iβ03 + η0i + ν0i

Y1i = X1iβ11 +X3iβ13 + η1i + ν1i

Di = 1{−δ0 +X1i(β11 − γ01) +X2i(−β02 − γ02) +X3i(β13 − β03 − γ03) + η1i − η0i > 0}.

The true values of the parameters are β02 = β03 = 1, β11 = 2, β13 = 0.5, γ01 = −0.5,
γ02 = 0.5, γ03 = −0.8 and δ0 = 0.8, so that Assumption 3.1 is satisfied with j1 = 1
and j2 = 2. We simulate X1i and X2i independently and from a uniform distribu-
tion over [0, 4], while X3i is a discrete regressor drawn from a Bernoulli distribution
∗CREST. E-mail address: xavier.dhaultfoeuille@ensae.fr.
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with parameter 0.5. We let (η0i, η1i)′ be joint normal, with mean (0, 1)′ and a vari-
ance Σ such that Σ11 = Σ22 = 1 and Σ12 = Σ21 = 0.5. (ν0i, ν1i)′ are drawn from a
heteroskedastic normal distribution, with zero mean and a conditional matrix variance
Ω(X) such that Ω11(X) = exp(X2/5), Ω22(X) = exp(X1/5) and Ω12(X) = Ω21(X) =
0.5
√

Ω11(X)Ω22(X).

We implement the three-stage estimation procedure detailed in Section 3 of the main
text. We estimate in the first stage ζ0 = (β1 − β0 − γ0)/(β11 − γ01) by Klein & Spady’s
(1993) semiparametric efficient estimator, with an adaptive gaussian kernel and local
smoothing. In the second stage, we implement Newey’s (2009) method in order to
estimate separately β0 and β1. The series estimator of the selection correction term
was computed using the inverse Mills ratio transform and Legendre polynomials of
order increasing with the sample size at a rate n1/8 (see Newey, 2009, Equation (3.6)
and Assumption (4.5) respectively).1 Using Legendre polynomials instead of simple
power series lead, theoretically speaking, to the same results but avoids numerical
troubles due to quasi multicollinearity (see Newey, 2009). In the third stage, we finally
implement our proposed estimators for δ0 and γ0 with the quartic kernel suggested in
Section 3 of the main text and a bandwidth hn = 0.5σ(Û)n−1/7, where σ(Û) is the
estimated standard deviation of Û . We choose the functions h1(x) = Φ(â0 + â1x)
and h2(x) = xh1(x)−

∫ x
û0
q̂(u, ζ̂)du for the instruments, where Φ(.) denotes the normal

cumulative distribution, (â0, â1) is the probit estimator of D on (1, Û) and û0 is the
sample minimum of Û .2 Finally, no trimming was performed since it did not improve
the accuracy of the estimators in our setting.

The performance of the estimators are summarized in Panel A of Table 1, which re-
ports for each parameter its bias, standard deviation and root mean squared error
(RMSE). The non-pecuniary components γ0 and δ0 are less precisely estimated and the
corresponding estimators display a larger bias than that of the outcome equations pa-
rameters, β0 and β1. Basically, this stems from the sequential structure of the proposed
estimation procedure, and from the fact that, in this specification, no exclusion restric-
tion is used to identify γ0 and δ0. Despite this, the estimators of γ0 and δ0 are accurate
enough for being able to reject in most simulation samples the hypothesis that δ0 = 0
or γ03 = 0 for n = 2, 000 and n = 10, 000, as well as the hypothesis that γ02 = 0 for

1Namely, polynomials of order 6 are used for sample sizes n = 500 and n = 1, 000, order 7 for
n = 2, 000 and 8 for n = 10, 000.

2For the sake of simplicity, we suppose in Section 3 of the main text that the functions h(.) are
known to the econometrician. Assuming alternatively that these functions have to be estimated, as is
the case here, does not affect the root-n consistency and asymptotic normality of the estimators.

2



n = 10, 000. Besides, even for small sample sizes, these estimators display a negligible
bias, compared to their standard deviation, which is reassuring for conducting valid
inference.

We also investigate the effect of using an exclusion restriction on the non-pecuniary
component on the finite-sample performances of the estimators. For that purpose, we
consider the same specification as previously with the exception that γ01 = 0, and
compare estimates obtained when this restriction is known by the econometrician and
when it is not. As explained in the main text, we can recover γ0 in the former case
with the first step estimates alone, and use Equation (3.7) in the main text to estimate
δ0 only. The properties of the unconstrained and constrained estimators are displayed
respectively in Panel B and C of Table 1. Using an exclusion restriction on the non-
pecuniary component leads to a substantial improvement in the performances of the
estimators of γ0, for all sample sizes. Notably, the standard error for γ02 decreases by
about 80% between the two specifications. The performance of the estimator for δ0,
which is still estimated in a third step, is very similar to the unconstrained specification.
Overall, it appears from these Monte Carlo simulations that the constrained estimator
should be preferred in the presence of an exclusion restriction on the non-pecuniary
component. Importantly, whether such an exclusion restriction is valid can be directly
tested in the data after estimating the unconstrained model.

3



Panel A Panel B Panel C
n Coeff. Bias Std dev RMSE Bias Std dev RMSE Bias Std dev RMSE

500 β02 -0.009 0.174 0.174 -0.006 0.161 0.161 -0.006 0.161 0.161
β03 -0.011 0.288 0.288 -0.003 0.259 0.259 -0.003 0.259 0.259
β11 0.003 0.136 0.136 0.004 0.124 0.124 0.004 0.124 0.124
β13 -0.001 0.172 0.172 0.000 0.187 0.187 0.000 0.187 0.187
γ01 0.083 1.781 1.783 -0.017 1.261 1.261 (not estimated)
γ02 -0.106 1.033 1.038 -0.021 0.923 0.923 -0.032 0.207 0.209
γ03 0.035 0.475 0.476 0.012 0.420 0.420 0.020 0.356 0.357
δ0 0.090 0.747 0.753 0.036 0.673 0.674 0.037 0.642 0.643

1,000 β02 -0.009 0.124 0.124 -0.006 0.110 0.110 -0.006 0.110 0.110
β03 -0.003 0.206 0.206 0.002 0.180 0.180 0.002 0.180 0.180
β11 0.005 0.089 0.089 -0.001 0.086 0.086 -0.001 0.086 0.086
β13 0.001 0.122 0.122 0.008 0.127 0.127 0.008 0.127 0.127
γ01 -0.021 1.201 1.201 0.063 0.879 0.881 (not estimated)
γ02 -0.012 0.695 0.695 -0.067 0.651 0.655 -0.019 0.140 0.141
γ03 0.020 0.323 0.323 0.013 0.297 0.297 0.006 0.251 0.251
δ0 0.022 0.510 0.510 0.037 0.454 0.456 0.031 0.446 0.447

