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Abstract

It is often believed that without instruments, endogenous sample selection models

are identified only if a covariate with a large support is available (see, e.g., Chamber-

lain, 1986, and Lewbel, 2007). We propose a new identification strategy mainly based

on the condition that the selection variable becomes independent of the covariates for

large values of the outcome. No large support on the covariates is required. Moreover,

we prove that this condition is testable. We finally show that our strategy can be

applied to the identification of generalized Roy models.
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1 Introduction

Since the seminal work of Heckman (1974), the issue of endogenous selection has been

an active topic of research in both applied and theoretical econometrics (see Vella, 1998,

for a survey). The usual strategy to deal with this issue is to rely on instruments that

determine selection but not the outcome. However, the search of a valid instrument may

be difficult if not impossible in some applications. Another strategy, which has been some-

times advocated, relies on the fact that, loosely speaking, the selection problem becomes

negligible “at the limit”. Following this idea, Chamberlain (1986) proved that the effects of

covariates on an outcome are identified under the linearity of the model and a large support

assumption on at least one covariate. Lewbel (2007) generalized this result by proving that

identification can be achieved without imposing any structure on the outcome equation,

provided that a special regressor has a large support and under restrictions on the selection

equation.1

The main drawback of the latter approach is that it requires the existence of a covariate

with a large support. Thus, it breaks down when all covariates are discrete, a case which

is fairly common in practice. In this paper, we consider another route for identifying the

model at the limit. Intuitively, if selection is truly endogenous, then we can expect the

effect of the outcome on selection to dominate those of the covariates for large values of

the outcome. Following this idea, our main identifying condition states that the selection

variable is independent of the covariates at the limit, i.e., when the outcome tends to its

upper bound. Under this condition, the model is identified without any large support

condition on these covariates. Only an exogeneity assumption and a mild restriction on

the residuals are required. Moreover, we show that the main condition is testable. Apart

from the standard selection model, we apply our result to a generalization of the Roy

model (1951) of self-selection accounting for non-pecuniary factors. In this framework, the

effects of covariates on the outcomes are identified without exclusion restrictions under a

moderate dependence condition on the residuals.

The note is organized as follows. Section 2 presents the model and establishes the main

identification result. Section 3 proves the testability of our main condition. Section 4

applies this result to generalized Roy models, and Section 5 concludes.
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2 Main result

Let Y ∗ denote the outcome of interest, X denote a vector of covariates and D denote the

selection dummy. Let us consider the following model, with σ(X) > 0:

Y ∗ = ψ(X) + σ(X)ε (2.1)

The econometrician observes D, Y = DY ∗ and X. Without loss of generality, we suppose

that ψ(x0) = 0 and σ(x0) = 1 for a given x0 ∈ Supp(X), where Supp(T ) denotes the

support of the random variable T .2 Our main result is based on the following assumptions.

Assumption 1 (Exogeneity) X ⊥⊥ ε.

Assumption 2 (Restriction on the tails of the residual) Either M = sup(Supp(ε)) = ∞,

and there exists β > 0 such that E(exp(βε)) <∞, or M <∞, and there exists γ > 0 such

that E
[

1
(M−ε)γ

]
<∞.

Assumption 3 (Independence at the limit) There exists l > 0 such that for all x ∈

Supp(X), limy→yx P (D = 1|X = x, Y ∗ = y) = l, where yx denotes the upper bound of

the support of Y ∗ conditional on X = x.

Assumption 1 is usual in selection models and weaker than the exogeneity assumption

imposed by Chamberlain (1986), since heteroskedasticity is allowed for here. Assumption

2 puts some restrictions on the tails of the distribution of ε. 3In the example of a wage

equation where Y ∗ denotes the logarithm of the wage W and M = ∞, it is satisfied if

E[W β] <∞ for a given β > 0. Thus, it holds even if wages have very fat tails, Pareto-like

for instance. In standard examples, the support of Y ∗ is infinite, but Assumption 2 also

accommodates a finite upper bound for ε, under a mild restriction. This restriction only

rules out the existence of a mass point at the upper bound, or a density tending to infinity

very quickly at M (typically, a density equivalent to 1/
[
(M − x) ln2(M − x)

]
).

