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Abstract

Response rates have been steadily declining over the last decades, making survey estimates
vulnerable to nonresponse bias. To reduce the potential bias, two weighting approaches are
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of these conditions are violated. Results from a simulation study support our findings.
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1 Introduction

Response rates have been steadily declining over the last decades, making survey estimates

vulnerable to nonresponse bias. To reduce the potential bias, two weighting approaches may

be used: the one-step and the two-step approaches. The latter is commonly used in National

Statistical Offices. It can be described as follows: in the first step, the design (or basic)

weights are multiplied by the inverse of the estimated response probabilities. In the second

step, the weights obtained in the first step are further modified so that survey weighted

estimates agree with known population totals. This step is often referred to as calibration.

In the first step, survey statisticians aim at reducing the nonresponse bias. Key to achieving

an efficient bias reduction is the availability of fully observed variables related to both the

probability of response and the survey variables. The estimated response probabilities are

obtained by fitting a parametric or a nonparametric model. A common procedure consists of

first dividing the respondents and nonrespondents into weighting classes and adjusting the

design weights of respondents in a given class by the inverse of the response rate within the

same class; see, for example, Eltinge and Yansaneh (1997) and Little (1986). Calibration

procedures require variables that are observed on the respondents and whose population total

is available from external sources such as the census. Commonly used calibration procedures

include post-stratification and generalized raking; see Deville and Särndal (1992) and Deville

et al. (1993).

An alternative weighting approach that has gained in popularity in recent years, is the so-

called one-step approach, whereby the design weights are modified in a single step with two

simultaneous goals in mind: reduce the nonresponse bias and ensure the consistency between

survey estimates and known population totals; e.g., see Särndal and Lundström (2005). Un-

like the two-step approach, explicit estimation of the response probabilities is not required.

We focus on instrumental calibration, also called generalized calibration, a special version

of the one-step approach, that has recently received a lot of attention in the literature; see

Deville (2002), Sautory (2003), Kott (2006, 2009), Chang and Kott (2008), Kott and Chang

(2010) and Kott and Liao (2012), among others. Instrumental calibration permits the use
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of variables that are observed only on the respondents. Although it is not possible to test

whether or not the data are missing at random (Molenberghs et al., 2008), instrumental

calibration may prove useful if it is suspected that we are in the presence of nonignorable

nonresponse (Deville, 1998, 2002; Kott and Chang, 2010).

Despite the rich literature discussing instrumental calibration, there remain some important

gaps that we aim to fill in this paper. We start by giving a set of sufficient conditions for

the consistency of the instrumental calibration estimator. We also show that the latter can

nevertheless display a large asymptotic variance. Finally, we show that the instrumental

calibration estimator may suffer from bias amplification when some of the conditions for

consistency are violated. The terminology bias amplification was coined by Pearl (2010) in

the context of causal inference; see also Bhattacharya and Vogt (2007), Myers et al. (2011)

and Wooldridge (2016) for a related literature.

This paper is not the first to criticize the one-step approach. Kott and Liao (2015) and

Haziza and Lesage (2016) argue that, unlike the one-step approach, the two-step approach

makes it possible to assess separately the effect of weighting for nonresponse and that of

weighting for calibration purposes. Also, in the case of nonignorable nonresponse, Kott and

Liao (2012) advise against this one-step approach. We add to these papers by showing that

the behaviour of the instrumental calibration estimator is highly sensitive to the validity of

some key conditions. The latter were first examined in D’Haultfœuille (2010); see also Wang

et al. (2014).

This paper is organized as follows: in Section 2, we introduce the notation and present

the theoretical set-up. In Section 3, we lay out the conditions required for establishing the

consistency of instrumental calibration estimators. In Section 4, we examine their properties

when the conditions are violated. Variance estimation based on the reverse framework (Shao

and Steel, 1999) is discussed in Section 5. The results of an empirical investigation, assessing

the performance of several estimators in terms of bias and efficiency, are presented in Section

6. We make some final remarks in Section 7. The technical details are relegated to the
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Appendix.

2 Theoretical set-up

Consider a finite population P of size N . We are interested in estimating the population

total, ty =
∑
k∈P

Yk, of a survey variable Y . A sample S, of size n, is selected from P according

to a given sampling design p(S) with first-order inclusion probabilities πk and second-order

inclusion probabilities πkl, k 6= l. In the absence of nonresponse, a design-unbiased estimator

of ty is the expansion estimator

t̂π =
∑
k∈S

dkYk,

where dk = 1/πk denotes the design weight attached to unit k. In the presence of unit

nonresponse, only a subset Sr of S is observed, which makes t̂π impossible to compute. In

this case, a naive estimator of ty is the unadjusted estimator

t̂un = N̂π

∑
k∈S dkRkYk∑
k∈S dkRk

, (1)

where N̂π =
∑

k∈S dk denotes the estimated population size and Rk is a response indicator

attached to unit k such that Rk = 1 if unit k is a respondent and Rk = 0, otherwise. The

unadjusted estimator (1) is not consistent unless the data are Missing Completely At Ran-

dom (Rubin, 1976).

To define a nonresponse adjusted estimator of ty, we assume that a vector of calibration

variables X is observed for k ∈ Sr and that the corresponding vector of population totals,

tx =
∑

k∈P Xk, is available from an external source. The X-variables are called instrumental

variables. Although we have assumed that the instrumental variables are observed for the

respondents and that their population total is known, note that any variable observed for all

the sample units (respondents and nonrespondents) may also play the role of instrumental

variable. In addition, we assume that a vector of variables Z, with dim(Z) ≤ dim(X), is

available for k ∈ Sr. Neither the vector of population totals, tz =
∑

k∈P Zk, nor the com-

plete data estimator, t̂z,π =
∑

k∈S dkZk, is assumed to be available. The Z-variables are

called response model variables (Kott and Liao, 2017) and are assumed to be related to the
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probability of response. We assume that the first component of both the X-vector and the

Z-vector is equal to one for all the population units.