2,000 β02 -0.005 0.090 0.090 0.000 0.080 0.080 0.000 0.080 0.080
β03 -0.001 0.136 0.136 0.003 0.125 0.125 0.003 0.125 0.125
β11 0.001 0.067 0.067 0.002 0.062 0.062 0.002 0.062 0.062
β13 -0.001 0.091 0.091 0.002 0.091 0.091 0.002 0.091 0.091
γ01 0.047 0.883 0.884 0.031 0.628 0.629 (not estimated)
γ02 -0.039 0.517 0.519 -0.036 0.466 0.467 -0.014 0.100 0.101
γ03 0.021 0.233 0.234 0.006 0.210 0.210 0.004 0.184 0.184
δ0 0.012 0.360 0.360 0.023 0.332 0.333 0.023 0.331 0.332

10,000 β02 0.003 0.039 0.039 -0.002 0.034 0.034 -0.003 0.036 0.036
β03 -0.005 0.067 0.067 0.001 0.057 0.057 0.002 0.057 0.058
β11 -0.003 0.028 0.028 0.001 0.026 0.027 0.000 0.027 0.027
β13 -0.002 0.039 0.039 -0.004 0.041 0.041 -0.001 0.041 0.041
γ01 0.084 0.385 0.394 0.015 0.276 0.276 (not estimated)
γ02 -0.024 0.232 0.233 -0.010 0.204 0.204 0.000 0.043 0.043
γ03 0.012 0.104 0.105 -0.001 0.088 0.088 -0.005 0.079 0.079
δ0 -0.049 0.153 0.161 -0.004 0.136 0.137 0.000 0.141 0.142

Note: Panel A corresponds to the unconstrained model, while in Panel B and Panel C, γ01 = 0. In
Panel B we suppose that the econometrician ignores this restriction, so that (δ0, γ0) are estimated using
Equation (3.5) in the main text. In panel C, the econometrician knows it, and estimates are based on
Equation (3.7) in the main text. The results were obtained with 1,000 simulations for each sample size.

Table 1: Monte Carlo simulations
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2 Higher education attendance in France: supplementary ma-
terial

We report in Table 2 below some descriptive statistics for the subsample of interest,
according to higher education attendance.

Higher education
attendees High school level

Variable Mean Std. dev. Mean Std. dev.
Initial monthly log wage (1992 French Francs) 8.75 0.44 8.50 0.39
Secondary schooling track
L (Humanities) 0.15 0.36 0.04 0.19
ES (Economics and Social Sciences) 0.17 0.38 0.04 0.19
S (Sciences) 0.32 0.47 0.06 0.23
Vocational 0.04 0.20 0.66 0.47
Technical 0.32 0.46 0.21 0.41
Born abroad 0.02 0.16 0.02 0.15
Father born abroad 0.11 0.32 0.11 0.32
Mother born abroad 0.10 0.31 0.10 0.30
Entering the labor market in 1992 0.46 0.50 0.51 0.50
Entering the labor market in 1998 0.54 0.50 0.49 0.50
Male 0.47 0.5 0.49 0.50
Father’s profession
Farmer 0.06 0.25 0.08 0.27
Tradesman 0.11 0.31 0.11 0.32
Executive 0.26 0.44 0.10 0.30
Intermediate occupation 0.12 0.32 0.09 0.29
Blue collar 0.17 0.38 0.30 0.46
White collar 0.21 0.41 0.25 0.44
Other 0.06 0.24 0.06 0.24
Age in 6th grade
≤ 10 0.10 0.29 0.03 0.17
11 0.84 0.37 0.72 0.45
≥ 12 0.07 0.25 0.25 0.43
Paris region 0.16 0.36 0.12 0.32
Number of higher education years 2.82 1.45 / /
Dropout rate 0.16 0.37 / /

Number of observations 19,143 5,082

Table 2: Descriptive statistics.
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2.1 Computation of the streams of earnings

For each alternative, the discounted streams of log-earnings are set equal to

Y ∗k =
t0,k+A∑
t=t0,k

τ tyk,t,

where yk,t denotes the flow of log-earnings received during year t, τ denotes the annual
discount factor and A is the duration of active life. We account for the opportunity
costs incurred when entering higher education by allowing the year of entry into the
labor market (t0,k) to vary according to the schooling choice. For a given year t, the
variable yk,t is either set equal to the log-wage wt earned during this period if the
individual is employed at that time, or to the unemployment log-benefits bt if the latter
is unemployed. We set the replacement rate equal to 0.7 as often done in the literature.

We do not observe incomes during the whole life cycle in our data, so that we cannot
compute Y ∗ = DY ∗1 + (1 − D)Y ∗0 . Still, we can recover an expectation of this stream
of income under additional assumptions on income dynamics. We suppose here that

yk,t = ρk1{t− t0,k + 1 ≤ B}+ yk,t−1 + νk,t, (2.1)

where ρk denotes the alternative k-specific return to experience and νk,t is an alter-
native k-specific unobserved individual productivity term which is assumed to be in-
dependently and identically distributed over time, with mean zero. We introduce the
dummy 1{t − t0,k + 1 ≤ B} to account for non significant marginal returns to experi-
ence after B years of work (see, e.g., Kuruscu, 2006, for a similar assumption on wage
growth). We also suppose that νk,t is independent of D, so that ρk is simply identified
by ρk = E(yk,t − yk,t−1|D = k), for t ≤ B + t0,k − 1.

Now, let τ̃k = τ t0,k

(
1−τA+1

1−τ

)
, Ck = τ t0,k

(
τ

(1−τ)2

) (
1− τB +BτA+1(τ − 1)

)
and

Yk = τ̃kyD,t0,D
+ ρkCk.

Because τ̃D, CD and ρD are identified for given τ , A and B, we can identify Y =
DY1 + (1 − D)Y0. Moreover, by Equation (2.1), Yk = E(Y ∗k |X, η0, η1, νk,t0,k

), which in
turn implies that E(Yk|X, η0, η1) = E(Y ∗k |X, η0, η1). In other terms, the model may
be written in terms of Yk instead of Y ∗k , and our identification strategy applies with Y
instead of the unobserved variable Y ∗.

In practice, we set τ = 0.95, A = 45 years, B = 25 years and estimate ρ0 and ρ1 to be
respectively 0.025 and 0.042. These estimates were obtained by regressing yk,t0,k+Tk

−
yk,t0,k

on the number of years Tk for which the income is observed, on the subsample
satisfying D = k.
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2.2 Additional results

The first step estimates of (ζ, β0, β1) are displayed in Table 3. Overall, the results
for β0 and β1 display a quite similar pattern. In particular, the local average income
variables that we use as sector-specific variables have a strong positive effect, significant
at the 1% level, on earnings.3 Similarly, individuals entering the labor market in 1998
(relative to 1992) have very significantly higher earnings, reflecting the business cycle.
However, some characteristics only affect the earnings of high school graduates or higher
education attendees. This is in particular the case of gender, with high school male
graduates earning significantly more than females. This is also the case of vocational
secondary schooling tracks relative to technical tracks, which are positively related to
earnings for high school graduates, while this is only true for male higher education
attendees. Conversely, parental profession affects more significantly the earnings of
higher education attendees than high school graduates, with negative signs associated
with inactive, deceased or unemployed mother (referred to as “Other” in the table),
relative to white collar professions. Similarly, higher education attendees whose mother
is employed in an agricultural profession also earn significantly less.

