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Abstract

We consider the estimation of a semiparametric sample selection model, in the absence

of an instrument or a large support regressor. Identification relies on the independence

between the covariates and selection, for arbitrarily large values of the outcome. In this

context, we propose a simple estimator based on extremal quantile regression. We establish

the asymptotic normality of this estimator by extending previous results on extremal

quantile regressions to allow for selection. Finally, we apply our method to estimate

the black-white wage gap among males from the NLSY79 and NLSY97. We find that

premarket factors such as AFQT and family background play a key role in explaining the

black-white wage gap.
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1 Introduction

Endogenous selection has been recognized as one of the key methodological issues arising in

the analysis of microeconomic data since the seminal articles of Gronau (1974) and Heckman

(1974). The most common strategy to deal with selection is to rely on instruments that

determine selection but not the potential outcome (see, among others, Heckman, 1974, 1979,

1990, Ahn & Powell, 1993, Donald, 1995, Buchinsky, 1998, Chen & Khan, 2003, Das et al. ,

2003, Newey, 2009 and Vella, 1998 for a survey). However, in practice, valid instruments are

generally difficult to find. Identification at infinity has been proposed in the literature as an

alternative solution to the endogenous selection problem, in situations where one is primarily

interested in estimating the effects of some covariates on a potential outcome. In particular,

Chamberlain (1986) showed that if some individuals face an arbitrarily large probability of

selection and the outcome equation is linear, then one can use these individuals to identify

the effects of the covariates on the outcome of interest. Lewbel (2007) generalized this result

by proving that identification can be achieved in the context of moment equality models,

provided that a special regressor has a support which includes that of the error term from the

selection equation. In many applications, however, such a regressor is hard to come by.

Starting from this observation, D’Haultfoeuille & Maurel (2013) show that identification in the

absence of an instrument or a large support covariate is in fact possible. Their key condition

is that selection becomes independent of the covariates at infinity, i.e., when the outcome

takes arbitrarily large values. The idea behind is that if selection is indeed endogenous, one

can expect the effect of the outcome on selection to dominate those of the covariates, for

sufficiently large values of the outcome.

This paper builds on this insight and develops a novel inference method for a class of semi-

parametric models subject to endogenous selection. Specifically, denoting by Y ∗ and X1 the

outcome and covariates of interest, and by X−1 other covariates (so that the covariates vector

is given by X = (X ′1, X
′
−1)
′), we consider the following outcome equation:

Y ∗ = X ′1β1 + ε

where, for any τ ∈ (0, 1), the τ -th conditional quantile of ε satisfies Qε|X(τ |X) = β0(τ) +

X ′−1β−1(τ). Denoting by D the selection dummy, the econometrician only observes (D,Y =

DY ∗, X). In this framework, the effect of interest β1 is identified from the analysis of

D’Haultfoeuille & Maurel (2013). In this paper, we extend their result by directly relat-

ing β1 to the upper conditional quantiles of Y . Following this new constructive identification

result, we then develop a consistent and asymptotically normal estimator of β1. We propose
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an estimator based on extremal quantile regression, that is quantile regression applied to the

upper tail of Y (see Chernozhukov et al. , 2016, for a survey).1 Throughout the paper we

focus on the intermediate order case, which corresponds to situations where the quantile index

goes to one as the sample size tends to infinity, but at a slower rate than the sample size.

Unlike prior estimation methods for sample selection models, we propose a distribution-free

estimator that does not require an instrument for selection nor a large support regressor.

Besides and importantly, we do not restrict the selection process, apart from the independence

at infinity condition mentioned above. In the context of standard selection models, this

condition translates into a restriction on the dependence between the error terms of the

outcome and selection equation, which is mild provided that selection is indeed endogenous.

The structure of the outcome equation, which generalizes the standard location shift model by

allowing for heterogeneous effects of the covariates X−1 on different parts of the distribution,

also plays an important role for identification.2 Importantly, these assumptions are testable,

since they imply that for large quantile indices, the estimators of β1 obtained using different

quantile indices are close.

The main difficulty in establishing the asymptotic properties of our estimator is that, because

of selection, extremal conditional quantiles are not exactly linear, but only equivalent to

a linear form as the quantile index tends to one. Hence, we face a bias-variance trade-off

that is typical in non- or semiparametric analysis. Choosing a moderately large quantile

index decreases the variance of the estimator, but this comes at the price of a higher bias.

Conversely, choosing a very large quantile index mitigates the bias, but increases the variance.

In the paper, we provide sufficient conditions under which both bias and variance vanish

asymptotically, resulting in asymptotically normal and unbiased estimators.

As in the case for extremal quantile regressions without selection examined by Chernozhukov

(2005), the convergence rates are not standard, and depend on the tail behavior of the error

term from the outcome equation.3 We solve this issue by proving consistency of bootstrap

in this context, which is a result of independent interest. While Falk (1991) showed that

the bootstrap is valid for unconditional intermediate order quantiles and Chernozhukov &

1A Stata code and its user guide are available on the following webpage: http://www.amaurel.net/

Research.
2 The location shift specification is very common in the econometrics literature. See, e.g., in the context

of sample selection models, Ahn & Powell (1993), Buchinsky (1998) and Newey (2009). Examples of papers
using more general location-scale specifications include Chen & Khan (2003) and Chen et al. (2005) in the
context of sample selection and censored regression models, respectively.

3This is broadly similar to the convergence rates discussed in Andrews & Schafgans (1998), Schafgans &
Zinde-Walsh (2002), and Khan & Tamer (2010), the main difference being that the tail behavior of the outcome
is going to play a key role here, rather than that of the covariates.
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Fernandez-Val (2011) proved the validity of a modified subsampling method for conditional

extremal order quantiles, our paper is, to the best of our knowledge, the first to prove the

consistency of bootstrap in the context of conditional intermediate order quantiles.

Asymptotic normality and unbiasedness of our estimator require an appropriate choice of

the quantile index, similarly to nonparametric kernel regressions that require an appropriate

bandwidth choice. We propose a heuristic data-driven procedure that selects the quantile

index by minimizing a criterion function capturing the trade-off between bias and variance. In

particular, we use subsampling combined with a simple minimum distance estimator to proxy

the bias term, which, in this setting, cannot be simply estimated. Monte Carlo simulation

results show that our estimator performs well in finite samples. We further provide evidence

that bootstrap yields good coverage in small samples, and that our specification test also

exhibits good finite sample properties.

We then apply our method to the estimation of the black-white wage gap among males

from the 1979 and 1997 cohorts of the National Longitudinal Survey of Youth (NLSY79 and

NLSY97). Following Neal & Johnson (1996), we focus on the residual portion of the wage

gap that remains after controlling for premarket factors. To the extent that black males are

more likely to dropout from the labor market than white males, as was first pointed out in

the influential work of Butler & Heckman (1977), correcting for selection is a priori important

in order to consistently estimate the black-white differential in terms of potential wages.

In this context, finding a valid instrument that affects selection but not potential wages

is particularly challenging, making it desirable to use an estimation method that does not

require such an instrument. Our key identifying assumption of independence at infinity, which

generalizes the condition imposed in previous work on this question by Neal & Johnson (1996)

and Johnson et al. (2000), is natural in this context. For the NLSY79 cohort, we find a smaller

residual wage gap (10.6 pp) than the one obtained using the imputation method of Neal &

Johnson (1996) and Johnson et al. (2000), which is consistent with our approach being based

on a weaker identifying restriction on the selection process.4 Overall, our estimates confirm

the key takeaway of Neal & Johnson (1996) by providing evidence of a major role played by

the black-white AFQT gap.

Turning to the evolution across the NLSY79 and NLSY97 cohorts, we find that the black-

white wage gap is essentially stable between 1990 and 2007, whether we control or not for

premarket factors such as AFQT and family background characteristics. These results suggest

4Other noteworthy papers analyzing the black-white wage gap while using imputation methods to correct
for selection into the workforce include Brown (1984), Smith & Welch (1989), Juhn (2003), Neal (2004), Neal
(2006), and Neal & Rick (2014).
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that the lack of progress in closing the black-white wage gap in the last decades, which has

recently been documented in the literature (see, e.g, Neal & Rick, 2014), still holds after

controlling for differential selection into the workforce.

The remainder of the paper is organized as follows. Section 2 presents the set-up, discusses

the identification, defines the estimators and then establishes the main asymptotic normality

results. Section 3 discusses the practical implementation of our estimator, and then illustrates

the finite sample properties of our estimator through some Monte Carlo simulation results.

Section 4 applies our method to the estimation of the black-white wage gap among males.

Finally, Section 5 concludes. The appendix gathers some additional details on the data and

the main proofs of our theoretical results, while the online appendix (see D’Haultfoeuille et al.

, 2017) presents some further theoretical results on identification and estimation, and collects

the technical lemmas used in our proofs.

2 The set-up and semiparametric estimation

2.1 Model and identification

Before presenting the model, let us introduce some definitions and the notation. We denote by

Uj the jth component of any given random vector U ∈ Rd. For any random variable U , we de-

note by Supp(U), FU and SU its support, cumulative distribution function (cdf.) and survival

function, while QU denotes its quantile function, QU (τ) = inf{u : FU (u) ≥ τ}. We also use

some notions from extreme value theory. A given cdf. F belongs to the domain of attraction

of generalized extreme value distributions if there exists sequences (an)n∈N and (bn)n∈N and

a cdf. G such that for any independent draws (U1, ..., Un) from F , b−1n (max(U1, ..., Un)− an)

converges in distribution to G. In such a case, G belongs to the family of generalized extreme

value distributions.