Our terminology is consistent to what has been used in the econometric literature as the

X-variables satisfy exclusion restrictions (see Equations (9) and (10) below); see, e.g.,

D’Haultfœuille (2010). However, it is different from the terminology used in the survey

literature, where the Z-variables rather than the X-variables are called instrumental vari-

ables; see, e.g., Deville (1998; 2002) and Kott (2006), among others. Although we distinguish

the response model variables Z from the survey variables, they are similar in nature as both

are observed on the respondents only. In fact, some of the survey variables may be used

in the calibration process as discussed below. This was advocated by Deville (2002) in the

context of nonignorable nonresponse.

We consider an adjusted estimator of ty of the form

t̂C =
∑
k∈S

wkRkYk, (2)

where

wk = dkF (λ̂
>
Zk) (3)

is the calibrated weight attached to unit k and F (·) is a calibration function. We refer to

(2) as the instrumental calibration estimator of ty. The weights wk in (3) are constructed so

that the calibration constraints ∑
k∈S

wkRkXk =
∑
k∈P

Xk (4)

are exactly satisfied when dim(X) = dim(Z), or hold approximately when dim(X) > dim(Z):

λ̂ ∈ arg min
λ∈Λ

∥∥∥∥∥∑
k∈S

dkRkF (λ>Zk)Xk −
∑
k∈P

Xk

∥∥∥∥∥ , (5)

where Λ ⊂ Rdim(Z) and ‖·‖ denotes the Euclidean norm. The calibration weight wk in (3)

is expressed as the product of the design weight dk and a calibration adjustment factor

F (λ̂
>
Zk). When Zk = Xk, the instrumental calibration estimator (2) reduces to the conven-

tional one-step calibration estimator; e.g., Särndal and Lundström (2005) and Haziza and
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Lesage (2016).

Special cases of (3) include linear and exponential weighting. For linear weighting and

dim(Xk) = dim(Zk), the weights (3) reduce to

wk = dk(1 + λ̂
>
Zk), (6)

where

λ̂ =

(∑
k∈S

dkRkZkX
>
k

)−1(∑
k∈P

Xk −
∑
k∈S

dkRkXk

)
; (7)

see Särndal and Lundström (2005). For exponential weighting, the weights (3) reduce to

wk = dk exp
(
λ̂
>
Zk

)
, (8)

but unlike in the linear case, there is no closed form expression of λ̂.

3 Consistency of the instrumental calibration estimator

In this section, we give a set of sufficient conditions for establishing the consistency of the

instrumental calibration estimator t̂C , as the population and sample sizes tend to infinity.

The data consists of the random vectors (Rk,X
>
k , Yk,Z

>
k ), for k ∈ P . These vectors are

supposed to be mutually independent and identically distributed. In practice, the indicators

Rk are not observed for the nonsampled units. However, at least conceptually, nothing

precludes defining these indicators for the units outside the sample. We assume that the

indicators Rk satisfy the following conditions.

Assumption 1. (Exclusion restrictions)

Cov (Xk, Rk | Zk) = 0, (9)

Cov (Yk, Rk | Zk) = 0. (10)

Assumption 2. (Response probability model)

We have E {Rk | Zk} = 1/F
(
λ>0 Zk

)
, where λ0 is a vector of unknown coefficients, which

belongs to the interior of the compact set Λ.
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The conditions (9) and (10) are often referred to as exclusion restrictions (D’Haultfœuille,

2010) and are key to establishing the consistency of t̂C . We also assume that F (·) pro-

vides an adequate description of the relationship between the inverse of the probability of

response and the Z-variables. This is a strong assumption as selecting the appropriate func-

tional through model diagnostics seems to be challenging, the values corresponding to the

Z-variables being only recorded for the respondents. To the best of our knowledge, a statis-

tical procedure for selecting the function F (·) does not seem to be currently available in the

literature, in which case the choice of F (·) is essentially an “act of faith”. Our goal is to show

that, even if Assumption 2 holds, the validity of the instrumental calibration estimator (2)

still relies on (9) and (10). That is, we argue in Section 4 that the instrumental calibration

estimator (2) may be highly biased and/or inefficient if (9) and (10) do not hold, even if

F (·) is correctly specified.

In addition to Assumptions 1-2, we impose the three additional assumptions below. We

consider here an asymptotic framework where N tends to infinity. The population and

sampling design depends on N but to ease notation, we leave this dependence implicit

hereafter.

Assumption 3. (regularity of the sampling design)

Let U be the σ−algebra generated by (Rk,X
>
k , Yk,Z

>
k )k∈P and Φ denote the standard normal

cumulative distribution. For every random variable Tk such that E(T 2
k ) < +∞,

(i) E
[
V
(

1
N

∑
k∈S dkTk

∣∣∣∣U)]→ 0;

(ii) There exists L ≥ 0 such that V
(∑

k∈P Tk
)
/ V

(∑
k∈S dkTk

∣∣∣∣U) P−→ L;

(iii) ∀t ∈ R,

∣∣∣∣∣Pr

(
V
(∑

k∈S dkTk

∣∣∣∣U)−1/2 (∑k∈S dkTk −
∑

k∈P Tk
)
≤ t

∣∣∣∣U
)
− Φ(t)

∣∣∣∣∣ = oP (1).

Assumption 4. (additional technical conditions for consistency)

(i) F (·) is strictly increasing;

(ii) E(Xk|Rk = 1,Zk) = ΓZk with Γ a matrix of rank dim(Zk);
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(iii) Zk has a compact support and E(ZkZ
>
k ) is nonsingular;

(iv) E(|Yk|) <∞ and E(|Xj,k|) <∞ for j = 1, . . . , dim(Xk), where Xj,k denotes the j-th

element of Xk.

Assumption 5. (additional technical conditions for asymptotic normality)

(i) F (·) is continuously differentiable;

(ii) E(Y 2
k ) <∞ and E(X2

j,k) <∞, for j = 1, . . . , dim(Xk).