3These local labor market variables were constructed by taking the average log-wages in the de-
partement of residence at the time of entry into junior high school, weighted by the local rates of
employment, over a 5-year time span centered respectively in 1992 or in 1998.
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Variables ζ β0 β1

Local average income
Higher education graduates 1.541*** (0.087) 0 0.019*** (0.004)
High school graduates -1 (0) 0.022*** (0.004) 0
Secondary schooling track
L 9.348*** (0.452) -0.07* (0.039) -0.011 (0.025)
ES 9.899*** (0.416) -0.043 (0.04) -0.002 (0.027)
S 10.133*** (0.426) -0.055 (0.042) -0.012 (0.026)
Vocational -29.131*** (0.488) 0.247** (0.106) -0.086 (0.094)
Technical Ref. Ref. Ref.
Born abroad 1.727*** (0.46) -0.006 (0.017) 0.000 (0.010)
Father born abroad 1.26** (0.451) -0.011 (0.009) 0.011* (0.006)
Mother born abroad 1.591*** (0.464) -0.018* (0.011) 0.007 (0.007)
Entering the labor market in 1998 (relative to 1992) 9.133*** (0.447) 0.097*** (0.035) 0.173*** (0.024)
Male -0.298 (0.401) 0.043*** (0.008) -0.001 (0.003)
Father’s profession
Farmer 2.291*** (0.434) -0.012 (0.012) 0.014 (0.009)
Tradesman 1.289*** (0.43) -0.008 (0.009) -0.005 (0.005)
Executive 3.897*** (0.422) -0.025 (0.016) 0.005 (0.011)
Intermediate occupation 1.799*** (0.457) 0.000 (0.009) 0.004 (0.007)
Blue collar -0.49 (0.418) 0.008 (0.006) -0.007 (0.004)
Other 1.309*** (0.432) -0.013 (0.009) -0.008 (0.006)
White collar Ref. Ref. Ref.
Mother’s profession
Farmer -6.343*** (0.51) 0.042* (0.025) -0.038** (0.018)
Tradesman -0.328 (0.488) 0.008 (0.01) -0.002 (0.006)
Executive 1.279*** (0.469) -0.01 (0.012) -0.006 (0.006)
Intermediate occupation 0.899* (0.489) -0.001 (0.009) -0.001 (0.006)
Blue collar -1.075** (0.438) 0.006 (0.008) 0.002 (0.006)
Other -0.315 (0.411) -0.003 (0.006) -0.019*** (0.004)
White collar Ref. Ref. Ref.
Age in 6th grade
≤ 10 3.825*** (0.465) -0.028 (0.017) 0.007 (0.01)
11 Ref. Ref. Ref.
≥ 12 -5.07*** (0.425) 0.035* (0.018) -0.019 (0.013)
Paris region 1.181*** (0.453) 0.003 (0.012) -0.002 (0.004)
Vocational × ...
Entering the labor market in 1998 -1.012** (0.499) -0.033* (0.018) -0.021 (0.015)
Male 1.622*** (0.477) -0.016 (0.01) 0.022** (0.01)
Paris region -4.402*** (0.521) 0.023 (0.022) -0.013 (0.018)

Standard errors, presented in parentheses, were computed by bootstrap with 200 bootstrap
sample replicates. Significance levels: *** (1%), ** (5%) and * (10%).

Table 3: First step estimates.



2.3 Robustness to alternative computations of the streams of earnings

Finally, we also investigate the sensitivity of our results to the way the streams of
earnings are computed. We reestimate the model with τ = 0.97 instead of τ = 0.95
(as, e.g., Carneiro et al., 2003), and B = 30 instead of B = 25. Results are displayed
respectively in Panel 3 and 4 of Table 4 (Panel 1 and 2 corresponding to the robustness
checks described in the main text). Once more, non-pecuniary components estimates
are robust to this change. Standard errors, and thus the significance of some parameters,
are slightly more affected by the specification choice. We also display in Figure 1 the
estimate of the distribution of the ex ante returns to education with these alternative
specifications.4 Returns with B = 30 are nearly indistinguishable from the ones with
B = 25. The distribution corresponding to τ = 0.97 slightly dominates them, but
remains within the confidence interval of the baseline specification. Finally, we also
estimate the streams of earnings where people are aware of their own annual increase
ρi of log-earnings, instead of just anticipating an average increase. We estimate ρi by
OLS and compute the corresponding streams of earnings. Because of large errors on
the estimated ρi and the sample reduction (ρi can be estimated only when at least two
wages are reported, leaving us with only 9,364 individuals), no coefficient is significant
anymore. The signs of γ remain however the same. Hence, our results are overall robust
to alternative computations of Y .

4Figure 2 displays the ex ante returns to education under the alternative identification strategies.

9



Variable Panel 1 Panel 2 Panel 3 Panel 4

Constant (δ0) -0.016 (0.171) 0.006 (0.175) -0.028 (0.164) -0.024 (0.155)
Local average income
Higher education graduates -0.01 (0.007) -0.013* (0.008) -0.01 (0.008) -0.014* (0.008)
Local rate of honours -0.014 (0.031)
Secondary schooling track
L -0.128*** (0.046) -0.132***(0.049) -0.117** (0.059) -0.142*** (0.054)
ES -0.154*** (0.05) -0.162*** (0.052) -0.15** (0.063) -0.172*** (0.058)
S -0.146*** (0.051) -0.164*** (0.054) -0.135** (0.066) -0.175*** (0.061)
Vocational 0.227 (0.226) 0.351** (0.173) 0.251 (0.175) 0.293* (0.165)
Technical Ref. Ref. Ref. Ref.
Born abroad -0.02 (0.02) -0.032 (0.02) -0.03 (0.022) -0.032 (0.021)
Father born abroad 0 (0.01) -0.005 (0.011) -0.006 (0.012) -0.005 (0.011)
Mother born abroad -0.011 (0.011) -0.006 (0.012) -0.009 (0.014) -0.009 (0.013)
Entering the labor market in 1998 (relative to 1992) -0.094*** (0.034) -0.106** (0.045) -0.113** (0.055) -0.12** (0.051)
Male -0.061*** (0.012) -0.043*** (0.008) -0.044*** (0.009) -0.038*** (0.009)
Father’s profession
Farmer -0.02 (0.016) -0.022 (0.016) -0.018 (0.018) -0.023 (0.017)
Tradesman -0.021** (0.009) -0.026** (0.013) -0.02* (0.012) -0.025** (0.011)
Executive -0.051** (0.023) -0.053** (0.022) -0.043* (0.024) -0.055** (0.022)
Intermediate occupation -0.034** (0.014) -0.04*** (0.015) -0.03** (0.013) -0.035*** (0.012)
Blue collar -0.009 (0.007) -0.007 (0.007) -0.005 (0.009) -0.004 (0.008)
Other -0.016 (0.011) -0.018 (0.011) -0.021* (0.012) -0.023** (0.011)
White collar Ref. Ref. Ref. Ref.
Mother’s profession
Farmer 0.049 (0.034) 0.045 (0.03) 0.049 (0.039) 0.057 (0.037)
Tradesman -0.008 (0.01) 0.002 (0.012) -0.006 (0.012) -0.003 (0.011)
Executive -0.017 (0.012) -0.018 (0.012) -0.017 (0.015) -0.023* (0.014)
Intermediate occupation -0.018 (0.012) -0.017 (0.011) -0.019 (0.012) -0.019* (0.011)
Blue collar 0.011 (0.007) 0.017* (0.01) 0.016 (0.01) 0.019* (0.01)
Other -0.008 (0.007) -0.01 (0.006) -0.009 (0.007) -0.01 (0.007)
White collar Ref. Ref. Ref. Ref.
Age in 6th grade
≤ 10 -0.037* (0.021) -0.039** (0.019) -0.033 (0.025) -0.047** (0.024)
11 Ref. Ref. Ref. Ref.
≥ 12 0.06* (0.036) 0.05** (0.024) 0.048* (0.028) 0.056** (0.026)
Paris region -0.024* (0.012) -0.023* (0.012) -0.018 (0.014) -0.03** (0.012)
Vocational × ...
Entering the labor market in 1998 0.019 (0.023) 0.04* (0.023) 0.02 (0.026) 0.034 (0.024)
Male 0.019 (0.016) 0.004 (0.015) 0.008 (0.015) 0.003 (0.014)
Paris region 0.045* (0.025) 0.052* (0.028) 0.038 (0.032) 0.059** (0.029)