Let Y ∗ denote the outcome of interest and X = (X1, X−1) ∈ Rd denote a vector of covariates,

excluding the intercept. We are interested in the average marginal effects of each component

of X1 on Y ∗, with the understanding that marginal effects refer to a change from 0 to 1 for

binary variables. Identification of these effects is complicated by a sample selection issue, as

we only observe (D,Y = DY ∗, X), where D denotes the selection dummy. Moreover, we do

not assume to have access to an instrument affecting D but not Y ∗, nor do we require one of

the covariates to have a large support.

Instead, following D’Haultfoeuille & Maurel (2013), we rely hereafter on restrictions on the

outcome equation and on an independence at infinity condition. We first suppose that the
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effect of the d1-vector X1 on Y ∗ is homogeneous across the distribution.

Assumption 1. (Homogeneous effect of X1) Y ∗ = X ′1β1 + ε where, for any τ ∈ (0, 1),

Qε|X(τ |X) = β0(τ) +X ′−1β−1(τ). QX = E
[
XX

′
]

is nonsingular, with X = (X ′1, 1, X
′
−1)
′.

Several remarks on this assumption are in order. First, linearity is not needed for identifi-

cation. Following D’Haultfoeuille & Maurel (2013), we could replace X ′1β1 by ψ1(X1) and

β0(τ) +X ′−1β−1(τ) by ψ2(X−1, τ), for any functions ψ1 and ψ2, without affecting our identifi-

cation results. Nonetheless, imposing linearity is useful in terms of estimation as it allows us

to use linear quantile regressions, resulting in computationally simple estimators, and faster

convergence rates relative to a nonparametric specification. Second, Assumption 1 implies

conditional independence between X1 and ε, namely X1 ⊥⊥ ε|X−1. This condition is sub-

stantially weaker than the full independence assumption commonly imposed in the context of

selection models (see, e.g., Chamberlain, 1986, Ahn & Powell, 1993).5 While special regressors

also rely on similar conditional independence assumptions (see Lewbel, 2014, for an overview),

a crucial distinction here is that we do not restrict the support of X1; it can be binary, for

instance. Finally, and importantly, we will see below that Assumption 1 is testable.

We also need to impose some restrictions on the upper tail of ε.

Assumption 2. (Tail and regularity of the residual)

(i) sup(Supp(ε|X)) =∞ and E[exp(bmax(0, ε))] < +∞ for some b > 0.

(ii) Supp(X) is compact, x 7→ Sε|X(z|x) is continuous for any z ∈ R and almost surely,

exp(ε)|X is in the domain of attraction of generalized extreme value distributions.

(iii) There exists A > 0 such that, almost surely, Sε|X(·|X) is differentiable with increasing

derivative on [A,+∞).

Assumption 2(i) is satisfied for the normal and exponential distributions, for instance. In

our application to the black-white wage gap, the outcome variable Y ∗ is the log-wage. Given

our specification, exp(Y ∗), i.e. the wage, has the same tail as exp(ε) given X. As long

as there exists any α > 0 such that E(wageα) < ∞, Assumption 2(i) holds. It follows

that this condition holds even if wages exhibit very fat tails, for instance Pareto-like. As-

sumption 2(ii) and (iii) are satisfied by most well-known distributions such as, again, the

normal and exponential distributions. A counterexample satisfying (i) and (iii) but not (ii) is

Sexp(ε)|X(t|x) = (1 + .5 sin(ln(t))/t2 on [1,+∞]. Such a survival function does not belong to

5Notable exceptions include Das et al. (2003) and Lewbel (2007), who allow for endogenous regressors.
However, the estimators proposed in these papers require an instrument for selection or a special regressor,
respectively.
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the domain of attraction of generalized extreme value distributions because of the oscillations

of the sine function.

Under Assumption 1, β1 corresponds to the average marginal effects of X1 on Y ∗. Identifica-

tion of this parameter is primarily based on the following independence at infinity assumption.

Assumption 3. (Independence at infinity) There exists h ∈ (0, 1] such that for all x ∈
Supp(X),

lim
y→∞

P (D = 1|X = x, Y ∗ = y) = h.

The main restriction in Assumption 3 is that h does not depend on x. In other words, we

require selection to become independent of the covariates at infinity, that is conditional on

having arbitrarily large outcomes.6 The underlying intuition is that, if selection is endogenous,

then one can expect the effect of the outcome on selection to dominate those of the covariates

for sufficiently large values of the outcome. This condition includes as an important special

case the “no selection at infinity” situation where the selection probability tends to one for

large values of the outcome (h = 1). For instance, in the context of selection into employment,

Assumption 3 holds with h = 1 if individuals with arbitrarily large potential wages join

the workforce and are employed with a probability approaching 1. But our framework also

accommodates more general forms of selection since h < 1 is also allowed for. In particular,

h < 1 is needed to extend the previous example by allowing for search frictions.

We discuss in Section 1 of our supplement sufficient conditions for Assumption 3 in the context

of standard threshold crossing selection models. Assumption 3 may be satisfied even if the

dependence between the residuals from the selection and outcome equations is very weak. For

instance, it holds for all Gaussian copulas with positive dependence. Finally, Assumption 3

fails under exogenous selection where D ⊥⊥ Y ∗|X and P (D = 1|X) is not constant. In such

a case, limy→∞ P (D = 1|X = x, Y ∗ = y) = P (D = 1|X = x) does depend on x. However, we

prove in the supplementary material that our identification result (Theorem 2.1 below) still

holds in this case under some additional restrictions on ε beyond Assumption 2.

Under the previous assumptions, β1 is identified, as the following theorem shows.

Theorem 2.1. If Assumption 1, 2(i), and 3 hold, then β1 is identified. If Assumption 2(ii)

6Given the specification of the outcome equation (see Assumption 1), the condition of independence at
infinity can be equivalently rewritten as limv→∞ P (D = 1|X = x, ε = v) = h.

7



and (iii) also hold, then, as τ → 0,

Q−Y |X(τ |X) = Q−Y ∗|X(τ/h|X) + o(1) (2.1)

= −X ′1β1 − β0(1− τ/h)−X ′−1β−1(1− τ/h) + o(1). (2.2)

The first part of Theorem 2.1 is based on D’Haultfoeuille & Maurel (2013). The proof of

D’Haultfoeuille & Maurel (2013), however, does not directly yield an estimation method. The

second part of Theorem 2.1 is then important, as it shows that under some additional, weak

conditions, β1 can be identified using extremal conditional quantiles of Y , thus suggesting

an estimation method based on extremal quantile regression. The intuition underlying this

last result is as follows. For concreteness, consider the example of wages and labor market

participation, and suppose that h = 1. Consider a high quantile q of potential wages. The

probability of not participating conditional on Y ∗ ≥ q is very small, by Assumption 3. It

follows that we can expect the corresponding quantile of Y (= DY ∗) to be close to q.7 This is

precisely what Equation (2.1) formalizes.

2.2 The estimator and its asymptotic properties

Theorem 2.1 suggests the use of extremal quantile regressions to estimate β1. We thus define

(
β̂′1, β̂0(1− τn/h), β̂′−1(1− τn/h)

)′
= arg min

β

n∑
i=1

ρτn(−Yi +X
′
iβ), (2.3)

where ρτ (u) = (τ − 1{u < 0})u is the check function used in quantile regressions and τn

is a quantile index tending to 0. To derive the asymptotic properties of β̂1, we rely on the

asymptotic properties of extremal quantile regressions, established by Chernozhukov (2005).

An important distinction though is that (2.2) has a remainder term and is therefore not

exactly linear in parameters. This implies that a bias term caused by selection comes into

play. An upper bound of this bias turns out to be

B(τ) = E

[
sup

t≥1−τ/h
|h− P (D = 1|X,FY ∗|X(Y ∗|X) = t)| × ‖X‖

]
.

In addition to Assumptions 1–3, our asymptotic analysis relies on the three conditions below.

Assumption 4. (i.i.d. sampling) (Di, Yi, Xi)i=1...n are independent, with the same distribu-

tion as (D,Y,X).
7The value 0 has no particular meaning: the true Y ∗ of individuals such that D = 0 may be lower or greater

than 0. Any value y ∈ R could be imputed instead of 0, without modifying (2.2).
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Assumption 5. (Asymptotic location-scale model) There exists β−1,r ∈ Rd−d1, A > 0, a

survival function Sη, and a function H such that (i) infx−1∈Supp(X−1)H(x−1) > 0; (ii) as

z → +∞, uniformly in x ∈ Supp(X),

SU |X(z|x) ∼ Sη
(

z

H(x−1)

)
(2.4)

with U = ε−X ′−1β−1,r; (iii) Sη is differentiable with increasing derivative on [A,+∞).

Assumption 6. (Rate of convergence of the quantile index) τn satisfies, as n → ∞, (i)

τn → 0, (ii) τnn→∞, and (iii)
√
τnnB(τn)→ 0.

Assumption 5 is the tail independence condition in Chernozhukov (2005, see condition R1

p.809) with X replaced by X−1.
8 This assumption means that our model is close to a location-

scale model at the upper tail.9 Condition (iii) also imposes a mild regularity restriction on

this location-scale model. But, importantly, Assumption 5 does not impose any constraint on

the rest of the distribution of Y ∗.

Assumption 6 restricts the rate of convergence of the tail index τn. Conditions (i) and (ii)

basically ensure that the number of observations that are useful for inference, which is pro-

portional to τnn, tends to infinity, but at a slower rate than the sample size. Thus, following

the standard terminology in order statistics theory, our estimators are based on quantile

regressions with an intermediate order sequence τn, which we will refer to as intermediate

order quantile regressions. The reason why we use intermediate order instead of extreme

order sequences, where τnn tends to a non-zero constant, is that in the latter case, β̂1 is not

consistent. Intuitively, this is due to the fact that only a finite number of observations are

useful in the extreme order case. Intermediate order quantile theory also has the nice and

important feature that it guarantees asymptotic normality rather than convergence towards

a non-standard, data-dependent, distribution (see Chernozhukov, 2005 and Chernozhukov &

Fernandez-Val, 2011, in the absence of sample selection).