The first condition of Assumption 3 ensures that expansion-type estimators are consistent,

which requires that n → ∞ as N → ∞. The second condition holds, for instance, for

simple random sampling without replacement if the sampling rate n/N → r ∈ [0, 1) as

N →∞. The third condition states that, conditionally on U , expansion-type estimators are

asymptotically normal. There does not exist a Central Limit Theorem applicable to every

sampling design. However, results on asymptotic normality for specific sampling designs can

be found in Hájek (1960, 1964), Rosen (1972), Krewski and Rao (1981), Bickel and Freedman

(1984), Chen and Rao (2007) and Breidt et al. (2015), among others.

The following theorem establishes the consistency and asymptotic normality of t̂C under the

above assumptions.

Theorem 1. (Consistency of t̂C)

Suppose that Assumptions 1-3 hold. Then,

1. Under Assumption 4,

λ̂
P−→ λ0

and the normalized error of t̂C converges to zero; i.e.,

(t̂C − ty)/N
P−→ 0.

2. Let ρk = F ′(λ>0 Zk)/F (λ>0 Zk) with F ′(.) the derivative of F (.) and G = E
(
ρk XkZ

>
k

)
.

Under Assumptions 4-5, t̂C is asymptotically normal:

V −1/2a

(
t̂C − ty

) d−→ N (0, 1) ,
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where

Va = V

{∑
k∈S

dkRkF (λ>0 Zk)(Yk − γ>Xk)

∣∣∣∣U
}

+N2 V(Wk) (11)

with

γ = G
(
G>G

)−1 E (ρk YkZk)

and

Wk =
{
RkF (λ>0 Zk)− 1

}
(Yk − γ>Xk).

The proof of Theorem 1 is presented in Appendix A.1. When the relationship between the

X-variables and the Z-variables is weak, the residuals Yk − γ>Xk may become large in ab-

solute value, as we illustrate in Example 1 below. It follows from (11) that the approximate

variance Va of t̂C is amplified in this case. Note that both terms on the right-hand side of

(11) are affected by large values of Yk−γ>Xk. The potential inefficiency of t̂C is due to the

fact that the calibration equations provide very little information on λ0, which, in turn, is

poorly estimated. This is similar to what is encountered in the context of linear regression

with endogenous regressors and instrumental variables. The two-stage least square estimator

of the slope coefficient becomes very unstable when the instrumental variables are weakly

correlated with the endogenous regressors; e.g., Wooldridge (2002, section 5.2.6) and Bound

et al. (1995).

We make the following additional remarks.

Remark 1. When dim(Zk) = dim(Xk), the expression of γ reduces to

γ =
{
E
(
ρk ZkX

>
k

)}−1 E (ρk ZkYk)

=
(
Γ>
)−1 {E (ρk ZkZ

>
k

)}−1 E (ρk ZkYk) .

In this case, γ is a weighted version of the customary two-stage least square estimator of the

slope coefficient. Note that for linear weighting (6), we have ρk = (1 + λ>0 Zk)
−1, whereas

ρk = 1 in the case of exponential weighting (8).

Remark 2. In the case of a census, Assumption 3 no longer holds but it can be shown that

the estimator is still consistent and asymptotically normal. In such a case, the first term on
9



the right-hand side of (11) vanishes and we get:

1√
N

(
t̂C − ty

) d−→ N (0,V(Wk)) .

To illustrate the risk of variance amplification of t̂C , we consider the following example.

Example 1. Consider the census case with Xk = (1, Xk)
>, Zk = (1, Zk)

>, where (Xk, Zk) ∈

R2. We assume that the relationship between Y and Z is described by

Yk = β0 + β1Zk + εk,

where β0 and β1 are unknown coefficients and E(εk|Rk,Zk) = 0. Also, we assume that the

variables X and Z are related through

Xk = Γ0 + Γ1Zk + νk

with E(νk|Rk,Zk) = 0 and Cov(εk, νk | Zk, Rk) = 0. Then Assumption 1 is satisfied, and

the asymptotic variance of t̂C is equal to

V(Wk) = V
[{
RkF (λ>0 Zk)− 1

}(
εk −

β1
Γ1

νk

)]
= V

[{
RkF (λ>0 Zk)− 1

}
εk
]

+

(
β1
Γ1

)2

V
[{
RkF (λ>0 Zk)− 1

}
νk
]
. (12)

The second term on the right-hand side of (12) vanishes in the following situations: (i)

β1 = 0, which implies that Y is unrelated to Z; (ii) Zk = Xk for all k, implying that νk = 0,

which corresponds to the conventional one-step calibration procedure. In both (i)and (ii), the

asymptotic variance of t̂C depends solely on the strength of the relationship between Y and

X. Otherwise, the second term on the right-hand side of (12) contributes to the amplification

of the asymptotic variance. The amplification increases as Γ1 decreases, that is to say as the

association between X and Z becomes weaker.

4 Bias amplification of the instrumental calibration esti-
mator

In Section 3, we established the consistency of the instrumental calibration estimator t̂C

under the exclusion restrictions (9) and (10). We now examine the situation where a wrong
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choice of the vector of the X-variables entails a violation of (9). For simplicity, we focus

hereafter on the case dim(Xk) = dim(Zk).

A violation of (9) may occur when there exists an unobserved variable U , independent of Z

and Y , which is related to both the response indicator variable R and the X-variables (see

Figure 1). For example, suppose that a household survey is conducted and that the domain

of interest is a metropolis. Let Y = Z be the household income, which is only observed for

k ∈ Sr. Let X be the household square footage for which the population total is known. In

large urban areas, it is reasonable to assume that there is a relationship between household

income and household square footage. Let U be an unobserved variable representing the

distance between the workplace and the home of the selected unit. It is not unrealistic to

assume that U is related to R because the greater the distance between the workplace and

the home, the less chance for a unit to be contacted in the case of face-to-face or telephone

interviews as the sample unit would typically spend a significant amount of time commuting

between both places. Also, as the distance between the workplace and the home increases, we

can expect the household square footage to increase because cities are usually more expensive

than suburbs in term of price by square footage. Here, the variable U is related to both R

and X and hence, the exclusion restriction (9) is violated. As a result, the household square

footage would not be a good candidate for playing the role of an instrumental variable.