In Panel 1, the higher education dropouts are excluded from the sample. In Panel 2, the local rate of honours is included in the
estimation. In Panel 3 and 4, the streams of income were computed using (τ = 0.97, B = 25) and (τ = 0.95, B = 30) respectively.
Standard errors, presented in parentheses, were computed by bootstrap with 200 sample replicates. Significance levels: ∗∗∗ (1%), ∗∗

(5%) and ∗ (10%).

Table 4: Estimates of non-pecuniary factors: robustness checks.
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Figure 1: Ex ante returns to higher education under alternative com-
putations of the streams of earnings.
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Figure 2: Ex ante returns to higher education: robustness of the in-
strumental strategy.
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3 Proofs

3.1 Proofs of the main results

Theorem 2.1

First, by Assumption 2.2, T (., x−1) is identified everywhere on the support of X1 condi-
tional on X−1 = x−1, for almost all x−1. Next, by Assumption 2.3 and the fundamental
theorem of calculus,

∂q0

∂x1
(x1, x−1) = −∂(T +G)

∂x1
(x1, x−1)fη∆ (T (x1, x−1) +G(x1, x−1)) , (3.1)

for almost all x−1 in the support of X−1 and all x1 in the support of X1 conditional
on X−1 = x−1. Fix x−1 so that Equations (2.6) in the main text and (3.1) above hold
(the set of such x−1 being of probability one). By Assumption 2.3, ∂q0

∂x1
(x1, x−1) 6= 0 as

soon as ∂(T+G)
∂x1

(x1, x−1) 6= 0. Hence, by Equation (2.6) in the main text, G(., x−1) is
identified everywhere on the set

Ax−1 = {x1 : ∂(T +G)
∂x1

(x1, x−1) 6= 0}.

By continuity of G(., x−1), it is identified on the closure of Ax−1 . If this set is equal to
the support of X1 conditional on X−1 = x−1, then G is identified. Otherwise, let us
consider x1 6∈ Ax−1 . Because Ax−1 6= ∅ by Assumption 2.4, either Ax−1 ∩ (−∞, x1) or
Ax−1 ∩ (x1,∞) is nonempty. Suppose without loss of generality that Ax−1 ∩ (−∞, x1)
is nonempty, and let x1 denote its supremum. If x1 = x1, then G is identified at x1

because it is identified on the closure of Ax−1 which contains x1. Otherwise, we have
by definition ∂(T+G)

∂x1
(., x−1) = 0 on (x1, x1]. Thus, [T +G](., x−1) is constant on (x1, x1]

and, by continuity, on [x1, x1]. Hence,

G(x1, x−1) = −T (x1, x−1) +G(x1, x−1) + T (x1, x−1).

The result follows because G(x1, x−1), T (x1, x−1) and T (x1, x−1) are identified.

Proposition 2.2

Recall that εk = ηk + νk for k ∈ {0, 1}. Because E(νk|X, η0, η1) = 0, we have
E(νk|X,D = k) = 0. Moreover, by by Assumption 2.3, Sη∆ is strictly decreasing.
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Thus, by Assumptions 2.1 and 2.3,

E(ε1|D = 1, X = x) = E(η1D|X = x)
P (D = 1|X = x)

= E (η11{η∆ ≥ ψ0(x)− ψ1(x) +G(x)})
P (D = 1|X = x)

= E(η11{Sη∆ (η∆) ≤ P (D = 1|X = x)})
P (D = 1|X = x) .

In other terms, there exists a measurable function h such that E(ε1|D = 1, X) =
h(P (D = 1|X)). Now, by Assumption 2.6,

E(Y |D = 1, X) = ψ1(X̃1) + h(P (D = 1|X)).

Suppose that there exists ψ̃1 and h̃ such that

E(Y |D = 1, X) = ψ̃1(X̃1) + h̃(P (D = 1|X)).

Then
(ψ̃1 − ψ1)(X̃1) + (h̃− h)(P (D = 1|X)) = 0

By the measurably separation condition, this implies that ψ̃1 and ψ1 are almost surely
equal up to a constant. This constant is identified by Assumption 2.5. Thus, ψ1 is
identified. ψ0 can be recovered by the same argument.

Proposition 2.3

The proof relies on Theorem 2.1 of D’Haultfoeuille & Maurel (2012). Their Assumptions
1 and 2 are satisfied by Conditions (i) and (ii) of Assumption 2.7. All we have to check
is that their Assumption 3 also holds. For that purpose, remark that for k ∈ {0, 1},

P (D = k|X = x, Yk = y) = P (D = k|X = x, εk = y − ψk(x))

= P (ηk − η1−k > ψ1−k(x)− ψk(x) +G(x)|ηk + νk = y − ψk(x)).

Thus, by Condition (iii) of Assumption 2.7,

lim
y→∞

P (D = k|X = x, Yk = y) = 1, for all x.

This implies Assumption 3 of D’Haultfoeuille & Maurel (2012), and the result follows.
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Theorem 3.1

Before establishing the result, let us introduce some notations. Let f(., ζ) denote the
density of X ′ζ, q(u, ζ) = E(D|X ′ζ = u), r(., ζ) = q(., ζ) × f(., ζ) and define f0(.) =
f(., ζ0), q0(.) = q(., ζ0) and r0(.) = q0(.)f0(.). Consider the kernel estimators

f̂(u, ζ) = 1
nhn

n∑
i=1

K

(
u−X ′iζ
hn

)

and r̂(., ζ) = q̂(., ζ)× f̂(., ζ), where q̂(., ζ) is defined by Equation (3.6) in the main text.
Let us also define Zi(ζ) = 1{Xi ∈ X}h(X ′iζ) and, for any µ = (r(.), f(.), ζ, β̃0, β̃1),

Vi(µ) = DiX
′
iζ −

∫ X′iζ

u0

r(u)
f(u)du.