Finally, Assumption 3 is the main condition here. It requires the probability of selection to

be independent of X at the limit, i.e., for those who have large outcomes. In other terms,

the effect of Y ∗ on selection becomes prominent when Y ∗ tends to its upper bound. To

illustrate Assumption 3, let us consider the following selection rule:

D = 1{ϕ(X) + η ≥ 0}. (2.2)
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Endogenous selection stems from the correlation between η and ε. Suppose that the fol-

lowing decomposition holds:

η = h(ε) + ν, ν ⊥⊥ (ε,X).

Then we get:

D = 1

{
ϕ(X) + h

(
Y ∗ − ψ(X)

σ(X)

)
+ ν ≥ 0

}
.

Thus, Assumption 3 is satisfied (with l = 1) provided that h(x) → ∞ as x → ∞.4 In

particular, when h(x) = ax, this condition holds provided that a > 0. Hence, in the

Gaussian case, Assumption 3 is satisfied as soon as Cov(η, ε) > 0. On the other hand, it

fails to hold when a = 0 (unless ϕ(.) is constant). This is logical, since this case corresponds

to an exogenous selection where P (D = 1|X = x, Y ∗ = y) is independent of y. As shown in

Section 3, it is actually possible to reject Assumption 3 from the data in this case. It also

fails to hold when a < 0, that is to say when ε and η are negatively correlated. In this case,

however, Assumption 3 holds for small outcomes, by replacing Y ∗ by −Y ∗. Thus, we can

still apply Theorem 2.1 below, provided that −ε satisfies the restrictions of Assumption 2.5

In the examples above, l = 1 but Assumption 3 also holds with 0 < l < 1. This is the

case (under the assumption that limx→∞ h(x) = ∞) if D = U1{ϕ(X) + η ≥ 0}, where

U ∈ {0, 1} is a random shock independent of (X, ε, η) satisfying P (U = 1) > 0. For

instance, this framework may be used to model participation to the labor market, with U

denoting in that case an unobserved random shock related to, e.g., health conditions that

could prevent individuals from entering the labor market.

Theorem 2.1 Under Assumptions 1-3, ψ(.) and σ(.) are identified.

Proof: Subsequently, ST denotes the survival function of the random variable T . Besides,

we use the notation f(y) ∼ g(y) if there exists r(.) such that f(y) = g(y)(1 + r(y)) with

limy→∞ r(y) = 0. The result is based on the following lemma.

Lemma 2.1 Let T be a real random variable such that sup(Supp(T )) =∞ and E(|T |) <

∞. Suppose also that ST (y) ∼ ST (lf(y)), where limy→∞ f
′(y) = 1 and l > 0. Then l = 1.
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Proof of Lemma 2.1: Suppose that l > 1. Then there exists η > 0 such that l > 1 + η.

Moreover, because sup(Supp(T )) = ∞, ST (lf(y)) > 0 for all y. Thus, ST (y) ∼ ST (lf(y))

implies that there exists y0 such that for all y ≥ y0,

ST (y) < (1 + η)ST (lf(y)).

Besides,E(|T |) <∞ implies that
∫∞
0
ST (u)du <∞. Consequently, for all y ≥ y0,∫ ∞

y

ST (u)du < (1 + η)

∫ ∞
y

ST (lf(u))du. (2.3)

By assumption, the derivative of the function m(y) = lf(y) tends to l > 1 when y → ∞.