Figure 1: Relations between the variables Xk, Zk, Yk, Uk and Rk

.
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The error, t̂C − ty, can be expressed as the sum of four terms:

t̂C − ty =
(
t̂π − ty

)
+
∑
k∈S

dk
{
Rk F (λ>0 Zk)− 1

}
Yk

+
∑
k∈S

dkRk

{
F (λ̂

>
Zk)− F (λ>∞Zk)

}
Yk

+
∑
k∈S

dkRk

{
F (λ>∞Zk)− F (λ>0 Zk)

}
Yk, (13)

where λ0 is the vector of parameters in the nonresponse model and λ∞ is the probability

limit of λ̂. The first term on the right-hand side of (13) is the sampling error, the second

term is the nonresponse error assuming that the response probabilities are known, the third

term is the error arising from estimating λ∞, whereas the last term is due to the fact that

the exclusion restriction (9) is violated, implying λ∞ 6= λ0, in general.

To get a better understanding of the last point, note that λ∞ is the solution of

E
{
RkF (λ>Zk)Xk

}
= E (Xk) , (14)

which are the moment equations corresponding to the calibration equations (4). When the

exclusion restriction (9) is violated, these equalities are not satisfied by λ = λ0. More

specifically, we show in Appendix A.2 that

λ∞ − λ0 = −
[
E
{
fkF (λ>0 Zk)

−1XkZ
>
k

}]−1 E
{
F (λ>∞Zk) Cov (Xk, Rk | Zk)

}
, (15)

where fk =
F (λ>

∞Zk)−F(λ>
0 Zk)

(λ∞−λ0)
>Zk

if λ>∞Zk 6= λ>0 Zk,

fk = 1 otherwise.
(16)

For the special case of linear weighting (6), we have fk = 1 for all k.

A consequence of λ∞ 6= λ0 is that the last term on the right-hand side of (13) does not

vanish, which implies that t̂C is inconsistent. The following theorem gives the expression of

its asymptotic bias.
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Theorem 2. (Inconsistency of t̂C)

Suppose that (10) and Assumptions 2-4 hold, dim(Xk) = dim(Zk) and (14) admits at least

one solution. Then,

1. The solution of (14) is unique. Moreover, denoting this solution by λ∞,

λ̂
P−→ λ∞.

2. The normalized calibration estimator N−1(t̂C − ty) is inconsistent in general, and the

asymptotic bias is given by

(t̂C − ty)/N
P−→ −γ>fR E

{
F (λ>∞Zk) Cov (Xk, Rk | Zk)

}
, (17)

where

γfR =
{
E(fkRkZkX

>
k )
}−1 E(fkRkZkYk) (18)

and fk is defined in (16).

The proof of Theorem 2 is presented in Appendix A.2. As we shall see in Example 2 below,

the term γfR in (18) can be viewed as a bias amplifier term.

Example 2. Once again, we consider the census case, n = N . We assume that the relation-

ship between Y and Z is described by the following linear regression model:

Yk = β0 + β1Zk + εk,

where E(εk|Rk, Uk, Zk) = 0. Assume that the variables X, Z and U are related through

Xk = Γ0 + Γ1Zk + Γ2Uk + νk,

where E(νk|Rk, Uk, Zk) = 0. In this case, (17) reduces to

(t̂C − ty)/N
P−→ −β1

Γ2

Γ1

E
{
F (λ>∞Zk) Cov (Uk, Rk | Zk)

}
. (19)

If β1 = 0, i.e., there is no relationship between Y and Z, the asymptotic bias (19) vanishes, as

expected. If either Γ2 = 0 or Cov (Uk, Rk | Zk) = 0, the asymptotic bias is equal to zero as the

exclusion restriction (9) is satisfied. Otherwise, the asymptotic bias is large when Γ2 is large

(i.e., there is a strong association between X and U) and/or if Cov (Uk, Rk | Zk) is large (i.e.,

there is a strong association between R and U). For a given value of Γ2 Cov (Uk, Rk | Zk) 6=

0, the bias increases as Γ1 decreases; i.e., as the relationship between X and Z becomes

weaker.
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5 Variance estimation

Drawing valid inferences relies on the availability of a consistent point and variance estima-

tors. Here, we derive an estimator of V(t̂C) through the reverse approach of Shao and Steel

(1999). The proposed variance estimator is consistent for the true variance of the instrumen-

tal calibration estimator, provided that the sampling fraction n/N is small. For simplicity,

we focus on the case dim(Zk) =dim(Xk). The total variance of t̂C in (2), denoted by Vtot,

can be expressed as the sum of two terms:

Vtot = V1 + V2, (20)

where

V1 = E
[
V
(
t̂C | U

)]
and

V2 = V
[
E
(
t̂C − ty | U

)]
.

The decomposition of the variance (20) is often referred to as the reverse decomposition;

see, e.g., Shao and Steel (1999) and Kim and Rao (2009). Under mild regularity conditions,

the first term on the right-hand side of (20) is O(N2/n), whereas the second term is O(N).

Therefore, the contribution of V2 to the total variance Vtot is negligible provided that the

sampling fraction n/N is negligible (Shao and Steel, 1999).