We then let Wi(µ) = (1, Di, Vi(µ))′. Thus, Ŵi = Wi(µ̂) and Wi = Wi(µ0), with
µ̂ = (r̂(., ζ̂), f̂(., ζ̂), ζ̂, β̂0, β̂1) and µ0 = (r0, f0, ζ0, β0, β1). Similarly, let

εi(µ) = Yi −X ′i
(
Diβ̃1 + (1−Di)β̃0

)
.

Eventually, let g(Ai, θ, µ) = Zi(ζ)(εi(µ) − Wi(µ)′θ) and g(Ai, µ) = g(Ai, θ0, µ), with
Ai = (Di, Yi, Xi). Then E[g(A, µ0)] = 0 and

n∑
i=1

g(Ai, θ̂, µ̂) = 0.

Thus, θ̂ is a two step GMM estimator with a nonparametric first step estimator, and
we follow Newey & McFadden (1994)’s outline for establishing asymptotic normality.
Some differences arise however because of the estimation of ζ in the nonparametric
estimator of q0. The proof of the theorem proceeds in three steps.

Step 1. We first show that µ 7→ ∑n
i=1 g(Ai, µ) can be linearized in a convenient way.

Recalling that Ui = X ′iζ0, we let

G(Ai, µ) = ξi
∂Zi
∂ζ

(ζ0)′ζ + Zi(ζ0)
[
−X ′i(Diβ̃1 + (1−Di)β̃0)−

(
DiX

′
iζ

−q0(Ui)X ′iζ −
∫ Ui

u0

∂q

∂ζ
(u, ζ0)′ζ + 1

f0(u) (r(u)− q0(u)f(u)) du
)
α0

]
.

Note that ∂q/∂ζ(., ζ0) exists under Assumptions 2.3 and 3.2, by Lemma 3.1 below. Let
us also define µ̃ = (r̃, f̃ , ζ̂, β̂0, β̂1) where r̃ = r̂(., ζ0) and f̃ = f̂(., ζ0). We shall prove
that

1√
n

n∑
i=1

[g(Ai, µ̂)− g(Ai, µ0)−G(Ai, µ̃− µ0)] = oP (1). (3.2)
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For that purpose, we use the decomposition

g(Ai, µ̂)− g(Ai, µ0)−G(Ai, µ̃− µ0) = R1i +R2i +R3i +R4i +R5i

where, denoting by h′(.) the vector of derivatives of h(.) and q̃ = r̃/f̃ , we let

R1i = ξi1{Xi ∈ X}
(
h(Ûi)− h(Ui)− (Ûi − Ui)h′(Ui)

)
,

R2i = α0Zi(ζ0)
[∫ Ûi

Ui

q̂(u, ζ̂)du− q0(Ui)(Ûi − Ui)
]
,

R3i = α0Zi(ζ0)
∫ Ui

u0
q̂(u, ζ̂)− q̃(u)− ∂q

∂ζ
(u, ζ0)′(ζ̂ − ζ0)du,

R4i = α0Zi(ζ0)
∫ Ui

u0
q̃(u)− q0(u)− 1

f0(u)
(
r̃(u)− r0(u)− q0(u)(f̃(u)− f0(u))

)
du,

R5i = [εi(µ̂)− εi(µ0)− (Wi(µ̂)−Wi(µ0))′θ0]
[
Zi(ζ̂)− Zi(ζ0)

]
.

We now check that for all k ∈ {1, ..., 5}, 1√
n

∑n
i=1Rki = oP (1).

−R1i: by Assumption 3.2, there exists C0 such that ‖X‖ ≤ C0, where ‖.‖ denotes the
euclidian norm. Then, by the Cauchy-Schwarz inequality, |Ûi−Ui| ≤ C0||ζ̂−ζ0||. Thus,
by Assumptions 3.4 and 3.7,

√
n max
i=1,...,n

∣∣∣h(Ûi)− h(Ui)− (Ûi − Ui)h′(Ui)
∣∣∣ ≤ √

nM max
i=1,...,n

|Ûi − Ui|2

≤ MC2
0
√
n||ζ̂ − ζ0||2

= oP (1),

where M = ‖max |h′′|‖. Besides, ∑n
i=1 |ξi|/n = OP (1). Thus,∥∥∥∥∥ 1√
n

n∑
i=1

R1i

∥∥∥∥∥ = oP (1).

−R2i: Let S0 = {x′ζ0, x ∈ X}. By definition, S0 ( S, where S denotes the support
of U . Besides, by definition, Zi(ζ0) = Zi(ζ0)1{Ui ∈ S0}. Moreover, for all i such that
Ûi ∈ S0, there exists, by the mean value theorem, Ũi = tUi + (1− t)Ûi, with t ∈ [0, 1],
such that

∫ Ûi
Ui
q0(u)du = q0(Ũi)(Ûi − Ui). Thus, when Ûi ∈ S0,

‖R2i‖ =
∥∥∥∥∥α0Zi(ζ0)1{Ui ∈ S0}

{∫ Ûi

Ui

[
q̂(u, ζ̂)− q0(u)

]
du+

∫ Ûi

Ui

q0(u)du− q0(Ui)(Ûi − Ui)
}∥∥∥∥∥

≤ C1

∣∣∣Ûi − Ui∣∣∣
[

sup
u∈S0

∣∣∣q̂(u, ζ̂)− q0(u)
∣∣∣+ max

i:Ûi∈S

∣∣∣q0(Ũi)− q0(Ui)
∣∣∣]

≤ C0C1

∥∥∥ζ̂ − ζ0

∥∥∥ [sup
u∈S0

∣∣∣q̂(u, ζ̂)− q0(u)
∣∣∣+ max

i:Ûi∈S

∣∣∣q0(Ũi)− q0(Ui)
∣∣∣] ,
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where C1 > 0 is a constant such that ‖α0Zi(ζ0)‖ ≤ C1, which exists by Assumptions
3.2 and 3.7. Besides, because q̂(., ζ̂) and q0(.) are bounded above by 1, we have, when
Ûi 6∈ S0,

‖R2i‖ ≤ 2C0C1

∥∥∥ζ̂ − ζ0

∥∥∥1{Ui ∈ S0}.