Finally, Condition (iii) is specific to our context. This is an undersmoothing condition, which

ensures that the bias arising because (2.2) is not exactly linear vanishes quickly enough.

Importantly, there always exists a τn satisfying Assumption 6, as Lemma 2.1 below shows.

An issue is that the τn we exhibit in the proof depends on the term B(·), which is unknown

to the researcher. We come back to the issue of the practical choice of τn in Subsection 2.3.

Lemma 2.1. Under Assumption 3, there exists (τn)n≥0 satisfying Assumption 6.

8This is due to the fact that in our case Qε|X(τ |X) does not depend on X1.
9With a location scale model Y ∗ = X ′β + (1 + X ′−1δ)ε, infx−1∈Supp(X−1) 1 + x′−1δ > 0, Conditions (i)-(ii)

hold by taking β−1,r = β−1, Sη = Sε and H(x−1) = 1 + x′−1δ.
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The main result of this subsection is Theorem 2.2 below, which shows that the estimator of

β1 is consistent, asymptotically normal, and that the bootstrap is consistent.10 Before stating

the result, we need to introduce the following notation. Let QH = E
[
H−1(X−1)XX

′
]
, Ω0 =

Q−1H QXQ
−1
H and Ω1 denote the first d1×d1 block of Ω0. Finally, let λn =

√
n/τnhf−η(Q−η(τn/h)).

Theorem 2.2. If Assumptions 1–6 hold, then

λn(β̂1 − β1)
d−→ N (0,Ω1) ,

where λn →∞. Moreover, the bootstrap is consistent for β̂1.

Several comments on this theorem are in order. First, it shows that the rate of convergence

of β̂1 depends on τn, which itself depends on B(.). Intuitively, if B(τ) tends to 0 quickly as

τ → 0, Assumption 6(iii) holds even when τn tend to zero very slowly, implying fast rates of

convergence. We formalize this intuition in Proposition 1.2 of our supplement, and provide a

condition for polynomial convergence rate of β̂1. We also show that for some data generating

processes, an adequate choice of τn can make the rate of convergence arbitrarily close to the

parametric root-n rate.

Second, and related to the first point, the convergence rate for β̂1 is unknown. Hence, in

order to conduct analytical inference, we have to estimate both the asymptotic variance and

the convergence rate. On the other hand, inference by bootstrap can be conducted without

further complication. Indeed, with the bootstrap, one can estimate consistently Ω1 up to the

convergence rate, which is sufficient to conduct inference on β1. In the following, we denote

by Ω̂ such estimator.11

Finally, we can actually obtain a multivariate generalization of Theorem 2.2, where we consider

(with a slight abuse of notation) several estimators β̂1(`1τn), ..., β̂1(`Jτn) of β1, with `1 < ... <

`J = 1, instead of just one. It turns out that that the best combination of these estimators, in

terms of asymptotic variance, is simply β̂1(τn) = β̂1.
12 In other words, there is no efficiency

gain in computing several quantile regressions. On the other hand, we can use such a result

10Consider an estimator θ̂ of a parameter θ such that for some sequence (rn)n, rn(θ̂ − θ) converges in

distribution, and let θ̂∗ denote the bootstrap counterpart of θ̂. We say that the bootstrap is consistent for θ̂ if
with probability tending to one and conditional on the sample, rn(θ̂∗− θ̂) converges to the same distribution as

rn(θ̂− θ). We refer to, e.g., van der Vaart & Wellner (1996), Section 3.6, for a formal definition of conditional
convergence.

11Bootstrap estimators Ω̂ of Ω1 will satisfy λ2
nΩ̂Ω−1

1

p−→ Id+1. Given the bootstrap sample {β̂b1}Bb=1, we can

follow Machado & Parente (2005) to compute Ω̂ via percentile method, which is justified theoretically. Or we

can simply compute Ω̂ = 1
B

∑B
b=1(β̂b1 − β̂1)(β̂b1 − β̂1)′, which is easier to implement.

12 We thank a referee for raising this point.
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to build a specification test. Specifically, let us consider the J-test statistic

TJ(`) = [(1/`)− 1]−1(β̂1(τn)− β̂1(`τn))′Ω̂−1(β̂1(τn)− β̂1(`τn)), (2.5)

and consider the test ϕα(`) = 1{TJ(`) > qd1(1−α)}, where qd1(1−α) is the quantile of order

1−α of a χ2 distribution with d1 degrees of freedom. The following theorem shows that such

a test has a correct asymptotic level, and power against suitably defined local alternatives.

Theorem 2.3. Suppose that Assumptions 2–4 and 6 hold. Then:

1. If Assumptions 1 and 5 also hold, then, for any 0 < ` < 1, limn→∞E(ϕα(`)) = α.

2. If we consider the sequence of local alternatives defined by Assumptions 1’ and 5’ in

the appendix, limn→∞E(ϕα(`)) > α and ` 7→ limn→∞E(ϕα(`)) is maximal for `∗ =

arg max`∈[0,1] `[ln(l)]2/(1− `), `∗ ' 0.2.

This test has similarities with a Hausman test, since it consists in comparing two estimators

of β1, one of which being efficient (among quantile estimators) under the null. A difference

with the usual Hausman test, however, is that both estimators are inconsistent under the

alternative. We show nonetheless that the test is consistent against local alternatives where

X1 has a scale effect on Y ∗ in addition to its location effect, and prove that under such

alternatives the test has maximal power for ` = `∗ ' 0.2.13

2.3 Choice of the quantile index

The estimator of β1 is asymptotically normal with zero mean provided that it is based on a

sequence of quantile indices τn satisfying the bias-variance trade-off of Assumption 6. Though

there always exists a sequence τn satisfying Assumption 6 under Assumption 3, admissible

rates of convergence towards 0 for τn are unknown, since they depend on B(τn), which is

itself unknown. A related issue arises in the estimation at infinity of the intercept of sample

selection models (see Andrews & Schafgans, 1998 and Schafgans & Zinde-Walsh, 2002) or in

the estimation of extreme value index (see Drees & Kaufmann, 1998 and Danielsson et al. ,

2001). We propose in the following a heuristic data-driven method, which consists of selecting

τn as the minimizer of a criterion function that represents the trade-off between bias and

variance. The innovative idea here is to combine a subsampling method with a minimum

distance estimator to produce a proxy of the bias.

13Note that, by design, this test may only detect deviations from our conditional location-shift specification
occurring in the tails.
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Specifically, let us consider the same test statistic as before, but where (`τn, τn) are replaced

by (`1τn, `2τn), with `1 < 1 < `2:

TJ(τ) = [1/`1 − 1/`2]
−1(β̂1(`2τ)− β̂1(`1τ))′Ω̂−1(β̂1(`2τ)− β̂1(`1τ)).

A slight adaptation of the proof of Theorem 2.3 shows that if τn satisfies Assumption 6, TJ(τn)

converges to a chi-squared distribution with d1 degrees of freedom as n grows to infinity. In

Section 3 of the supplementary material, we also show that otherwise, the asymptotic distri-

bution of TJ(τn) includes an additional bias term. Heuristically, this suggests in particular

that if the median of the test statistic is close enough to the median of a chi-squared distri-

bution with d1 degrees of freedom, denoted by Md1 , then the bias term should be small. Our

data-driven procedure builds on this simple idea.

In practice, we propose to estimate the difference between the two medians using subsampling.

For each subsample and each quantile index τ within a grid G, we compute TJ(τ). Then,

letting Ms(τ) denote the median of these test statistics over the different subsamples and for

a given τ , we compute

d̂iffn(τ) =
|Ms(τ)−Md1 |√

bnτ
,

where bn denotes the subsample size.

Similarly, the asymptotic covariance matrix is estimated by the covariance matrix of the

subsampling estimator of β1, multiplied by the normalizing factor bn/n. We sum up the

diagonal elements of this matrix and call this sum V̂arn(τ). We then select the quantile index

as follows:

τ̂n = arg min
τ∈G

V̂arn(τ) + d̂iffn(τ).

We thus base our procedure on the trade-off between the variance and our proxy of the

bias. It follows that we achieve undersmoothing in comparison with a more standard trade-

off between variance and squared bias. As in the case of nonparametric regressions, this is

needed to control the asymptotic bias that would otherwise affect the limiting distribution of

our estimator.

3 Implementation and simulations

3.1 Details on implementation

In this subsection, we provide a detailed algorithm for computing our estimator, which is used

in our simulations and in the application. First, we have to fix some tuning parameters in our

12



procedure on the choice of τn. We choose (`1, `2) = (0.9, 1.1). We also set the subsampling

size bn equal to

bn = 0.6n− 0.2(n− 500)+ − 0.2(n− 1000)+ − 0.2

[
1− ln(2000)

ln(n)

]
(n− 2000)+,

with x+ = max(0, x). Finally, we have to choose a grid G. We set the upper bound of this

interval to 0.3, the lower bound to min(0.1, 80/bn), and the number of (uniformly spaced) grid

points equal to 40. The lower bound is motivated by the fact that if the effective subsampling

size τbn becomes too small, then the intermediate order asymptotic theory is likely to be a

poor approximation (see Chernozhukov & Fernandez-Val, 2011 for a related discussion). Our

estimator can be computed through the following steps:

1. Draw B bootstrap samples and S subsamples of size bn. In our simulations and appli-

cation, we let B = S = 150.