Assuming that the sampling fraction n/N is negligible, an estimator of Vtot is obtained by

estimating V1. To that end, it suffices to obtain a consistent estimator of V(t̂C | U), which

represents the sampling variance of t̂C conditional on all the other quantities. Since t̂C in

(2) can be expressed as a smooth function of estimated totals, any complete data variance

estimation procedure designed for estimating the design variance of smooth functions of

totals can be used. An estimator of V1 based on a first-order Taylor expansion procedure

leads to

V̂1 =
∑
k∈S

∑
l∈S

πkl − πkπl
πkπlπkl

η̂kη̂l, (21)

where

η̂k = Rk F
(
λ̂
>
Zk

) (
Yk − γ̂>Xk

)
14



and

γ̂ =

{∑
k∈S

dkRkF
′(λ̂
>
Zk) ZkX

>
k

}−1∑
k∈S

dkRkF
′(λ̂
>
Zk) ZkYk;

e.g., Demnati and Rao (2004) and D’Arrigo and Skinner (2010). It is worth noting that the

estimator (21) provides a consistent estimator of V1 even if t̂C is biased. A 95% confidence

interval for ty is given by

t̂C ± 1.96

√
V̂1.

We expect the coverage rate of this interval to be close to 95% provided that t̂C exhibits a

small bias, which would occur if the exclusion restrictions (9) and (10) are satisfied.

6 Simulation study

We conducted a simulation study to assess the properties of the instrumental calibration

estimator in terms of bias and efficiency. We generated finite populations of size N = 1 000,

each consisting of a variable of interest Y , an instrumental variable X, a response model

variable Z and an unobserved variable U . Let Xk = (1, Xk)
> and Zk = (1, Zk)

>. The

variables Z and U were first generated independently from a uniform distribution
(
−
√

3,
√

3
)
,

so that E(Z) = E(U) = 0 and V(Z) = V(U) = 1. Then, given Z, the variable Y was

generated according to two models:

(i) a linear regression model:

Y1,k = 10 + 5Zk + ε1,k, (22)

where the errors ε1,k were generated from a normal distribution with mean equal to 0 and

variance equal to 4. The resulting coefficient of determination was equal to 85%;

(ii) an exponential model:

Y2,k = exp(2.5 Zk) + ε2,k, (23)

where the errors ε2,k were generated from a normal distribution with mean equal to 0 and

variance equal to 4. Figure 2 shows the relationship between Y and Z for both types of

populations.
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Figure 2: Relationship between Y and Z

Finally, given the values of Z and U , the X-values were generated according to the linear

regression model

Xk = Γ1Zk + Γ2Uk + νk,

where νk ∼ N (0, 1− Γ2
1 − Γ2

2). Then V(Xk) = 1 and Γ1 (respectively Γ2) corresponds to the

correlation coefficient between Xk and Zk (respectively Uk). We used the following values

for Γ1 and Γ2: Γ1 ∈ {0.2, 0.4, 0.6} and Γ2 ∈ {0, 0.1, 0.3, 0.5}.

The response indicators Rk were generated independently from a Bernoulli distribution with

parameter pk equal to

pk =
1

2 + 0.35 Zk
+ 0.1 Uk. (24)

This led to an overall response rate of around 50%. Figure 3 shows the relationship between

Zk and pk. Note that (24) implies that Cov (Uk, Rk | Zk) 6= 0. As a result, Cov (Xk, Rk | Zk) 6=

0 unless Γ2 = 0.

Finally, we considered the census case where n = N = 1 000. In each population, the whole

process (i.e., generating the finite population and generating nonresponse), was repeated
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K = 10, 000 times, leading to K = 10, 000 sets of respondents.
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Figure 3: Relationship between Z and the probability of response p given by (24)

We computed the following estimators: (i) the unadjusted estimator t̂un given by (1); (ii) the

instrumental calibration estimator t̂C , based on linear weighting (6); (iii) the conventional

one-step calibration estimator t̂Conv given by (2), but where Xk is used in place of Zk in the

computation of the weights wk. That is, the latter does not make use of the variable Zk.

Nevertheless, we show below that it can outperform t̂C , because of the variance and bias

amplification phenomena described above.

Equation (24) implies that E {Rk | Zk}−1 is linear. To ensure that Assumption 2 holds, we

therefore used linear weighting (F (u) = u) to construct t̂C . The estimator t̂Conv was also

based on a linear weighting procedure.
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For an estimator t̂, we computed the (Monte Carlo percent) relative bias given by

RBMC

(
t̂
)

= 100× 1

K

K∑
j=1

(
t̂(j) − ty(j)

)
ty(j)

,

where t̂(j) and ty(j) denote, respectively, the estimator t̂ and the true population total ty at

the j-th iteration, j = 1, · · · , K.

As a measure of variability of t̂, we also computed a measure of percent relative standard

error, given by

RSDMC(t̂) = 100×

[
1
K

∑K
j=1

(
t̂(j) − ty(j)

)2 − {EMC(t̂− ty)
}2]0.5

EMC(ty)
,

where EMC(t̂) =
∑K

j=1 t̂(j)/K and EMC(ty) =
∑K

j=1 ty(j)/K.

Tables 1 and 2 show the percent relative bias and standard error (in parentheses) of t̂C for

populations generated according to (22) and (23), respectively. For populations generated

according to (22), the unadjusted estimator exhibited a relative bias of −9.0% and a relative

standard error equal to 2.4%. For populations generated according to (23), the relative bias

of the unadjusted estimator was equal to −21.2% and its relative standard error equal to

7.3%.

Γ2

Γ1 0.0 0.1 0.3 0.5
0.6 0.0 -1.6 -4.9 -8.1

(2.2) (2.2) (2.1) (2.1)
0.4 0.1 -2.4 -7.3 -12.0

(3.8) (3.7) (3.6) (3.5)
0.2 0.4 -4.8 -14.3 -23.5

(8.6 ) (8.1) (7.9) (8.1)

Table 1: Relative bias and standard error (in parentheses) of t̂C for a population generated
according to (22)

18



Γ2

Γ1 0.0 0.1 0.3 0.5
0.6 -0.2 -4.0 -11.7 -19.2

(6.9) (6.8) (6.5) (6.2)
0.4 -0.0 -6.0 -17.4 -28.5

(9.9) (9.6) (9.2) (9.0)
0.2 0.8 -11.6 -34.0 -55.6

(20.8) (19.5) (19.0) (19.4)

Table 2: Relative bias and standard error (in parentheses) of t̂C for a population generated
according to (23)

From Tables 1 and 2, the calibration estimator t̂C showed negligible bias when Γ2 = 0. These

results are not surprising since the restriction exclusion condition (9) was satisfied in this

case. However, the variance of t̂C increased rapidly as Γ1 decreased. This is consistent with

(12). For example, in Table 1, for Γ1 = 0.6, the relative standard error of t̂C was equal to

2.2%, whereas it was equal to 8.6% for Γ1 = 0.2. Similar results were obtained in Table 2

for Γ2 = 0. Our results are consistent with those obtained by Osier (2012).