Thus, there exists y1 such that for all y ≥ y1, m′(y) > 1 + η . Integrating between y1 and

y ≥ y1 shows that m(y) > (1 + η)(y − y1) +m(y1). Thus, there exists y2 ≥ y1 such that

m(y) > y for all y ≥ y2. Hence, for all y ≥ y2, m is one-to-one and∫ ∞
y

ST (lf(u))du =

∫ ∞
m(y)

ST (v)

m′(m−1(v))
dv

<
1

1 + η

∫ ∞
m(y)

ST (v)dv

<
1

1 + η

∫ ∞
y

ST (v)dv. (2.4)

Inequalities (2.3) and (2.4) imply that
∫∞
y
ST (u)du <

∫∞
y
ST (u)du for all y ≥ max(y0, y2),

a contradiction. Similarly, one can show that l < 1 is impossible. Thus l = 1. �

Now let us prove Theorem 2.1. First suppose that yx =∞, or, equivalently, sup (Supp(ε)) =

∞. Let q(y, x) = P (D = 1, Y ∗ ≥ y|X = x). We have

q(y, x) =

∫ ∞
y

P (D = 1|X = x, Y ∗ = u)dP Y ∗|X=x(u)

By Assumption 3, as u → ∞, we have P (D = 1|X = x, Y ∗ = u) → l > 0. Thus, using

standard results on integrals, we get as y →∞,

q(y, x) ∼ l P (Y ∗ ≥ y|X = x).

By Assumption 1, P (Y ∗ ≥ y|X = x) = Sε((y − ψ(x))/σ(x)), where Sε(.) denotes the

survival function of ε . Thus,

q(y, x) ∼ lSε

(
y − ψ(x)
σ(x)

)
. (2.5)
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Similarly,

q(y, x0) ∼ lSε(y). (2.6)

This implies that

q(y, x) ∼ q

(
y − ψ(x)
σ(x)

, x0

)
. (2.7)

The function q is identified. Thus, σ(x) and ψ(x) are identified if, as y →∞,

q(y, x) ∼ q(sy + u, x0) (s > 0) =⇒ (s, u) =

(
1

σ(x)
,−ψ(x)

σ(x)

)
. (2.8)

To prove (2.8), suppose that s > 0 and u satisfy q(y, x) ∼ q(sy + u, x0). Then it follows

from (2.5) and (2.6) that

Sε(t(y + v)) ∼ Sε(y), (2.9)

where t = sσ(x) and v = (1/σ(x))(ψ(x) + u/s). Besides, by Assumption 2, E(|ε|) < ∞.

Thus, by Lemma 2.1, t = 1, i.e. s = 1/σ(x). Thus, σ(x) is identified. Besides, by (2.9),

Seβε(wy) ∼ Seβε(y),

where β is defined in Assumption 2 and w = exp(βv). Because E(exp(βε)) < ∞, we can

apply Lemma 2.1 once more. This yields w = 1, which is equivalent to u = −ψ(x)/σ(x).

Thus, ψ(x) is identified.

Now, let us turn to the case where yx < ∞. Instead of q(y, x), consider r(y, x) = P (D =

1, Y ∗ ≥ yx − 1
y1/γ
|X = x) and let T = 1/(M − ε)γ. Reasoning as previously, we have, as

y →∞,

r(y, x) ∼ l ST (σ(x)
γy).

Thus, r(y, x) ∼ r(σ(x)γy, x0), and σ(x) is identified if ST (uy) ∼ ST (y) implies that u = 1.

This is the case by Assumption 2 and Lemma 2.1. It follows from Assumption 3 that

M = yx0 and yx are identified, thus implying that ψ(x) = yx − σ(x)M is also identified. �

The key point of the proof is that by Assumption 3, the conditional survival function of Y is

equivalent (up to a constant) to the one of a location-scale model. Then the normalization

(ψ(x0), σ(x0)) = (0, 1) and the restrictions on ε ensure that the parameters of this location-

scale model can be identified. Unlike Lewbel (2007), we impose additive separability in the

outcome equation. On the other hand, no structure is imposed on the selection process,

apart from Assumption 3.
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By assuming independence at the limit between the probability of selection and the covari-

ates, we are able to identify the covariate effects on the potential outcome directly from

the observed effects on the conditional survival function of Y . This idea is closely related

to the identification strategy developed for mixed proportional hazards models (see, e.g.,