Hence,

‖R2i‖ ≤ C0C1

∥∥∥ζ̂ − ζ0

∥∥∥ [sup
u∈S0

∣∣∣q̂(u, ζ̂)− q0(u)
∣∣∣+ max

i:Ûi∈S

∣∣∣q0(Ũi)− q0(Ui)
∣∣∣

+21{Ui ∈ S0, Ûi 6∈ S0}
]
. (3.3)

By Assumption 3.4,
√
n
∥∥∥ζ̂ − ζ0

∥∥∥ = OP (1). Let us now show that the term into brackets
in (3.3) is a oP (1). By Lemma 3.2 below, supu∈S0 |q̂(u, ζ̂) − q0(u)| = oP (1). Now fix
ε > 0. Because q0(.) is continuous by Assumption 2.3 and S is compact, q0(.) is
uniformly continuous on S. Thus, there exists δ > 0 such that for all (u, v) ∈ S2

satisfying |u− v| ≤ δ, we have |q0(u)− q0(v)| ≤ ε. As a consequence,

P

(
max
i:Ûi∈S

∣∣∣q0(Ũi)− q0(Ui)
∣∣∣ ≤ ε

)
≥ P

(
max
i:Ûi∈S

∣∣∣Ũi − Ui∣∣∣ ≤ δ

)
.

Because |Ũi − Ui| ≤ |Ûi − Ui| ≤ C0

∥∥∥ζ̂ − ζ0

∥∥∥, the right-hand side tends to one. This
proves that

max
i:Ûi∈S

∣∣∣q0(Ũi)− q0(Ui)
∣∣∣ = oP (1).

It remains to show that
1
n

n∑
i=1

1{Ui ∈ S0, Ûi 6∈ S0} = oP (1). (3.4)

For all δ > 0, let Sδ = {s ∈ S0/∃s′ 6∈ S0/|s − s′| < δ}. Fix ε > 0 and let K > 0 be
such that P (Ui ∈ SK) < ε/2. For n large enough, P (C0

∥∥∥ζ̂ − ζ0

∥∥∥ > K) < ε/2. Because
|Ui − Ûi| ≤ C0

∥∥∥ζ̂ − ζ0

∥∥∥, we have, for n large enough,

P
(
Ui ∈ S0, Ûi 6∈ S0

)
≤ ε

2 + P
(
Ui ∈ S0, Ûi 6∈ S0, C0||ζ̂ − ζ0|| ≤ K

)
≤ ε

2 + P (Ui ∈ SK)

≤ ε.

Because ε was arbitrary, this proves that

E

[∣∣∣∣∣ 1n
n∑
i=1

1{Ui ∈ S0, Ûi 6∈ S0}
∣∣∣∣∣
]
→ 0.

This establishes (3.4) since convergence in L1 implies convergence in probability. As a
result, ∑n

i=1R2i/
√
n = oP (1).
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−R3i: By the mean value theorem, there exists ζ̃u in the segment between ζ0 and ζ̂

such that
q̂(u, ζ̂)− q̃(u) = ∂q̂

∂ζ
(u, ζ̃u)′(ζ̂ − ζ0).

Because Ui is bounded, there exists C2 such that |Ui − u0| < C2. Thus,

|R3i| = ‖α0Zi(ζ0)‖
∣∣∣∣∣
[∫ Ui

u0

∂q̂

∂ζ
(u, ζ̃u)−

∂q

∂ζ
(u, ζ0)du

]′
(ζ̂ − ζ0)

∣∣∣∣∣1{Ui ∈ S0}

≤ C1C2

∥∥∥ζ̂ − ζ0

∥∥∥ sup
u∈S0

∥∥∥∥∥∂q̂∂ζ (u, ζ̃u)−
∂q

∂ζ
(u, ζ0)

∥∥∥∥∥ .
The supremum tends to zero in probability by Lemma 3.2. As a result, ∑n

i=1R3i/
√
n =

oP (1).

−R4i: following Newey & McFadden (1994, p. 2204), we have

|R4i| ≤ C11{Ui ∈ S0}
∫ Ui

u0

1
f̃(u)f0(u)

[1 + |q0(u)|]
[
|f̃(u)− f0(u)|2 + |r̃(u)− r0(u)|2

]
du

≤ 2C1C2

infu∈S0 f̃(u) infu∈S0 f0(u)

(sup
u∈S0

|f̃(u)− f0(u)|
)2

+
(

sup
u∈S0

|r̃(u)− r0(u)|
)2
 .(3.5)

Assumption 3.2 implies that the density of Ui is positive in the interior of S. Thus,
infu∈S0 f0(u) > 0. By uniform consistency of f̃ on S0 (see, e.g., Lemma 8.10 of Newey
& McFadden, 1994) the ratio in the right-hand side of (3.5) is a OP (1). Thus it suffices
to show that supu∈S0 |f̃(u)− f0(u)| = oP (n−1/4) and similarly for r̃. The result follows
from Assumption 3.6, the rate condition on hn and Lemma 8.10 of Newey & McFadden
(1994).

−R5i: first, note that∣∣∣εi(µ̂)− εi(µ0)− (Wi(µ̂)−Wi(µ0))′ θ0

∣∣∣1{Xi ∈ X}

=
∣∣∣∣∣X ′i(Di(β1 − β̂1) + (1−Di)(β0 − β̂0)) +

(
Di(Ui − Ûi) +

∫ Ûi

Ui

q̂(u, ζ̂)du

+
∫ Ui

u0

[
q̂(u, ζ̂)− q0(u)

]
du

)
α0

∣∣∣∣∣1{Xi ∈ X}

≤ C0
(∥∥∥β̂1 − β1

∥∥∥+
∥∥∥β̂0 − β0

∥∥∥+ 2|α0|
∥∥∥ζ̂ − ζ0

∥∥∥)+ C2|α0| sup
u∈S0

|q̂(u, ζ̂)− q0(u)|.

where the first term of the upper bound follows from the Cauchy-Schwarz inequality.

Besides, with probability approaching one, there exists a compact which contains Ûi
and Ui for all i. Thus, because h′ is continuous, there exists C3 > 0 such that, with
probability approaching one,∥∥∥Zi(ζ̂)− Zi(ζ0)

∥∥∥ ≤ C3

∥∥∥ζ̂ − ζ0

∥∥∥ .
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Hence, with probability approaching one,∣∣∣∣∣ 1√
n

n∑
i=1

R5i

∣∣∣∣∣ ≤ [
C0C3

√
n
∥∥∥ζ̂ − ζ0

∥∥∥] [∥∥∥β̂1 − β1

∥∥∥+
∥∥∥β̂0 − β0

∥∥∥+ 2|α0|
∥∥∥ζ̂ − ζ0

∥∥∥
+C2|α0| sup

u∈S0

|q̂(u, ζ̂)− q0(u)|
]
.

By Assumption 3.4, the first term into brackets in the right-hand side is a OP (1). By
Lemma 3.2 and Assumptions 3.4 and 3.5, the second term is a oP (1). The result follows.

Step 2. Now, let us show that 1/
√
n
∑n
i=1G(Ai, µ̃ − µ0) can be linearized. Let κ0 =

(ζ0, β1, β0)′ and κ̂ = (ζ̂ , β̂1, β̂0)′. We have

G(Ai, µ̃− µ0) = P ′i (κ̂− κ0) + G̃(Ai, r̃, f̃),

with Pi = (P1i, P2i, P3i)′ and

P1i = ξi
∂Zi
∂ζ

(ζ0)′ − α0Zi(ζ0)
(
DiX

′
i − q0(Ui)X ′i −

∫ Ui

u0

∂q

∂ζ ′
(u, ζ0)du

)
P2i = −Zi(ζ0)DiX

′
i

P3i = −Zi(ζ0)(1−Di)X ′i
G̃(Ai, r̃, f̃) = α0Zi(ζ0)

∫ Ui

u0
(1/f0(u))(r̃(u)− q0(u)f̃(u))du.