2. For each τ ∈ G:

(a) Compute the estimator of β(τ) = (β′1, β0(1− τ/h), β′−1(1− τ/h))′:

β̂(τ) = arg min
β

n∑
i=1

ρτ (−Yi +X
′
iβ).

(b) Compute

Ω̂(τ) =
1

B

B∑
b=1

(β̂b(τ)− β̂(τ))(β̂b(τ)− β̂(τ))′,

with β̂b(τ) the bootstrap estimator of β(τ) on the b-th bootstrap sample.

(c) Compute, for each subsample s = 1 . . . S, the estimator of β1 (β̂s1(τ)), and the

J-test statistic:14

T sJ (τ) = (bn/n)[1/`1 − 1/`2]
−1(β̂s1(`2τ)− β̂s1(`1τ))′Ω̂−1(τ)(β̂s1(`2τ)− β̂s1(`1τ)).

(d) Compute d̂iffn(τ) =
|MS(τ)−Md1 |√

bnτ
whereMS(τ) denotes the median of the (T sJ (τ))Ss=1.

(e) Compute V̂arn(τ) = (bn/n)
∑d1

k=1 Σ̂(τ)kk, where Σ̂(τ)kk is the k−th diagonal term

of

Σ̂(τ) =
1

S

S∑
s=1

(β̂s1(τ)− β1(τ))(β̂s1(τ)− β1(τ))′ with β1(τ) =
1

S

S∑
s=1

β̂s1(τ).

14The term bn/n accounts for the fact that the rate of convergence of the J statistic on the subsample is λ2
bn

instead of λ2
n, with λ2

n/λ
2
bn = n/bn.
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3. Compute τ̂n = arg minτ∈G V̂arn(τ) + d̂iffn(τ).

4. Define β̂1 = β̂1(τ̂n), Ω̂ = Ω̂(τ̂n). Optionally, compute β̂1(0.2τ̂n) and then TJ(0.2), as

defined in (2.5), to perform the specification test of the model.

The multiple steps involved in our estimation procedure are primarily due to the fact that we

use bootstrap for inference and subsampling for computing τ̂n. Importantly though, the over-

all estimation procedure remains computationally easily tractable. For instance, the whole

procedure takes less than 8 minutes (about 440 seconds) with Matlab and Stata, with the ini-

tial NLSY79 sample (n = 1, 674) that we use in our application (see Subsection 4.1 below).15

3.2 Monte Carlo simulations

In this section, we investigate the finite-sample performances of our estimation procedure by

simulating the following model for four different sample sizes (n = 250, n = 500, n = 1, 000

and n = 2, 000):

Y ∗ = β1X1 + β2X2 + β3X3 + (1 + δ1X1 + δ2X2 + δ3X3)ε

D = 1
{

0.6 + Y ∗ + 0.3X1 + 0.2X2 +X2
3 + η ≥ 0

}
.

X1 and X2 are two mutually exclusive binary variables, such that X1 = 1{U ≤ 0.3} and

X2 = 1{U ≥ 0.8}, with U uniformly distributed over [0, 1]. X3 is drawn from a truncated

normal distribution with support [−1.8, 1.8], mean 0 and standard deviation 1. (ε, η) are

jointly normally distributed, with mean zero, V (ε) = V (η) = 1 and Cov(ε, η) = 0.2. Finally,

the true values of the parameters are given by: β1 = 0.2, β2 = 0.4, β3 = 0.5, δ1 = 0, δ2 = 0.1

and δ3 = −0.3. Throughout this section we focus on the performances of our estimator of β1.

In our application, the black-white wage gap will be estimated similarly.

We report in Table 1 below, for each sample size, the bias, standard deviation and root-mean-

square error (RMSE) of our estimator of the parameter of interest β1 (“Extremal” column),

and of a naive OLS estimator obtained using only the observations such that D = 1 and

ignoring the selection problem.16 Finally, we also report in this table the average quantile

15These CPU times are obtained on an Intel CoreTM, i5-4200U, 1.6 GHz with 8Gb of RAM. Most of the
CPU time is actually consumed by the computation of the data-driven τ̂n: for a given τn, the computational
time is only around 30 seconds when including the bootstrap for inference.

16 We also computed the finite-sample performances of the maximum likelihood estimator. As expected, the
MLE is more efficient than our distribution-free estimator. Specifically, for n=2,000, the RMSE associated with
the MLE is equal to 0.045, against 0.067 for our estimator (detailed results are available upon request). We
also examine in the supplement the properties of our estimator under a very similar DGP, but with exogenous
selection. Though not necessarily consistent in this case, the estimator actually displays very good finite sample
performances, even better than the OLS for n = 1, 000.
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indices computed across all simulations.

Extremal OLS Extremal OLS

n = 250 n = 1, 000
Bias -0.018 -0.089 Bias 0.005 -0.078

Std. dev. 0.183 0.150 Std. dev. 0.094 0.075
RMSE 0.184 0.174 RMSE 0.094 0.108

Average τn 0.249 Average τn 0.230

n = 500 n = 2, 000
Bias -0.009 -0.077 Bias -0.004 -0.083

Std. dev. 0.127 0.099 Std. dev. 0.067 0.048
RMSE 0.127 0.126 RMSE 0.067 0.096

Average τn 0.235 Average τn 0.228

Note: Results were obtained using 280 simulations for each sample size.

Table 1: Monte Carlo simulations: Extremal and OLS estimator of β1.

First, for each sample size, the bias-standard deviation ratio of our estimator is much smaller

than 1, consistent with our data-driven choice of τn, which is aimed at undersmoothing. In

practice, our estimator exhibits a fairly small bias for sample sizes larger than n = 500. The

OLS estimator, on the other hand, displays a large and nonvanishing bias across all sample

sizes. Besides, the standard deviation of our estimator decreases with the sample size, as

expected given the consistency of our estimators.

Figure 1 displays the RMSE of our estimator β̂1 as a function of the quantile index τn. The

plots corresponding to n = 1, 000 and n = 2, 000 exhibit a U-shaped relationship between

the RMSE and the quantile index. This pattern reflects a bias-variance tradeoff with respect

to the choice of τn. When the quantile index is small, the bias is small but the variance is

large, and vice versa. On the other hand, the relationship between RMSE and τn is mostly

decreasing for n = 250 and n = 500. This is consistent with the variance term dominating

the bias term for such small sample sizes. The vertical line corresponds to the average τn

(across simulations) obtained with our data-driven method. For all sample sizes, this index

is smaller than the one yielding the smallest RMSE, consistent with our data-driven method

tending to undersmooth. However, for sample sizes larger than 250, the RMSE evaluated at

the average selected quantile index is close to the minimum.
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Note: The solid vertical line is the average quantile index produced by our
data-driven method. The solid curve plots the RMSE of our estimator as a
function of the quantile index τn.

Figure 1: Relationship between RMSE of β̂1 (Y-axis) and τn (X-axis)

Next, we examine in Figure 2 the relationship between the coverage of the 95% and 97.5%

confidence intervals constructed with our estimator β̂1 and the quantile index τn. The coverage

is generally quite close to the nominal rates for values of τn in the neighborhood of the average

quantile index obtained with our data-driven method, although both confidence intervals tend

to be conservative for n = 500. The sharp decline in coverage for larger values of the quantile

index for n = 1, 000 and n = 2, 000 reflects the existence of a nonvanishing bias for fixed values

of τn. This stresses the importance of carefully choosing the quantile index in order to conduct

valid inference on the parameters of interest. Overall, these simulation results indicate that

our data-driven procedure does a good job in selecting appropriate quantile indices.
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Note: The solid vertical line is the average quantile index produced by our
data-driven method. The horizontal dashed and solid lines represent the 97.5%
and 95% nominal coverage rates, respectively. The solid and dashed curves
represent the coverages of the 95% and 97.5% confidence intervals, as a function
of the quantile index τn. The confidence intervals are constructed using percentile
bootstrap.

Figure 2: Relationship between coverage on β1 (Y-axis) and τn (X-axis)

Finally, we conclude this section by examining in Table 2 the finite sample performance of our

specification test based on TJ(`), for ` ∈ {0.2, 0.4, 0.6, 0.8} and α = 0.05. For that purpose,

we consider location-scale alternatives, i.e. models for which δ1 6= 0. Our results show that

the test is generally conservative for δ1 = 0, for all values of `. This could be expected since

the data-driven τn is computed by minimizing the sum of two terms, one of which being close

to TJ(`). Nevertheless, and importantly, the test exhibits good power against alternatives,

especially for n ≥ 1, 000. As n increases, we also see that the power is maximized for ` = 0.2,

consistent with the theory (Theorem 2.3), although the power remains large for ` = 0.4.

17



δ1 = 0 δ1 = 0.5 δ1 = 1

` 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

n=250 0.007 0.039 0.032 0.032 0.129 0.111 0.132 0.064 0.268 0.296 0.304 0.086
n=500 0.018 0.039 0.046 0.021 0.171 0.232 0.164 0.061 0.396 0.446 0.350 0.068

n=1,000 0.007 0.032 0.043 0.025 0.329 0.361 0.271 0.071 0.682 0.682 0.514 0.200
n=2,000 0.011 0.018 0.075 0.021 0.575 0.514 0.386 0.089 0.896 0.871 0.721 0.325

Note: Power of the test for a nominal level of α = 0.05. The results were obtained using 280 simulations for each sample
size.