Abbring 2010, for a recent review).6 In these models, identification relies on the fact that,

for durations close to zero, the survival outcome is observed for the whole population, ir-

respective of the covariate values (see Elbers and Ridder, 1982). As a result, the covariate

effects on the hazard rate, conditional on the covariates and unobserved heterogeneity, can

be identified at the limit from the observed effects on the mean hazard rate, conditional on

the covariates only.7 As in our case, this approach does not require a large support condi-

tion on the covariates. Overall, this sheds an interesting light on the connection between

static and dynamic selection bias issues.

Theorem 2.1 does not provide any information on the intercept of (2.1), that is, on E(ε).

Actually, one can show that this intercept is not identified in general in our context.

Basically, this stems from the fact that contrary to the framework of Heckman (1990) or

Andrews and Schafgans (1998), there is in general no individual for whom P (D = 1|X) is

arbitrarily close to one. Moreover, apart from Assumption 3, our model puts no restriction

on the probability P (D = 1|X, Y ∗). As a result, it is possible to define a distribution for ε

and a conditional probability of selection different from the true ones but observationally

equivalent, leading to different values for E(ε).

3 Testability

The main identifying condition in the setting above is Assumption 3, so one may wonder

whether this assumption is refutable or not. The answer turns out to be affirmative. To

see this, note that this condition, together with Assumptions 1 and 2, implies (2.7), which

can be stated as8

∀x ∈ Supp(X), ∃(s(x), u(x)) ∈ R∗+ × R : q(y, x) ∼ q(s(x)y + u(x), x0), (3.1)

where q(y, x) = P (D = 1, Y ∗ ≥ y|X = x). Because the function q is identified, Condition

(3.1) can be tested in the data. Then one can reject Assumption 3 when there is no
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(s(x), u(x)) satisfying (3.1). Theorem 3.1 below shows that the reverse also holds: under

a slight reinforcement of Assumption 2 and another mild condition, Condition (3.1) and

Assumption 3 are equivalent. This means that we can reject Assumption 3 whenever it

fails to hold.

Theorem 3.1 Suppose that Assumption 1 holds, sup(Supp(ε)) = ∞, there exists α > 1,

β > 0 such that E[exp(β|ε|α)] <∞ and there exists l(x) > 0 such that

lim
y→∞

P (D = 1|X = x, Y ∗ = y) = l(x). (3.2)

Then Assumption 3 is equivalent to Condition (3.1).

Proof: We shall first prove a result similar to the one of Lemma 2.1.

Lemma 3.1 Let T be a real random variable such that sup(Supp(T )) =∞ and E(|T |) <

∞. Suppose also that when y → ∞, ST (y) ∼ lST (fδ(y)), where l > 0 and fδ(.) is strictly

increasing for y large enough and satisfies (i) f ′δ(y)→ 0 if δ < 0, (ii) f ′0(y)→ C > 0 and

(iii) f ′δ(y)→∞ if δ > 0. Then δ = 0. Moreover, if f0(y) = y, then l = 1.

Proof of Lemma 3.1: Suppose that δ > 0. By assumption, there exists l′ > 0 and y0

such that for all y ≥ y0,

ST (y) < l′ST (fδ(y)). (3.3)

Besides, there exists y1 such that fδ(.) is one-to-one on [y1,∞), with f ′δ(y) > l′ and fδ(y) > y

for all y ≥ y1. Thus, for all y ≥ y1,∫ ∞
y

ST (fδ(u))du =

∫ ∞
fδ(y)

ST (v)

f ′δ(f
−1
δ (v))

dv

<
1

l′

∫ ∞
fδ(y)

ST (v)dv

<
1

l′

∫ ∞
y

ST (v)dv. (3.4)

Inequalities (3.3) and (3.4) imply that
∫∞
y
ST (u)du <

∫∞
y
ST (u)du for all y ≥ max(y0, y1),

a contradiction. The proof that δ < 0 is impossible follows similarly. Thus δ = 0. Finally,

if f0(y) = y, then ST (y) ∼ lST (y), which implies directly that l = 1. �
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Now let us prove Theorem 3.1. By the proof of Theorem 2.1, Assumption 3 implies

Condition (3.1). Thus, it suffices to prove that Condition (3.1) implies Assumption 3.