We now turn to the case Γ2 6= 0. The restriction exclusion condition (9) is no longer satisfied

as both Γ2 and Cov (Uk, Rk | Zk) are different from zero. In this case, the instrumental

calibration estimator t̂C exhibited some bias. The bias increased as Γ2 increased. For a

given value of Γ2, the bias of t̂C rapidly increased as Γ1 decreased. This is consistent with

(19). The same remark can be made about the variance of t̂C that increased rapidly as Γ1

decreased. For example, in Table 1, for Γ1 = 0.6 and Γ2 = 0.3 the relative bias and standard

error were equal to −4.9% and 2.1%, respectively, whereas they were equal to −14.3% and

7.9% for Γ1 = 0.2 and Γ2 = 0.3. These results suggest that the instrumental calibration esti-

mator may suffer simultaneously from bias and variance amplification in the case of a weak

correlation between the instrumental variable X and the model response variable Z. Similar

results were obtained in Table 2. It is worth noting that t̂C exhibited a larger bias and a

larger relative standard deviation than that of t̂un for some pairs (Γ1,Γ2). For example, for

Γ1 = 0.4 and Γ2 = 0.5 the relative bias and standard error were equal to −12.0% and 3.5%,

respectively; see Table 1.
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Figures 4 and 5 show side-by-side boxplots of the relative error of t̂C , 100 × (t̂C − ty)/ty

corresponding to the populations generated according to (22) and (23), respectively. Each

boxplot shows the distribution of the relative error of t̂C for a given pair (Γ1,Γ2). These

figures are in line with the results of Tables 1 and 2. While the distribution of relative errors

is centered around zero when Γ2 = 0, they shift to the left as Γ2 increases. The dispersion

of this distribution also increases as Γ1 tends to zero.
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Figure 4: Relative error of t̂C for different pairs (Γ1,Γ2) with a linear model for Y .
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Figure 5: Relative error of t̂C for different pairs (Γ1,Γ2) with an exponential model for Y .

We now turn to the case of the conventional one-step calibration approach. The results

are shown in Tables 3 and 4. The conventional one-step estimator, t̂Conv, was biased in

all the scenarios. Unlike the instrumental calibration estimator, t̂Conv exhibited some bias

when Γ2 = 0. For a given value of Γ1, the bias increased as Γ2 increased. Also, for a

given value of Γ2, the bias increased as Γ1 decreased. The properties of the conventional

one-step calibration estimator depended solely on the strength of the relationship between

the Y -variable and the X-variable. In the worst scenarios (e.g., small values of Γ1 and large

values of Γ2), the bias of t̂Conv was similar to that of the unadjusted estimator, although

the former was more efficient. In these situations, the relative bias and standard error of

t̂Conv were considerably smaller than those of the instrumental calibration estimator. These

results suggest that, when the exclusion restrictions are violated, the conventional one-step

calibration estimator may outperform the instrumental calibration estimator.
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Γ2

Γ1 0.0 0.1 0.3 0.5
0.6 -5.8 -6.3 -7.5 -8.6

(1.4) (1.4) (1.4) (1.4)
0.4 -7.5 -7.9 -8.7 -9.5

(1.6) (1.6) (1.5) (1.5)
0.2 -8.6 -8.8 -9.2 -9.6

(1.6) (1.6) (1.6) (1.6)

Table 3: Relative bias and standard error (in parentheses) of t̂Conv for different pairs (Γ1,Γ2)
corresponding to population generated according to (22)

Γ2

Γ1 0.0 0.1 0.3 0.5
0.6 -13.7 -15.0 -17.7 -20.5

(5.5) (5.5 ) (5.3) (5.2)
0.4 -17.9 -18.8 -20.6 -22.5

(5.6) ( 5.6) (5.5) (5.4)
0.2 -20.4 -20.9 -21.8 -22.8

(5.7) (5.7) (5.6) (5.6)

Table 4: Relative bias and standard error (in parentheses) of t̂Conv for different pairs (Γ1,Γ2)
corresponding to population generated according to (22)

7 Final remarks

In this paper, we showed that instrumental calibration may be successful in reducing the

nonresponse bias even when the probability of response depends on the Y -variable subject

to missingness. However, one needs to exercise some caution as the resulting estimator may

be highly biased and/or unstable. We first argued that instrumental calibration leads to

negligible bias provided that Assumption 2 and the restriction exclusions (9) and (10) are

satisfied. However, a procedure for validating the choice of F (·) through model diagnostics

when the probability of response depends on variables subject to missingness does not seem

to be yet available. Also, a statistical procedure for testing whether or not (9) and (10) hold

is currently not available in the literature.

In practice, the search for an instrumental variable X that satisfies (9) and (10) is key.

Potential candidates include (i) variables that are observed among the respondents and for
22



which the corresponding population total is known and (ii) those that are observed on every

sample unit (respondent and nonrespondent). In statistical agencies, commonly encountered

variables of the type (i) include socio-demographic variables such as age and sex and geo-

graphical variables (e.g., region or province). Examples of variables of the type (ii) include

paradata also called field process data (Couper, 1998). For example, in face-to-face surveys,

paradata may include interviewer observations about the physical and social characteristics

of the selected households (Durrant et al., 2011). When paradata are collected, it may be

wise to attempt collecting some variables that are believed to be good candidates as instru-

mental variables.