Table 2: Local power of the specification test

4 Application to the black-white wage gap

We apply our method to the estimation of the black-white wage gap among young males

for two groups of cohorts, using data from the National Longitudinal Survey of Youth 1979

(NLSY79) and National Longitudinal Survey of Youth 1997 (NLSY97). Individuals surveyed

in the NLSY79 were 14 to 22 years old in 1979, while individuals from the NLSY97 were

12 to 16 years old in 1997. In the following, we are interested in estimating the black-white

wage gap for these two groups of individuals as of 1990-1991 and 2007-2008, respectively. As

noted in early articles by Butler & Heckman (1977) and Brown (1984), and documented more

recently by Juhn (2003), among males, blacks are significantly more likely to dropout from

the labor market. To the extent that those dropouts tend to have lower potential wages, it

follows that failure to control for endogenous labor market participation is likely to result

in underestimating the black-white wage differential. It is worth noting that finding a valid

instrument for selection is particularly difficult in the context of male labor force participation.

As a result, most of the attempts to deal with selection have consisted of imputing wages for

non-workers (see, among others, Brown, 1984, Smith & Welch, 1989, Neal & Johnson, 1996,

Juhn, 2003, Neal, 2004, Neal, 2006 and Neal & Rick, 2014).

Importantly, since across-cohort changes in selection into the workforce is also different for

blacks and for whites, adequately dealing with selection is needed to obtain credible estimates

of the across-cohort evolution of the black-white wage gap. Altonji & Blank (1999) stress the

importance of correcting for changes in race differential selection into work, and review some

of the empirical literature addressing this issue.17

17As the authors put it, “Comparisons of average or median wages of persons with jobs do not provide an
accurate picture of changes in the offer distributions faced by black and by white workers” (pp. 3240). See
also Juhn (2003), who provides evidence that the evolution over the period 1969-1998 of the black-white wage
gap is severely biased if one does not take into account the decline in work participation rates of black men
relative to white men. In recent work, Neal & Rick (2014) show that the growth in prison populations in the
last decades is an important factor behind the evolution of differential workforce participation of blacks and
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4.1 Evidence from the NLSY79

We first use our method to estimate the black-white wage gap among young males from the

NLSY79, revisiting the influential work of Neal & Johnson (1996) on this question. We use

the same sample as Neal & Johnson (1996) in our analysis, and consider as they did that an

individual is a nonparticipant if he did not work in 1990 nor in 1991. The total sample size

is n = 1, 674, with an overall labor force participation rate over the period of interest (1990-

1991) equal to 95%. We refer the reader to Neal & Johnson (1996) for a detailed discussion

on the data.

We start by replicating the results of Neal & Johnson (1996) in Table 3 below. We run four

regressions on the log of hourly wages on a set of observable characteristics, namely black,

Hispanic dummies and age (specifications (1) and (3)), together with AFQT and AFQT

squared (specifications (2) and (4)). The first two columns contain the results of simple OLS

regressions, replicating Columns (1) and (3) in Table 1 of Neal & Johnson (1996) (p.875),

while in the last two columns we replicate their Table 4 (p.883) by imputing a zero log-wage

for nonparticipants and running a median log-wage regression.

As discussed in Neal & Johnson (1996) and more extensively in Johnson et al. (2000),

this imputation method yields consistent estimates under the assumption that, conditional

on the set of observable characteristics included in the regression, the potential wage for

any individual who did not work neither in 1990 nor in 1991 lies below the median. It is

important to note that the identifying condition of independence at infinity used in our paper

(Assumption 3) relaxes this assumption by replacing the median with some extremal quantile

of the conditional wage distribution.18

As is put forward by Neal & Johnson (1996), Columns (1) and (2) show that the estimated

black-white wage gap drops sharply, from 24.4% to 7.1%, after adding controls for abil-

ity, namely AFQT and AFQT squared. The estimated black-white wage differential further

changes substantially, increasing (in absolute value) by as much as 6.4 points, after address-

ing the selection issue with the imputation method proposed in Neal & Johnson (1996) (see

Columns (2) and (4)).

whites.
18 Our identifying condition is also weaker in the sense that h does not need to be equal to 1. Note however

that our estimation method is not strictly less restrictive than the imputation - median regression method
used by Neal & Johnson (1996). Contrary to Neal and Johnson, we need to impose a conditional location-shift
model on X1. This reflects an underlying trade-off between the strength of the identifying assumption on the
selection process, and the restrictions on the (conditional) distribution of potential outcomes.
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(1) (2) (3) (4)

Black -0.244 -0.071 -0.356 -0.135
(0.026) (0.027) (0.028) (0.034)

Hispanic -0.114 0.005 -0.181 -0.013
(0.030) (0.030) (0.033) (0.038)

Age 0.048 0.040 0.068 0.055
(0.014) (0.013) (0.016) (0.017)

AFQT
—–

0.173
—–

0.206
(0.012) (0.015)

AFQT2

—–
-0.013

—–
0.010

(0.011) (0.014)

Note: Standard errors are reported in parentheses.

Table 3: OLS and median log-wage regression results (NLSY79)

We now investigate how the above results change when we use our method to estimate the

black-white wage gap. In the discussion below we focus on the black coefficient (or equiv-

alently on the black-white wage gap) which is our parameter of interest here. All of these

estimation results are obtained after controlling for age, AFQT, AFQT squared, and His-

panic ethnicity. In Table 4 we present the results obtained when implementing the estimator

defined in Section 2.2 (“Extremal” column).19 We compare our estimation results with the

results from a median log-wage regression with zero log-wage imputation for non-participants

(“Median” column), and those from a naive OLS estimator that ignores the selection issue

(“OLS” column).20

19 In practice, wages are likely measured with error. While the estimation method discussed in Section 2
does not explicitly allow for measurement errors, we show in Section 2.1 of the supplementary material that,
in the special case of a location shift model, our framework is in fact robust to classical measurement errors
affecting the outcome. We also discuss in that section the effect of measurement errors on the asymptotic
variance of the estimator.

20 A potential alternative would be to estimate the black-white wage gap using the inverse density weighting
scheme of Lewbel (2007), treating AFQT as a special regressor. In this context, AFQT appears to be the only
candidate as a special regressor. The large support condition would require the employment probability to be
arbitrarily small for some values of the AFQT. Although there is some variation, we found that the conditional
employment probability, estimated via nonparametric regression, remains very far from 0, specifically above
0.63 for both NLSY cohorts. This indicates that this method cannot be used in this context.
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Extremal Median OLS

Black -0.106 -0.135 -0.071
(0.034) (0.034) (0.027)

J-test (p-value) 0.238 - -

Note: our estimator and its standard error, reported in the
columns “Extremal”, are computed as described in Sub-
section 3.1, with X1 =Black, and X−1 =(Hispanic, Age,
AFQT, AFQT2)’.

Table 4: Extremal quantile regression results and alternative estimation methods (NLSY79)

Several remarks are in order. First, the p-value of the specification test introduced in Sec-

tion 2.2 is equal to 0.238, implying that one cannot reject our specification at any standard

statistical level. Second, the estimation results from our extremal quantile method show that

the size of the black-white wage gap (10.6%) is smaller than the estimated gap obtained un-

der the imputation method proposed by Neal & Johnson (1996) (13.5%), but larger than the

gap estimated using simple OLS (7.1%).21 That our estimate of the black-white wage gap is

smaller than the one obtained with the imputation method (although not significantly so) is

consistent with our estimator being based on a weaker identifying assumption on the selection

process. While Neal & Johnson (1996) assume that, conditional on observed characteristics,

those individuals who do not participate to the labor market have a potential wage below

the median, a sufficient condition to apply our method is to rule out the possibility that non-

participants have arbitrarily large potential wages. Intuitively it follows that our approach

results in a milder form of selection correction, which is consistent with our findings. Overall,

our results are in line with the key takeaway of Neal & Johnson (1996), namely that premarket

factors, as measured here by AFQT, account for most of the black-white wage differential.22

4.2 Across-cohort evolution

We now examine the evolution across the NLSY79 and NLSY97 cohorts of the black-white

wage gap. To do so, we apply our method to estimate the wage gap using hourly wages

measured in 1990-1991 for the NLSY79 sample and in 2007-2008 for the NLSY97 sample.

We follow Altonji et al. (2012) by using a modified version of the AFQT variable, which

corrects for the across-cohort changes in the ASVAB test format as well as in the age ranges

at which the test was taken. This age correction procedure is based on an equipercentile

21Neal & Johnson (1996) also estimate the black-white wage gap for higher quantiles than the median, in
particular seventy-fifth and ninetieth percentiles. They also find that the black-white gap is lower for those
larger quantiles.

22Estimation results from our method without controlling for AFQT are not reported here to save space.
They are available from the authors upon request.

21



mapping. To the extent that the rank within the AFQT distribution may vary with the age

of the respondent at the time of the test, we further restrict the samples to the respondents

who took the test when they were 16 or 17. Besides this age restriction, we constructed the

NLSY97 sample so as to match as closely as possible the sample selection rules used by Neal &

Johnson (1996) for the NLSY79. Consistent with prior evidence, we find that the labor force

participation rate of black men has fallen over time relative to white men.23 The baseline

estimation results are reported in Table 5 below. The sample sizes are equal to 1, 077 and

1, 123 for the NLSY79 and NLSY97 cohorts, respectively.

Extremal Median OLS Extremal Median OLS

NLSY79 NLSY97

Black -0.119 -0.145 -0.081 -0.159 -0.167 -0.097
(0.044) (0.039) (0.035) (0.043) (0.058) (0.037)

J-test (p-value) 0.814 - - 0.773 - -

Note: Our estimator and its standard error, reported in the columns “Extremal”, are computed
as described in Subsection 3.1, with X1 =Black, and X−1 =(Hispanic, Age, AFQT, AFQT2)’.