For all x ∈ Supp(X), by a similar reasoning as in the previous proof,

q(y, x) ∼ l(x)Sε

(
y − ψ(x)
σ(x)

)
.

The same holds for q(y, x0). Thus, by Condition (3.1), there exists µ > 0 and ν ∈ R such

that

Sε(y) ∼ lSε(µy + ν), (3.5)

where l = l(x)/l(x0). This implies that

Sexp(βε)(y) ∼ lSexp(βε)(exp(βν)y
µ).

By assumption, E[exp(βε)] <∞. Thus, by applying Lemma 3.1 to fδ(y) = exp(βν)yexp(δ)

(with δ = lnµ), we get µ = 1. Hence, by (3.5),

Sexp(βεα)(exp(βy
α)) ∼ lSexp(βεα)(exp(β(y + ν)α)).

After some manipulations, we obtain

Sexp(βεα)(y) ∼ lSexp(βεα)(fν(y)),

where

fν(y) = y

(
1+ν( β

ln y )
1/α

)α
.

Some computations show that fν is strictly increasing for y large enough and (i) f ′ν(y)→ 0

if ν < 0, (ii) f0(y) = y and (iii) f ′ν(y) → ∞ if ν > 0. Thus, by Lemma 3.1, ν = 0 and

l = 1. In other terms, l(x) = l(x0) for all x ∈ Supp(X), which proves that Assumption 3

holds. �

To illustrate Theorem 3.1, suppose for instance that in the true model, selection is ex-

ogenous, i.e. P (D = 1|X = x, Y ∗ = y) = P (D = 1|X = x) for all y, and that

x 7→ P (D = 1|X = x) is nonconstant, so that Assumption 3 fails to hold. In this

setting, Condition (3.2) is satisfied with l(x) = P (D = 1|X = x). Thus, by Theorem 3.1,

Condition (3.1) fails to hold. This means that the “independence at the limit” assump-

tion can be rejected by the data when selection is exogenous. Theorem 3.1 is also useful
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when one does not know a priori whether Assumption 3 holds for large or small values

of the outcome. Indeed, as noted before, the limit of P (D = 1|X = x, Y ∗ = y) may be

independent of x when y tends to −∞ rather than +∞, in which case identification is

still achieved. Under the conditions stated in Theorem 3.1, and if inf(Supp(ε)) = −∞ and

limy→−∞ P (D = 1|X = x, Y ∗ = y) exists and is strictly positive, the result of the theorem

holds at both −∞ and +∞, so that one can test for the two conditions and choose the

appropriate restriction.

4 Application to generalized Roy models

We consider a class of generalized Roy models where each individual chooses the sector

D ∈ {0, 1} that provides him with the higher utility. Suppose that the utility Ui associated

with each sector i ∈ {0, 1} is the sum of the potential log-earnings Yi = ψi(X) + εi and

a random non-pecuniary component Gi(X) + ηi. Thus, D = 1{Y1 ≥ Y0 + G(X) + η}

with G(X) = G0(X) − G1(X) and η = η0 − η1, and the econometrician only observes

Y = DY1 + (1−D)Y0, as well as D and X. For the sake of simplicity, we do not account

for uncertainty on potential outcomes. Nevertheless, it would be straightforward to adapt

our identification strategy to the case where sectoral decisions depend on expectations of

Y0 and Y1 rather than on their true values (see D’Haultfœuille and Maurel, 2011). Without

loss of generality, we assume that there exists x0 ∈ Supp(X) such that ψ0(x0) = ψ1(x0) = 0.