By the weak law of large numbers,

1
n

n∑
i=1

Pi
P−→ E [P ] .

Moreover, by Assumptions 3.4 and 3.5,

√
n (κ̂− κ0) = 1√

n

n∑
i=1

(χi, χ1i, χ0i)′ + oP (1).

Thus, (
1
n

n∑
i=1

Pi

)′√
n(κ̂− κ0) = 1√

n

n∑
i=1

Ω1i + oP (1), (3.6)

where
Ω1i = E[P ]′ (χi, χ1i, χ0i)′ . (3.7)

Thus, it suffices to focus on the nonparametric part of G, G̃(Ai, r̃, f̃). The main insight
here is that G̃ is nearly the linearized part of the consumer surplus example of Newey
& McFadden (1994, p. 2204), except that their b is replaced by Ui. Thus, it suffices to
modify slightly their proof (see Newey &McFadden, 1994, p. 2211) to satisfy Conditions
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(ii), (iii) and (iv) as well as the technical requirements of their Theorem 8.11. As a
result, we get

1√
n

n∑
i=1

G̃(Ai, r, f) = 1√
n

n∑
i=1

Ω2i + oP (1), (3.8)

where Ω2i = α0Zi(ζ0)(1 − F0(Ui))1{Ui ≥ u0}(Di − q0(Ui))/f0(Ui), F0(.) denoting the
cumulative distribution function of U . The result follows.

Step 3. Eventually, we establish the asymptotic normality of θ̂. By (3.2), (3.6) and
(3.8) and the central limit theorem,

1√
n

n∑
i=1

g(Ai, µ̂) d−→ N (0, V (g(A, µ0) + Ω11 + Ω21)) .

Thus, by definition of θ̂ and g(Ai, θ, µ̂),[
1
n

n∑
i=1

Zi(ζ̂)Wi(µ̂)′
]
√
n(θ̂ − θ0) d−→ N (0, V (g(A, µ0) + Ω11 + Ω21)) .

Now,

Zi(ζ̂)Wi(µ̂)′ = Zi(ζ0)Wi(µ0)′ + Zi(ζ̂)(Wi(µ̂)−Wi(µ0))′ + (Zi(ζ̂)− Zi(ζ0))Wi(µ0)′.

Besides, by Assumption 3.7,
∥∥∥Zi(ζ̂)− Zi(ζ0)

∥∥∥ ≤ C3

∥∥∥ζ̂ − ζ0

∥∥∥ for a given C3 > 0. More-
over, reasoning as with R5i, we get

‖Wi(µ̂)−Wi(µ0)‖ ≤ 2C0

∥∥∥ζ̂ − ζ0

∥∥∥+ C2 sup
u∈S0

|q̂(u, ζ̂)− q0(u)|.

Finally, ‖Wi(µ0)‖ and
∥∥∥Zi(ζ̂)

∥∥∥ are bounded with probability approaching one. As a
result,

1
n

n∑
i=1

Zi(ζ̂)Wi(µ̂)′ = 1
n

n∑
i=1

Zi(ζ0)Wi(µ0)′ + oP (1).

Thus, by the weak law of large numbers,

1
n

n∑
i=1

Zi(ζ̂)Wi(µ̂)′ P−→ E(Z(ζ0)W (µ0)′) = E(ZW ′).

Eventually, by Slutski’s lemma, and given that g(A, µ0) = Zξ,

√
n(θ̂ − θ0) d−→ N

(
0, E(ZW ′)−1V (Zξ + Ω11 + Ω21)E(WZ ′)−1

)
.

This concludes the proof.

19



3.2 Technical lemmas

Lemma 3.1 Suppose that Assumptions 2.3 and 3.2 hold. Then, for all u ∈ S, the
support of U , ζ 7→ f(u, ζ) and ζ 7→ r(u, ζ), the density of X ′ζ and the derivative of
u 7→ E(D1{X ′ζ ≤ u}) respectively, admit partial derivatives at ζ0 which satisfy:

∂f

∂ζ
(u, ζ0) = − (E [X|U = u] f0(u))′ (3.9)

∂r

∂ζ
(u, ζ0) = − (E [DX|U = u] f0(u))′ (3.10)

Proof: let X−m = (X1, ..., Xm−1, Xm+1..., Xp) and fXm|X−m(., x) (resp. FXm|X−m(., x))
denote the density (resp. cumulative distribution function) ofXm conditional onX−m =
x. Let also δk denote the vector of dimension p, with 1 at the k-th component and 0
elsewhere. We have

f(u, ζ + tδk) =

∣∣∣∣∣∣∣∣
E
[
fXm|X−m

(
u−X′−mζ−m−tXk

ζm
, X−m

)]
if k 6= m,

E
[
fXm|X−m

(
u−X′−mζ−m

ζm+t , X−m

)]
if k = m.

Thus, by Assumption 3.2 and dominated convergence, ζ 7→ f(u, ζ) admits continuous
partial derivatives. Now, let F (., ζ) denote the cumulative distribution function of X ′ζ.
We have,

F (u, ζ + tδk) =

∣∣∣∣∣∣∣∣
E
[
FXm|X−m

(
u−X′−mζ−m−tXk

ζm
, X−m

)]
if k 6= m,

E
[
FXm|X−m

(
u−X′−mζ−m

ζm+t , X−m

)]
if k = m.

Thus, by Assumption 3.2 and dominated convergence, ζ 7→ F (u, ζ) admits continuous
partial derivatives, and after some rearrangements,

∂F

∂ζk
(u, ζ0) = −E [Xk|U = u] f0(u).

By Assumption 3.2 once more, u 7→ ∂F/∂ζk(u, ζ0) is continuously differentiable and

∂2F

∂u∂ζ
(u, ζ0) = − (E [X|U = u] f0(u))′ .

Then (3.9) follows from ∂f/∂ζ = ∂2F/∂ζ∂u = ∂2F/∂u∂ζ.

The proof of (3.10) is similar, except that we use G0(u, ζ) = E(D1{X ′ζ ≤ u}) instead
of F (u, ζ). The partial derivatives of ζ 7→ G0(u, ζ) exist and satisfy

∂G0

∂ζ
(u, ζ) = −E (DX|U = u) f0(u)

= −Sη∆(u+ δ0)E (X|U = u) f0(u).
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Then differentiability of u 7→ ∂G0/∂ζ(u, ζ) stems from Assumptions 2.3 and 3.2. Equa-
tion (3.10) follows from the same argument as previously.