Table 5: Extremal quantile regression results and alternative estimation methods (NLSY79-
NLSY97)

The estimation results obtained with our method provide evidence of a wider black-white

wage gap for the 1997 cohort relative to the 1979 cohort, with an increase in the estimated

gap from 11.9% to 15.9%. On the other hand, the results from the median regression of

Neal & Johnson (1996) imply a smaller across-cohort increase in the black-white wage gap

(from 14.5% to 16.7%). While the naive OLS results show that fully ignoring the selection

issue results in a smaller estimated increase in the black-white gap (from 8.1% to 9.7%),

correcting for selection appears to be more important for the black-white wage gaps in level.

In particular, for the NLSY97 cohort, the estimated wage gap increases by 6.2 points after

accounting for selection using our estimation method. Finally, as illustrated by the large

p-values (0.814 and 0.773 for the NLSY79 and NLSY97 samples, respectively), one cannot

reject the validity of our specification for either cohort.

Do these results suggest that labor market discrimination against blacks has gotten worse

over the last two decades? Or does the estimated increase in the black-white wage gap reflect

the fact that the AFQT score only captures a fraction of all the premarket factors that matter

on the labor market, which may have changed over time? While providing a definite answer

to those questions is outside of the scope of this paper, we attempt to shed light on this issue

23We provide more details on the data in Appendix A.
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by controlling for additional premarket factors, namely parental education and household

structure (as measured by the presence of both biological parents at age 14). Bringing those

characteristics into the analysis is important since differences in family environment have been

found to account for most of the black-white gap in noncognitive skills (see, e.g., Carneiro

et al. , 2005).

Table 6 below reports the estimated black-white wage gap for the 1979 and 1997 cohorts, using

our extremal quantile method and the median regression of Neal & Johnson, for three different

specifications. The first specification (“No premarket factor”) only controls for age and the

Hispanic dummy, the second specification (“AFQT”) also controls for AFQT and AFQT

squared, while the third specification (“Preferred”) further controls for parental education

and household structure. Note that, similarly to the results discussed earlier, one cannot

reject our model at any standard statistical level for any of these three specifications, with

the p-values ranging from 0.235 for the specification without AFQT using the NLSY97, to

0.912 for the specification with premarket factors using the NLSY79.

Extremal Median Extremal Median

NLSY79 NLSY97

No premarket factor -0.329 -0.349 -0.313 -0.311
(0.052) (0.032) (0.040) (0.051)

AFQT -0.119 -0.145 -0.159 -0.167
(0.044) (0.039) (0.043) (0.058)

Preferred -0.106 -0.123 -0.092 -0.135
(0.047) (0.042) (0.056) (0.064)

Notes: The “preferred” specification includes AFQT, parental education and
household structure. For that case, the sample is restricted to the individ-
uals with non-missing parental education and household structure (sample
size=1, 016 for the NLSY79, 1, 071 for the NLSY97). Our estimator and its
standard error, reported in the columns “Extremal”, are computed as described
in Subsection 3.1. The J-test p-value for the (“No premarket factor”, “AFQT”,
“Preferred”) specifications are (0.490, 0.814, 0.912) and (0.235, 0.773, 0.721),
for NLSY79 and NLSY97, respectively.

Table 6: Black-white wage gap with age restriction and additional premarket factors

Without controlling for premarket factors, our estimation results show that the black-white

wage gap has remained essentially stable across the 1979 and 1997 cohorts, with a small and

insignificant 1.6 points decrease over the period of interest. This result points to a lack of

progress in closing the black-white wage gap between 1990 and 2007. While most of the

available evidence in the literature relates to the evolution of the black-white wage gap before

2000, it is worth noting that this finding is consistent with the estimates obtained by Neal &

Rick (2014) using different datasets (namely the Census Long Form for the year 1990 and the
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American Community Survey for the year 2007). In their paper, Neal & Rick address the issue

of differential selection into the workforce by examining the sensitivity of the median black-

white wage gap to various imputation rules, which vary based on the fraction of (missing)

wages supposed to fall below the median of the potential wage distribution. This type of

sensitivity analysis cannot be used after adding controls for premarket factors, since in that

case knowing the fraction of wages falling below or above the median is not sufficient to

estimate the median wage gap.

While the estimated black-white wage gap increases over time after controlling for AFQT,

Table 6 shows that the direction of the change is overturned when including other premarket

factors in addition to the AFQT. Using our estimation method, the black-white wage gap is

found to be stable across cohorts, decreasing by 1.4 points only (from 10.6% to 9.2%) between

1990 and 2007. This provides suggestive evidence that the across-cohort increase in the wage

gap conditional on AFQT is attributable to the premarket factors other than AFQT, likely

reflecting a time-varying omitted variable bias based on these family environment character-

istics.

5 Concluding remarks

In this paper, we develop a new inference method for semiparametric sample selection models.

The key advantage of our method is that it can be used in frequent situations where one does

not have access to an instrument for selection, nor to a large support regressor. Instead, the

main identifying condition is based on selection being independent of the covariates for large

values of the outcome. This condition is typically mild provided that selection is endogenous.

Building on this identification strategy, we propose a simple estimation procedure which

is based on quantile regression in the tails. We establish the consistency and asymptotic

normality of our estimators by extending the analysis of Chernozhukov (2005) to a setting

with sample selection, and show that bootstrap is consistent. The choice of an appropriate

quantile index is important in this context, and we derive a data-driven procedure for this

purpose. Finally, we build an intuitive and simple-to-implement specification test for our

model. Importantly for the practical usefulness of our method, we show that our estimation

procedure performs well in small samples.

We then apply our method to the estimation of the black-white wage gap among males from

the NLSY79 and NLSY97 cohorts. Correcting for selection into the workforce is important in

this context since black males are more likely to dropout from the labor market than white

males, and this difference has increased over time. Our estimation results show that premarket
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factors play a key role in explaining the black-white wage gap, and that this gap has remained

essentially stable over the period 1990 to 2007.
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A Data appendix

We construct our NLSY97 dataset based on the interviews that were conducted during the

years 2007 and 2008, using data on males from the cross-sectional sample and the oversample

of blacks and Hispanics of the NLSY97. Our sample consists of the respondents who reported

wages for at least one of these two years, along with the respondents who reported not working

in either year (nonparticipants). Respondents with a missing AFQT score are excluded from

the analysis. For the individuals working in both years, the wage variable is defined as the

average of the hourly wages corresponding to the main job at the time of the interview.

For those working during one year only, we define the wage variable as the hourly wage

corresponding to the main job at the time of the interview in that year. Finally, we trim the

data by dropping the wage observations below 1 dollar and above 118.95 dollars (corresponding

to 75 dollars in 1991). We report in Table 7 below some descriptives corresponding to our

NLSY79 and NLSY97 samples restricted to the respondents who took the ASVAB test when

they were 16 or 17. Table 8 reports the labor force participation rates for the NLSY79 and

NLSY97 samples, separately for blacks and whites.

NLSY79 NLSY97
Blacks Whites Blacks Whites

AFQT -0.716 0.387 -0.726 0.373
Std.dev. (0.812) (0.966) (1.037) (0.923)

Highest grade completed 11.638 12.859 11.239 12.849
Std.dev. (3.927) (3.691) (4.811) (4.726)

Mother high school graduate 0.447 0.715 0.707 0.829
Father high school graduate 0.368 0.665 0.518 0.758

Mother college graduate 0.040 0.093 0.107 0.217
Father college graduate 0.046 0.188 0.086 0.245
Both parents at age 14 0.486 0.760 0.264 0.597

Note: Samples restricted to males. Blacks account for 31% (25%) of the NLSY79
(NLSY97) sample.

Table 7: Descriptive statistics for the subsample with restricted age

Blacks Whites

NLSY79 full sample 91.02% 97.52%

NLSY79 with age restriction 90.58% 98.10%

NLSY97 with age restriction 81.43% 93.09%

Table 8: Labor force participation rates (males)
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B Proofs of the results

B.1 Proof of Theorem 2.1

By Assumption 1, ε ⊥⊥ X1|X−1. Then, conditional on X−1, Y
∗ = X ′1β1 + ε is a location

model. Given that E[exp(bmax(ε, 0))] < +∞, E[exp(bmax(ε, 0))|X−1] < +∞ almost surely.

Therefore, the identification result in D’Haultfoeuille & Maurel (2013) directly applies. This

means that X ′1β1 is identified up to an additive constant, c1 say. Now, suppose that X ′1β1 +

c1 = X ′1β̃1+ c̃1. Because E
[
XX

′
]

is nonsingular, β1 = β̃1 and c1 = c̃1. Hence, β1 is identified.

To prove (2.1), let −z = Q−Y |X(τ |x) for some fixed x ∈ Supp(X) and τ sufficiently small. By

Assumption 3, there exists a function δ(·) possibly depends on x, such that, for any y ≥ z,

δ(τ) ↓ 0 as τ ↓ 0 and

P (D = 1|X = x, Y ∗ = y) ∈
(
h(1 + δ(τ))−1, h(1− δ(τ))−1

)
.

In addition, from Assumptions 1–3 and

P (Y ≥ z|X = x) =P (Y ∗ ≥ z|X = x)P (D = 1|X = x, Y ∗ ≥ z)

=

∫ ∞
z

P (D = 1|X = x, Y ∗ = y)fY ∗|X(y|x)dy,

we have that P (Y ≥ z|X = x) is continuous in z, P (Y ≥ z|X = x) has a positive derivative

for any z ∈ [A,∞), and

F−Y ∗|X(−z|x)

F−Y |X(−z|x)
∈
(
h−1(1− δ(τ)), h−1(1 + δ(τ))

)
.

Therefore, F−Y |X(−z|x) = τ and

Q−Y |X(τ |x) ∈
(
Q−Y ∗|X(τ(1− δ(τ))/h|x), Q−Y ∗|X(τ(1 + δ(τ))/h|x)

)
.