The generalized Roy models we consider in this section can be used in a broad range

of economic settings. The standard Roy model, in which the chosen sector is the one

yielding the higher earnings, corresponds to η = 0 and G(X) = 0. This framework also

encompasses Heckman (1974)’s model of labor market participation. In this latter case, Y1

corresponds to the logarithm of the potential wage, G1(X) = η1 = 0, Y0 = 0 and G0(X)

(resp. η0) is the observable (resp. unobservable) part of the logarithm of the reservation

wage. More generally, generalized Roy models are well suited for most of the situations

in which self-selection between two alternatives is driven both by the relative pecuniary

and non-pecuniary returns. They can be used for instance to model the decision to attend

higher education after graduating from high school, thus extending Willis and Rosen (1979)
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by accounting for non-pecuniary factors affecting the schooling decision (see, e.g., Carneiro

et al., 2003 and D’Haultfœuille and Maurel, 2011). Other examples of applications include

occupational choice (see, e.g., Dagsvik and Strøm, 2006 for the choice between private and

public sector) as well as migration decisions (see, e.g., Borjas, 1987 and Bayer et al., 2011)

accounting for non-pecuniary factors.9 Theorem 2.1 can be applied to provide identification

of (ψ0, ψ1) without exclusion restrictions nor large support conditions on the covariates, as

the following result shows.

Corollary 4.1 Suppose that (ε0, ε1, η) ⊥⊥ X, the suprema of the supports of ε0 and ε1 are

infinite and there exists β0, β1 > 0 such that E[exp(βiεi)] <∞ for i ∈ {0, 1} and

lim
u→∞

P (εi + (1− 2i)η ≤ a+ u|ε1−i = u) = l1−i > 0 (4.1)

for all a ∈ R and i ∈ {0, 1}. Then ψ0(.) and ψ1(.) are identified.

Proof: Since (ε0, ε1, η) ⊥⊥ X, Condition (4.1) implies that

lim
u→∞

P (Y1 ≥ Y0 +G(X) + η|X = x, Y1 = u) = l1.

In other words,

lim
u→∞

P (D = 1|X = x, Y1 = u) = l1.

Thus, we can apply Theorem 2.1 to (D,DY1, X) and ψ1 is identified. The same result

holds for ψ0. �

To the best of our knowledge, this is the first identification result on the effects of covariates

in generalized Roy models without exclusion restrictions. Identification without exclusion

restrictions of the competing risk model, which is closely related to the standard Roy

model, has already been considered in the literature by Heckman and Honore (1989),10

Abbring and van den Berg (2003), Lee (2006) and Lee and Lewbel (2011). Interestingly,

and similarly to our approach, none of these papers requires a large support assumption on

the covariates to identify the effect of the covariates. However, all of the strategies proposed

in these papers break down when turning to generalized Roy models. Indeed, they rely

extensively on the fact that the observed duration is the minimum of potential durations,

whereas the observed outcome does not satisfy such a simple property in generalized Roy

models.
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Identification of (ψ0, ψ1) is obtained in Corollary 4.1 under rather mild restrictions on the

unobservables. In particular, Condition (4.1) can be understood as a moderate dependence

assumption between the unobservables. It is automatically satisfied for instance if ε0, ε1

and η are independent. It also holds if (ε0, ε1, η) is Gaussian, provided that

|Cov(εi, ε1−i + (2i− 1)η)| < V (εi), i ∈ {0, 1}.