Lemma 3.2 Suppose that nh6
n → ∞, nh8

n → 0 and Assumptions 3.2 and 3.6 hold.
Then, for all closed interval S ′ strictly included in the interior of S and for all ζu,n
such that supu∈S′ ‖ζu,n − ζ0‖ = OP (1/

√
n), we have,

sup
u∈S′
|q̂(u, ζu,n)− q0(u)| = oP (1) (3.11)

sup
u∈S′

∥∥∥∥∥∂q̂∂ζ (u, ζu,n)− ∂q

∂ζ
(u, ζ0)

∥∥∥∥∥ = oP (1) (3.12)

Proof: we first write

sup
u∈S′
|q̂(u, ζu,n)− q0(u)| ≤ sup

u∈S′
|q̂(u, ζu,n)− q̂(u, ζ0)|+ sup

u∈S′
|q̂(u, ζ0)− q0(u)| (3.13)

Let us first consider the the first term of the r.h.s. Since |q̂(u, ζu,n)| ≤ 1, we have

sup
u∈S′
|q̂(u, ζu,n)− q̂(u, ζ0)| = sup

u∈S′

∣∣∣(r̂(u, ζu,n)− r̂(u, ζ0)) + q̂(u, ζu,n)(f̂(u, ζ0)− f̂(u, ζu,n))
∣∣∣

f̂(u, ζ0)

≤ sup
u∈S′

1
f̂(u, ζ0)

[
|r̂(u, ζu,n)− r̂(u, ζ0)|+

∣∣∣f̂(u, ζu,n)− f̂(u, ζ0)
∣∣∣]

≤ 1
infu∈S′ f̂(u, ζ0)

[
sup
u∈S′
|r̂(u, ζu,n)− r̂(u, ζ0)|

+ sup
u∈S′

∣∣∣f̂(u, ζu,n)− f̂(u, ζ0)
∣∣∣] . (3.14)

Let us prove that
sup
u∈S′

∣∣∣f̂(u, ζu,n)− f̂(u, ζ0)
∣∣∣ = oP (1) (3.15)

The proof for r̂ is similar. By Assumption 3.6, there exists C4 > 0 such that |K(u) −
K(v)| ≤ C4|u− v|. Thus,∣∣∣f̂(u, ζu,n)− f̂(u, ζ0)

∣∣∣ ≤ 1
nhn

n∑
i=1

∣∣∣∣∣K
(
u−X ′iζu,n

hn

)
−K

(
u−X ′iζ0

hn

)∣∣∣∣∣
≤ C4C0 ‖ζu,n − ζ0‖

h2
n

≤ C4C0 supu∈S′ ‖ζu,n − ζ0‖
h2
n

= Op

(
1√
nh2

n

)
.

This establishes (3.15) since nh4
n →∞. Because

inf
u∈S′

f̂(u, ζ0) ≥ − sup
u∈S′

∣∣∣f̂(u, ζu,n)− f̂(u, ζ0)
∣∣∣+ inf

u∈S′
f0(u),
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and because infu∈S′ f0(u) > 0 by Assumption 3.2, we also have
1

infu∈S′ f̂(u, ζ0)
= Op(1).

By (3.14), the first term of (3.13) tends to zero.

As for the second term, we can obtain the same decomposition as (3.14). Then As-
sumptions 3.2 and 3.6, and conditions on hn ensure that we can apply Lemma 8.10 of
Newey & McFadden (1994), yielding supu∈S′ |f̂(u, ζ0)−f0(u)| = oP (1) and similarly for
r̂(., ζ0). This establishes (3.11).

Now, let us turn to (3.12). We use the same decomposition as (3.13). First, let us
establish that

sup
u∈S′

∣∣∣∣∣∂q̂∂ζ (u, ζ0)− ∂q

∂ζ
(u, ζ0)

∣∣∣∣∣ = oP (1) (3.16)

We have
∂q̂

∂ζ
(u, ζ0) = 1

f̂(u, ζ0)

[
∂r̂

∂ζ
(u, ζ0)− q̂(u, ζ0)∂f̂

∂ζ
(u, ζ0)

]
.

and similarly for ∂q/∂ζ(u, ζ0). Thus,
∂q̂

∂ζ
(u, ζ0)− ∂q

∂ζ
(u, ζ0)

= 1
f̂(u, ζ0)

{[
∂r̂

∂ζ
(u, ζ0)− ∂r

∂ζ
(u, ζ0)

]
− ∂r

∂ζ
(u, ζ0)

[
f̂(u, ζ0)− f0(u)

f0(u)

]}

− q̂(u, ζ0)
f̂(u, ζ0)

[(
∂f̂

∂ζ
(u, ζ0)− ∂f

∂ζ
(u, ζ0)

)
− ∂f/∂ζ(u, ζ0)

f0(u)
(
f̂(u, ζ0)− f0(u)

)]

−∂f/∂ζ(u, ζ0)
f0(u) (q̂(u, ζ0)− q0(u)) .

By what precedes, infu∈S′ f̂(u, ζ0) tends in probability to infu∈S′ f0(u) > 0, while
supu∈S′ |f̂(u, ζ0)− f0(u)| = oP (1). Besides, q̂(., ζ0) is bounded by 1 and by Lemma 3.1,
∂f/∂ζ(., ζ0) is continuous on the compact set S and thus is bounded on this set. Thus,
it suffices to prove that

sup
u∈S′

∣∣∣∣∣∂f̂∂ζ (u, ζ0)− ∂f

∂ζ
(u, ζ0)

∣∣∣∣∣ = oP (1) (3.17)

and similarly for r0. By Lemma 3.1, u 7→ ∂f/∂ζ(u, ζ0) is the derivative of −E(X|U =
u)f0(u). As a consequence, we can apply Newey & McFadden (1994)’s Lemma 8.10,
using as before Assumptions 3.2, 3.6, and conditions on hn. This yields (3.17). The
same reasoning applies to r0, yielding (3.16).

Now, let us establish that

sup
u∈S′

∥∥∥∥∥∂q̂∂ζ (u, ζu,n)− ∂q̂

∂ζ
(u, ζ0)

∥∥∥∥∥ = oP (1)
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Using a similar decomposition as previously and the preceding results, it suffices to
prove that

sup
u∈S′

∥∥∥∥∥∂f̂∂ζ (u, ζu,n)− ∂f̂

∂ζ
(u, ζ0)

∥∥∥∥∥ = oP (1) (3.18)

and similarly for r̂. By Assumption 3.6, there exists C5 > 0 such that |K ′(u)−K ′(v)| ≤
C5|u− v|. Thus,∥∥∥∥∥∂f̂∂ζ (u, ζu,n)− ∂f̂

∂ζ
(u, ζ0)

∥∥∥∥∥ ≤ 1
nh2

n

n∑
i=1
‖Xi‖

∣∣∣∣∣K ′
(
u−X ′iζu,n

hn

)
−K ′

(
u−X ′iζ0

hn

)∣∣∣∣∣
≤ C5C

2
0 ‖ζu,n − ζ0‖
h3
n

= Op

(
1√
nh3

n

)
.

This proves (3.18) since nh6
n →∞. The same reasoning applies to r̂. The result follows.
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