Let s(τ) = Q−Y |X(τ |x)−Q−Y ∗|X(τ/h|x). Then,

s(τ) ∈
(
Q−Y ∗|X(τ(1−δ(τ))/h|x)−Q−Y ∗|X(τ/h|x), Q−Y ∗|X(τ(1+δ(τ))/h|x)−Q−Y ∗|X(τ/h|x)

)
.

We now show that the lower bound above tends to zero. By a similar reasoning, the upper

bound tends to zero. The result then follows by combining s(τ) = o(1) with Assumption 1.
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By the mean value theorem, there exists m̃ ∈ (1− δ(τ), 1) such that

Q−Y ∗|X(τ(1− δ(τ))/h|x)−Q−Y ∗|X(τ/h|x)

=

∫ (1−δ(τ))/h

1/h

b(τ)τdm

f−Y ∗|X(Q−Y ∗|X(mτ |x)|x)b(τ)

=

(
−δ(τ)b(τ)/h

)
τ

f−Y ∗|X(Q−Y ∗|X(m̃τ |x)|x)b(τ)
.

where b(τ) = Q−Y ∗|X(eτ |x)−Q−Y ∗|X(τ |x) = Q−ε|X(eτ |x)−Q−ε|X(τ |x).

By Exercise 1.2.6.(a) in Resnick (1987), and Assumption 2, ε|X is in the attraction domain

of generalized extreme value distribution. Moreover, by Lemma 5.1 of our supplement, Sε|X

is rapidly varying at +∞. Hence, ε|X actually belongs to the the attraction domain of type

I extreme value distribution. Therefore, by the same argument as when proving (5.3) in our

supplement, we have, locally uniformly in t and as τ → 0,

τ

f−Y ∗|X(Q−Y ∗|X(tτ |x)|x)
∼ b(tτ).

Notice that , m̃→ 1 and b(tτ)/b(τ)→ ln(et)− ln(t) = 1 by (5.8) in our supplement. Hence,

τ

f−Y ∗|X(Q−Y ∗|X(m̃τ |x)|x)b(τ)
→ 1.

In addition, δ(τ) ↓ 0 and b(τ) is bounded as τ → 0 by Lemma 5.1 in our supplement.

Therefore, the lower bound of s(τ) tends to 0 and (2.1).

Finally, (2.2) follows directly from (2.1) and Assumption 1.

B.2 Proof of Lemma 2.1

First, if B(·) = 0 on (0, c) for some 1 > c > 0, then (iii) holds trivially. Otherwise define, for

any α ∈ (0, 1), G(τ) = τB2(1−α)(τ). By construction, B(·) and thus G(·) are increasing. Then

define, for n sufficiently large,

τ∗n = G−1(1/n).

Now, for any x ∈ Supp(X), limτ→0 supt≥1−τ/h |h−P (D = 1|X = x, FY ∗|X(Y ∗|x) = t)| = 0 by

Assumption 3. Because this term is bounded by 2, limτ→0 B(τ) = 0 by the dominated con-

vergence theorem. Thus, limτ→0G(τ) = 0. This implies that limn→∞G
−1(1/n) = 0, ensuring
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that τ∗n satisfies Condition (i). Moreover, it follows from the equality G(τ) = τB2(1−α)(τ) that

1

n
= τ∗nB2(1−α)(τ∗n),

which implies that Condition (ii) holds as well. Finally, by using this expression again and

noting that G(τ∗n) = 1/n, we get

√
nτ∗nB(τ∗n) = Bα(τ∗n)→ 0,

so that Condition (iii) is also satisfied.

B.3 Proof of Theorem 2.2

We decompose the proof in three steps. The first step establishes that λn → ∞. The

second step shows the asymptotic normality of λn(β̂1− β1). Finally, the third step shows the

consistency of the bootstrap.

1. λn →∞

By Lemma 5.2 in our supplement, we have, for any x = (x′1, x
′
−1)
′ ∈ Supp(X),

λn ∼
√
nτn

Q−η(eτn/h)−Q−η(τn/h)
∼

√
nτnH(x−1)

Q−U |X(eτn/h|x)−Q−U |X(τn/h|x)

=

√
nτnH(x−1)

Q−ε|X(eτn/h|x)−Q−ε|X(τn/h|x)
.

By Lemma 5.1 in our supplement, Q−ε|X(eτn/h|x) − Q−ε|X(τn/h|x) is bounded. Besides,

nτn →∞ by Assumption 6(ii). Therefore, λn →∞.

2. Asymptotic normality of λn(β̂1 − β1)

Let β(τ) = (β′1, β0(1 − τ/h), β′−1(1 − τ/h))′, β̂(τ) =
(
β̂′1, β̂0(1− τ/h), β̂′−1(1− τ/h)

)′
and

Ẑn = λn(β̂(τn)− β(τn)). Similarly to Chernozhukov (2005, Equation (9.43)), Ẑn minimizes

Ψn(z, τn) = Wn(τn)′z + Λn(z, τn),

with, for any τ ,

Wn(τ) =
−1√
τn

n∑
i=1

(τ − 1{Yi ≥ X
′
iβ(τ))})Xi
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and for any z = (z1, z
′
2)
′ ∈ R× Rd,

Λn(z, τ) =
λn√
τn

n∑
i=1

∫ (z1+X′iz2)/λn

0

[
1{−Yi +X

′
iβ(τ) ≤ s} − 1{−Yi +X

′
iβ(τ) ≤ 0}

]
ds. (B.1)

Λn(z, τn) is convex in z because the integrands are increasing in s. Moreover, by Lemma 5.4

in the supplement, Λn(z, τn)
p−→ 1

2z
′QHz. We shall now prove that

Wn(τn)
d−→ N (0,QX). (B.2)

For that purpose, let Mn,i(τ) = −1√
τ
(τ − 1{−Yi +X

′
iβ(τ) ≤ 0})Xi +

√
τµ(τ), with

µ(τ) =
E
[
(τ − 1{X ′β(τ) ≤ Y })X

]
τ

=

E

[(
τ − P

(
Y ≥ QY ∗(1− τ/h|X)

∣∣X))X]
τ

.

Then

Wn(τ) =
1√
n

n∑
i=1

Mn,i(τ)−
√
nτµ(τ). (B.3)

By Lemma 9.6 of Chernozhukov (2005), we have

1√
n

n∑
i=1

Mn,i(τn)
d−→ N (0,QX). (B.4)

In order to bound µ(τn), we first show that, for τ sufficiently small,

P
(
Y ≥ QY ∗|X(1− τ/h|X), D = 0

∣∣X) = 0.

Note that

P
(
Y ≥ QY ∗|X(1− τ/h|X), D = 0

∣∣X) ≤ 1{QY ∗|X(1− τ/h|X) ≤ 0}

= 1{P (−U ≤ X ′1β1 +X ′−1β−1,r|X) ≤ τ/h}

≤ 1{P (−U ≤M |X) ≤ τ/h} (B.5)

where M = supx∈Supp(X) |x′1β1 + x′−1β−1,r|. Suppose that for any small τ , we can find a

corresponding x such that Since P (U ≤ M |X = x) ≤ τ/h. Then we can find a convergent
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sequences xn with limit x0 (because Supp(X) is compact) such that

P (U ≤M |X = x0) = lim
n→∞

P (U ≤M |X = xn) = 0.

This contradicts the fact that the upper end-point of U |X is +∞. So there exists a τ0 such

that for all x ∈ Supp(X), P (U ≤M |X = x) > τ0/h. Thus, the RHS of (B.5) equals zero for

τ ≤ τ0.

Therefore, for τ sufficiently small,

‖µ(τ)‖ =

∥∥∥∥E
[(
τ − P

(
Y ∗ ≥ QY ∗(1− τ/h|X), D = 1

∣∣X))X]
τ

∥∥∥∥
=

1

τ

∫ 1

1−τ/h
E|h− P (D = 1|X,FY ∗|X(Y ∗|X) = t)| ×

∥∥X∥∥ dt
≤ B(τ)/h.

Therefore, by Assumption 6,

√
nτnµ(τn) ≤

√
nτnB(τn)/h = o(1). (B.6)

Combined with (B.3), (B.4), and (B.6), we obtain (B.2).

Finally, by applying the convexity lemma and the same arguments as in the end of the proof

of Theorem 1 in Pollard (1991), we have

Ẑn = −Q−1H
1√
n

n∑
i=1

Mn,i(τn) + oP (1)
d−→ N (0,Ω0). (B.7)

The result follows since λn(β̂1 − β1) is the subvector of the first d1 components of Ẑn.

3. Consistency of the bootstrap

Hereafter, all bootstrap counterparts are starred. Let {In,j}j≥1 denote an i.i.d. sequence

distributed as multinomial with parameter 1 and probability ( 1
n , · · · ,

1
n), so that the bootstrap

weight for individual i, wn,i, satisfies wn,i =
∑n

j=1 1{In,j = i}. We show that Ẑ∗n can be

linearized. First, observe that, as in (B.2), Ẑ∗n minimizes

Ψ∗n(z, τn) = W ∗n(τn)′z + Λ∗n(z, τn).
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By part 2 of Lemma 5.4 in our supplement,

Ψ∗n(z, τn) = W ∗n(τn)′z +
1

2
z′QHz + oP (1).

Then by applying the same argument in the proof of theorem 1 in Pollard (1991), we obtain

Ẑ∗n = Q−1H
1
√
τnn

n∑
i=1

wn,i(τn − 1{−Yi + γ(1− τn/h) +X ′iβ(1− τn/h) ≤ 0})Xi + oP (1).

Since E(wn,i) = 1, we have

∣∣∣∣E
[

1
√
τnn

n∑
i=1

wn,i(τn − 1{−Yi + γ(1− τn/h) +X ′iβ(1− τn/h) ≤ 0})Xi

]∣∣∣∣ ≤ √τnnB(τn)/h→ 0,

which implies that

Ẑ∗n = (QH)−1
1√
n

n∑
i=1

wn,iMn,i(τn) + oP (1).