If several potential candidates are available, one could improve the accuracy of instrumental

calibration by deriving a scalar instrumental variable compressing the information contained

in the multiple candidates. This could be achieved by regressing the variable Y on the vector

X of potential candidates based on the responding units and use the predicted values µ̂ as

a scalar instrumental variable. This is a topic of future research.

We have used the generic notation Y to denote a survey variable. In practice, many surveys

conducted by statistical agencies are multipurpose surveys in the sense that information is

collected on a large number of survey variables. In such surveys, the probability of response

may depend on multiple survey variables, which makes the application of instrumental cali-

bration challenging.

When the search for an instrumental variable is unsuccessful, it may be more prudent to use

the conventional one-step calibration procedure solely based on X-variables. Although one

may not be able to reduce the bias to the same extent as with instrumental calibration, there

is no risk of bias and variance amplification, which in turn offers some protection against an

unduly large bias and/or variance. In this perspective, instrumental calibration approach

could still be used as a sensitivity check, to assess the potential effect of nonignorable non-

response.
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A Proofs

A.1 Proof of Theorem 1

1. Consistency of λ̂.

Let us define

ψn(λ) =
1

N

{∑
k∈S

dkRkF (λ>Zk)Xk −
∑
k∈P

Xk

}
,

ψ(λ) = E
{(
RkF (λ>Zk)− 1

)
Xk

}
.

Let Ψn(λ) = −||ψn(λ)|| and Ψ(λ) = −||ψ(λ)||. Hence, λ̂ ∈ arg maxλ∈Λ Ψn(λ). We

check the conditions of Theorem 5.9 in van der Vaart (2000). First,

E(ψn(λ)|U) =
1

N

∑
k∈P

[
RkF (λ>Zk)− 1

]
Xk,

which implies that E{ψn(λ} = ψ(λ). Since RkF (λ>Zk)−1 is bounded, it follows that{
RkF (λ>Zk)− 1

}
Xk admits second-order moments. Then, V[E(ψn(λ)|U)] converges

to 0. Also,

E [V{ψn(λ)|U}] = E

[
V

{
1

N

∑
k∈S

dkRkF (λ>Zk)Xk

∣∣∣∣U
}]

. (25)

By Assumption 3-(i), the right-hand side of (25) tends to 0. Then ψn(λ) → ψ(λ) in

L2, and thus in probability.

Because Zk has compact support and Λ is compact, there exists a compact interval I

including with probability one the interval [minλ∈Λ λ
>Zk,maxλ∈Λ λ

>Zk]. Moreover,

F (.) is uniformly continuous on I. Now, fix ε and let δ be such that for any (a, b) ∈ I2,

|a− b| < δ implies |F (a)− F (b)| < ε. Let C be such that ‖Zk‖ ≤ C with probability

one. Consider balls of center λb and of radius δ/C for λ. Then, for λ within such a

ball, we get, by the triangular and Cauchy-Schwarz inequalities,

‖ψn(λ)−ψn(λb)‖ ≤
1

N

∑
k∈S

dkRk

∣∣F (λ>Zk)− F (λ>b Zk)
∣∣ ‖Xk‖

≤ ε

N

∑
k∈S

dkRk‖Xk‖. (26)
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Similarly, ‖ψ(λ) − ψ(λb)‖ ≤ εE(‖Xk‖). Now, by assumption, Λ is compact. It can

then be recovered by B balls of centers λb (b = 1...B) and of radius δ/C. Then, using∣∣||a|| − ||b||∣∣ ≤ ||a− b||, we get

sup
λ∈Λ
|Ψn(λ)−Ψ(λ)| ≤ sup

λ∈Λ
||ψn(λ)−ψ(λ)||

≤ max
b=1...B

‖ψn(λb)−ψ(λb)‖+ ε

{
E(‖Xk‖) +

1

N

∑
k∈S

dkRk‖Xk‖

}
.

The first term on the right-hand side converges in probability to zero by pointwise

consistency of ψn(λ). By Assumption 3-(i) and reasoning as above, the term within

brackets converges in probability to E{(1 + Rk)‖Xk‖}. Therefore, with probability

tending to one, the left-hand side is smaller than ε[1 + 2E{(1 + Rk)‖Xk‖}]. Because

ε was arbitrary, we have proved

sup
λ∈Λ
|Ψn(λ)−Ψ(λ)| P−→ 0.

Hence, condition (i) in Theorem 5.9 of van der Vaart (2000) holds.

We now check condition (ii). First, by Assumptions 1 and 2,

E
[(
RkF (λ>0 Zk)− 1

)
Xk|Zk

]
=
[
F (λ>0 Zk)E (Rk|Zk)− 1

]
E (Xk|Zk) = 0.

Thus, ψ(λ0) = 0 and Ψ(λ0) = 0. Suppose that there exists λ1 such that Ψ(λ1) = 0.

Then ψ(λ1) = 0 and because E(Xk|Rk = 1,Zk) = ΓZk, we obtain, by the law of

iterated expectation,

Γ E
[
Rk

{
F (λ>0 Zk)− F (λ>1 Zk)

}
Zk

]
= 0.

Because the rank of Γ is equal to dim(Zk),

E
[
Rk

{
F (λ>0 Zk)− F (λ>1 Zk)

}
Zk

]
= 0.

This, in turn, implies that

E
[
Rk

(
F (λ>0 Zk)− F (λ>1 Zk)

) (
λ>0 Zk − λ>1 Zk

)]
= 0. (27)

Now, because F (.) is strictly increasing, we have{
F (λ>0 Zk)− F (λ>1 Zk)

} (
λ>0 Zk − λ>1 Zk

)
≥ 0 with equality iff λ>0 Zk − λ>1 Zk = 0.
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Hence, (27) implies that (λ0 − λ1)
>Zk = 0 almost surely. This and the fact that

E(ZkZ
>
k ) is nonsingular imply that λ1 = λ0.