This condition does not put drastic restrictions on the dependence between the unobserv-

ables. For instance, it is satisfied in the standard log-normal Roy model if V (ε0) = V (ε1),

as long as (ε0, ε1) is non-degenerate. It also holds for instance in Heckman (1974)’s empir-

ical application to labor market participation of married women, although the estimated

correlation between ε1 and η0 is quite large.11

5 Concluding remarks

This note shows that identification of endogenous sample selection models can be achieved

without instruments by letting the outcome, not a covariate, tend to the upper bound

of its support. The main condition, apart from the exogeneity of the covariates, is the

“independence at the limit” of the selection variable and the covariates. In particular,

unlike Chamberlain (1986) and Lewbel (2007), our identification strategy does not rely on

the existence of a covariate with a large support. Besides, another attractive feature of the

proposed identification strategy lies in its testability. Interestingly, and even if a formal

procedure remains to be developed, heuristic investigations suggest that our strategy can

be tested with typical sample sizes in economics. Noteworthy also, our identification proof

is constructive, and an estimator of ψ(.) and σ(.) could be based on (2.8) for instance. One

possible route for estimation would be to use trimmed means, as in Heckman (1990) and

Schafgans and Zinde-Walsh (2002). In this case, we conjecture that the rate of convergence

would depend on the thickness of the tail of the distribution of the outcome, as in Andrews

and Schafgans (1998), Schafgans and Zinde-Walsh (2002) and Khan and Tamer (2010).

We leave this interesting issue for future research.
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Notes

1. These restrictions entail that the probability of selection tends to zero or one when the

special regressor takes arbitrarily large values.

2. To see why such a normalization is always possible, let ψ̃(x) = ψ(x)−ψ(x0)σ(x)/σ(x0),

σ̃(x) = σ(x)/σ(x0) and ε̃ = ψ(x0) + σ(x0)ε. Then Y ∗ = ψ̃(X) + σ̃(X)ε̃, with ψ̃(x0) = 0

and σ̃(x0) = 1.

3. Instead of supposing E(exp(βε)) < ∞ for some β > 0, we could impose the slightly

weaker condition that the survival function Sexp(ε) of exp(ε) is not slowly varying at infinity.

We could also impose the even weaker condition that E(εβ) <∞ for some β > 0, but this

would come at the price of imposing a finite lower bound on the distribution of ε.

4. Neither additive separability nor monotonicity in η of the index in (2.2) is needed. IfD =

1{ϕ(X, η) ≥ 0}, the same reasoning applies provided that for all x, lim infu→∞ ϕ(x, u) > 0.

On the other hand, Assumption 3 fails to hold in general when h(.) is bounded.

5. One might not know a priori whether Assumption 3 holds for small or large values of

the outcome. We indicate in the next section how to test for this.

6. We thank a referee for pointing us to this analogy.

7. The identification proof relies on a finite mean assumption on the unobserved hetero-

geneity, in a similar spirit to the tail restrictions that we impose in Assumption 2.

8. To simplify the discussion, we consider here only the case where yx = ∞. A result

analogous to Theorem 3.1 holds otherwise, using the function r defined in the proof of

Theorem 2.1 instead of q.

9. Generalized Roy models are also used as a structural underlying framework for the

estimation of treatment effects, with D corresponding in that case to the treatment status

and G + η to the cost of receiving treatment (see Heckman and Vytlacil, 2005). Here

however, we cannot recover average treatment effects in general since we do not identify

E(ε0) and E(ε1). Yet, the distribution of treatment effects can be point or set identified

under additional restrictions (see D’Haultfœuille and Maurel, 2011).

10. Heckman and Honore (1989) use exclusion restrictions but only to identify the distri-

bution of the underlying durations. Their proof shows that the effects of covariates are

identified without such restrictions.
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11. He obtains, when considering annual hours worked (see Table 1, p. 687), V (ε1) =

0.4522, V (η0) = 0.5322 and Corr(ε1, η0) = 0.654, so that |Cov(ε1,−η0)| = 0.157 < V (ε1) =

0.204 (in the case of sample selection model, ε0 = η1 = 0 and one needs not verify that

|Cov(ε0, ε1 − η)| < V (ε0)). The same holds for annual weeks worked (see his Table 2, p.

687).
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