Now, we use the same Poisson approximation idea as in, e.g., Chapter 3.6 of van der Vaart &

Wellner (1996). Let Nn be a Poisson random variable with mean n, independent of the data

and of the {In,j}j≥1. Let also wNn,i =
∑Nn

j=1 1{In,j = i}, so that {wNn,i}ni=1 are i.i.d. Poisson

random variable with unit mean. The idea is to approximate 1√
n

∑n
i=1(wn,i − 1)Mn,i(τn) by

1√
Nn

∑n
i=1(wNn,i − 1)Mn,i(τn), and then apply the central limit theorem to the latter. First

consider the approximation. Let Ij = {i : |wNn,i − wn,i| ≥ j} and nj = #Ij . Then, for any

δ > 0, for n sufficiently large, with probability at least 1 − δ (see van der Vaart & Wellner,

1996, p.348),

1√
n

n∑
i=1

(wNn,i − wn,i)Mn,i(τn) = sign(Nn − n)

2∑
j=1

1√
n

∑
i∈Ij

Mn,i(τn), (B.8)

with the convention that
∑

i∈Ij Mn,i(τn) = 0 when nj = 0. Let us show that

∑
i∈Ij

Mn,i(τn)/
√
n = oP (1).

First, observe that

E

∑
i∈Ij

Mn,i(τn)|(In,j)j≥1, Nn

 = 0. (B.9)

Besides, because V (Mn,i(τn))→ QX , which is bounded, we have, for n sufficiently large, and
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some constant C > 0,

∣∣∣∣V
 1√

n

∑
i∈Ij

Mn,i(τn)|(In,j)j≥1, Nn

∣∣∣∣ ≤ Cnj
n
≤ C|Nn − n|

n
.

Thus, using a decomposition of variance, Equation (B.9), and Jensen’s inequality, we get

∣∣∣∣V
 1√

n

∑
i∈Ij

Mn,i(τn)

∣∣∣∣ ≤ C
√
V (Nn)

n
=

1√
n
.

This implies that
∑

i∈Ij Mn,i(τn)/
√
n = oP (1). Thus, in view of (B.8),

1√
n

n∑
i=1

(wNn,i − wn,i)Mn,i(τn) = oP (1).

As a result,

Ẑ∗n − Ẑn =
1√
n

n∑
i=1

(wNn,i − 1)Mn,i(τn) + oP (1).

Because the {wNn,i − 1}ni=1 are i.i.d., independent of the data, and satisfy E(wNn,i − 1) = 0

and V (wNn,i − 1) = 1, we obtain, conditional on the data and with probability approaching

one (see, e.g., Lemma 2.9.5 of van der Vaart & Wellner, 1996),

Ẑ∗n − Ẑn
d−→ N (0,Ω0).

This establishes the validity of the bootstrap for β̂1, since λn(β̂∗1 − β̂) is the subvector of the

first d1 components of Ẑ∗n − Ẑn.

B.4 Proof of Theorem 2.3

1. Asymptotic level

Let λn(`) =
√
nhf−η(Q−η(`τn/h))/

√
`τn. Then, similarly to the above argument, we have

λn(`)(β̂(`τn)− β(`τn)) = −Q−1H
1√
n

n∑
i=1

Mn,i(`τn) + oP (1).

Also, by Lemma 5.2 in our supplement,

Q′−η(τn/h)
√
`Q′−η(`τn/h)

∼ h(Q−η(eτn/h)−Q−η(τn/h))

τn
× `τn√

`h(Q−η(elτn/h)−Q−η(`τn/h))
∼
√
`.
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Thus, λn(`) ∼
√
`λn, implying that

λn(β̂(`τn)− β(`τn)) = −Q−1H
1√
n

n∑
i=1

Mn,i(`τn)√
`

+ oP (1). (B.10)

Reasoning as in Step 2 of the previous proof and using the Cramer-Wold device, we obtain

1√
n

n∑
i=1

(
M ′n,i(`τn)
√
`

,M ′n,i(τn)

)′
d−→ N

(
0,

(
1/` 1

1 1

)
⊗QX

)
.

We combine this with (B.7) and (B.10) to get

λn(β̂(`τn)− β̂(τn))
d−→ N (0, [1/`− 1]Ω1) ,

which yields the first result.

2. Power under local alternatives

The second statement is based on the following assumptions.

Assumption 1.’ QY ∗|X(τ |X) = X ′1β1(τ) + β0(τ) +X ′−1β−1(τ). QX = E
[
XX

′
]

is nonsin-

gular, with X = (X ′1, 1, X
′
−1)
′.

Assumption 5.’ (Asymptotic location-scale model) There exists (b1, β−1,r, γn) ∈ Rd1 ×
Rd−d1×Rd1, A > 0, a survival function Sη, and a function H such that (i) infx−1∈Supp(X−1) x

′
1γn+

H(x−1) > 0; (ii) for any sequence zn → +∞ as n→∞, uniformly in x ∈ Supp(X),

Sη

(
zn

H(x−1) + x′1γn

)
= SU |X(zn|x)(1 + o(1/

√
nτn)) (B.11)

with U = Y ∗ − X ′1b1 − X ′−1β−1,r and γn
√
nτn → c for some c 6= 0 in Rd1; (iii) Sη is

differentiable with increasing derivative on [A,+∞).

Note that in this context, ε in Assumption 2 is defined by ε = Y ∗ −X ′1b1. Now, to prove the

result, note first that Step 2 in the proof of Theorem 2.2 is valid even when β1 depends on

τn. In addition, as n→∞, γn → 0 and H(x−1) + x′1γn → H(x−1) uniformly in x. Therefore,

we have, for any ` ∈ (0, 1],

λn(`)(β̂1(`τn)− β1(`τn)) = −Q−1H
1√
n

n∑
i=1

Mn,i(`τn) + oP (1). (B.12)
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Next, we aim to show that, for any ` ∈ (0, 1],

β1(`τn) = b1 + γnQ−η(`τn/h) + o(λ−1n ). (B.13)

Without loss of generality, let us focus on the case ` = 1. By Assumption 5(ii),

Q−Y ∗|X(τn/h|X) = X ′1b1 +X ′−1β−1,r +Q−U |X(τn/h|X). (B.14)

Besides, Equation (5.2) in the supplement holds when H(x−1) is replaced by H(x−1) + x′1γn.

This implies that uniformly in x ∈ Supp(X),

(H(x−1) + x′1γn)a(τn) ∼ Q−U |X(eτn|x)−Q−U |X(τn|x), (B.15)

where a(τn) = Q−η(eτn)−Q−η(τn). The proof of Theorem 2.1 establishes that Q−U |X(eτn|x)−
Q−U |X(τn|x) is bounded. Hence, (B.15) and infxH(x−1) + x′1γn > 0 imply that a(τn) is

bounded as well.

In addition, Equation (5.5) in the supplement also holds when H(x−1) is replaced by H(x−1)+

x′1γn. Hence, uniformly in x ∈ Supp(X),

Q−U |X(τn|x)−Q−η(τn)(H(x−1) + x′1γn)

a(τn)
→ 0.

Together with infxH(x−1) + x′1γn > 0, this proves that

sn =
Q−U |X(τn|x)−Q−η(τn)(H(x−1) + x′1γn)

(H(x−1) + x′1γn)a(τn)
→ 0.

In addition, by letting zn = −Q−U |X(τn|x) in (B.11), we have

F−η(Q−η(τn) + sna(τn))

τn
− 1 = o((τnn)−1/2).

Besides, we have, for some Ṽ ∈ (0, sna(τn)),

F−η(Q−η(τn) + sna(τn))

τn
− 1 =

F−η(Q−η(τn) + sna(τn))− F−η(Q−η)
τn

=
f−η(Q−η(τn) + Ṽ )sna(τn)

τn

∼ f−η(Q−η(τn))sna(τn)

τn
∼ sn,
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where the second line is by the mean-value theorem, the fourth line holds since snan(τn)→ 0

and Equation (9.57) of Chernozhukov (2005), and the last line is by (5.3) in our supplement.

This result, Equation (5.3) again and the definition of λn imply

Q−U |X(τn|x)−Q−η(τn)(H(x−1) + x′1γn) = (H(x−1) + x′1γn)a(τn)sn

= o(a(τn)(nτn)−1/2)

= o(λ−1n ). (B.16)

Since both (B.14) and (B.16) hold for all x, we obtain (B.13), by Assumption 1’. As a result,

using the definition of λn, (5.3) and (5.7), we obtain

λn(β1(`τn)− β1(τn)) = λnγn[Q−η(`τn/h)−Q−η(τn/h)] + o(1)

=
hf−η(Q−η(τn/h))(Q−η(`τn/h)−Q−η(τn/h))

τn
c+ o(1)

∼ h(Q−η(`τn/h)−Q−η(τn/h))

(Q−η(eτn/h)−Q−η(τn/h))
c

→ h ln(`)c. (B.17)

Combining (B.12), (B.13) and (B.17), we finally get

[(1/`− 1)Ω1]
−1/2λn

(
β̂1(`τn)− β̂1(τn)

)
d−→ N (hg(`)Ω

−1/2
1 c, Id1),

where Id1 is the d1 × d1 identity matrix and g(`) =
[
(` ln(`)2)/(1− `)

]1/2
. Hence, the test

statistic TJ(`) is a noncentral chi-squared distribution with d1 degrees of freedom and a

noncentrality parameter equal to [hg(`)]2c′Ω−11 c. Maximizing in ` the local power of the test

is then equivalent to maximizing g(`). The result follows.
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