Thus, Ψ(λ) = 0 implies that λ = λ0. Second, by the same argument following (26),

we have, for any λ,λ′ such that ‖λ− λ′‖ < δ/C,

‖Ψ(λ)−Ψ(λ′)‖ ≤ ‖ψ(λ)−ψ(λ′)‖ ≤ εE (‖Xk‖) .

Hence, Ψ is continuous. Thus, for any ε′ > 0,

inf
λ∈Λ:‖λ−λ0‖≥ε

‖Ψ(λ)‖ = min
λ∈Λ:‖λ−λ0‖≥ε

‖Ψ(λ)‖ > 0 = ‖Ψ(λ0)‖

and condition (ii) in Theorem 5.9 of van der Vaart (2000) holds.

As a result, both conditions of this theorem are satisfied, and λ̂ is consistent.

Consistency of t̂C.

First,

(
t̂C − ty

)
/N =

1

N

∑
k∈S

dkRkF (λ>0 Zk)Yk −
1

N

∑
k∈P

Yk

+
1

N

∑
k∈S

dkRk

{
F (λ̂

>
Zk)− F (λ>0 Zk)

}
Yk. (28)

We now show that both terms on the right-hand side of (28), denoted by A1 and A2

hereafter, tend to zero in probability. For A1, we use arguments similar to those used

for the pointwise consistency of ψn(λ). We have

E(A1|U) =
1

N

∑
k∈P

{
RkF (λ>0 Zk)− 1

}
Yk.

Moreover, by the law of iterated expectation and (10),

E
{[
RkF (λ>0 Zk)− 1

]
Yk
}

= E
{[
E(Rk | Zk)F (λ>0 Zk)− 1

]
E [Yk|Zk]

}
= 0.

Hence, E(A1) = 0 and V{E(A1|U)} converges to 0. Moreover,

E {V(A1|U)} = E

{
V

(
1

N

∑
k∈S

dkRkF (λ>0 Zk)Yk

∣∣∣∣U
)}

,
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and the right-hand side converges to 0 by Assumption 3-(i). Thus, V(A1) tends to 0

and A1 converges to 0 in probability.

Turning to A2, note that F (.) is uniformly continuous on the compact set. Set ε > 0

and δ as above. By consistency of λ̂, ||λ̂ − λ0|| < δ/C with probability close to one.

Then, by the Cauchy-Schwarz inequality, maxk ||(λ̂− λ0)
>Zk|| < δ, implying that

max
k

∣∣∣F (λ̂
>
Zk)− F (λ>0 Zk)

∣∣∣ < ε,

with a probability close to one. Hence, with such a probability,

|A2| < ε

(
1

N

∑
k∈S

dk|Yk|

)
.

By Assumption 3-(i), the term into parentheses converges to E(|Yk|). Therefore, A2

converges to zero, and the result follows. �

2. Linearization of λ̂− λ0.

Let us define Ĝ(λ) = 1
N

∑
k∈S dkRkF

′(λ>Zk)XkZ
>
k . Then, by the first-order condi-

tion of (5) and the mean value theorem,

0 =
Ĝ(λ̂)>

N

{∑
k∈S

dkRkF (λ̂>Zk)Xk −
∑
k∈P

Xk

}

=
Ĝ(λ̂)>

N

{∑
k∈S

dkRkF (λ>0 Zk)Xk −
∑
k∈P

Xk

}
+ Ĝ(λ̂)>Ĝ(λ̃)(λ̂− λ0), (29)

where λ̃ = t̃λ0 + (1− t̃)λ̂ for some t̃ ∈ [0, 1].

Because F ′(λ>0 Zk) is bounded, we have, by the same arguments as when showing

ψn(λ)
P−→ ψ(λ),

Ĝ(λ0)
P−→ G.

Now fix ε > 0. F ′ is continuous, and therefore uniformly continuous on the interval

I defined above. Thus, there exists δ2 > 0 such that for any (a, b) ∈ I2, |a − b| < δ2

implies |F ′(a) − F ′(b)| < ε. By Step 1, with a large probability, ‖λ̂ − λ0‖ < δ2/C
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and ‖λ̃ − λ0‖ < δ2/C. Then, by the triangular and Cauchy-Schwarz inequality, with

a large probability, ∥∥∥Ĝ(λ̂)− Ĝ(λ0)
∥∥∥ ≤ ε

N

∑
k∈S

dkRk‖XkZ
>
k ‖.

The same holds if λ̂ is replaced with λ̃. Because Zk is bounded, the right-hand

side converges to 0 by Assumption 3-(i). Hence, both Ĝ(λ̂) and Ĝ(λ̃) converge in

probability to G. This and (29) imply that

λ̂− λ0 = −(G>G)−1G>

N

{∑
k∈S

dkRkF (λ>0 Zk)Xk −
∑
k∈P

Xk

}
{1 + oP (1)}.

Asymptotic normality of t̂C .

First, we have

t̂C
N

=
1

N

∑
k∈S

dkRkF (λ>0 Zk)Yk +
1

N

∑
k∈S

dkRk

{
F (λ̂>Zk)− F (λ>0 Zk)

}
Yk

=
1

N

∑
k∈S

dkRkF (λ>0 Zk)Yk −

{
1

N

∑
k∈S

dkRkYkF
′(λ>Zk)Z

>
k

}

× (G>G)−1G>

N

{∑
k∈S

dkRkF (λ>0 Zk)Xk −
∑
k∈P

Xk

}
{1 + oP (1)},

where λ = tλ0 + (1− t)λ̂ for some t ∈ [0, 1]. By the same argument as above,

1

N

∑
k∈S

dkRkYkF
′(λ>Zk)Z

>
k

P−→ E(ρkYkZ
>
k ).

Hence, since γ = G(G>G)−1E(ρkYkZ
>
k ) and Wk = (RkF (λ>0 Zk) − 1)(Yk − γ>Xk),

we get

t̂C − ty =

{∑
k∈S

dk(Wk + Yk − γ>Xk)−
∑
k∈P

Wk + Yk − γ>Xk +
∑
k∈P

Wk

}
{1 + oP (1)}.

(30)

To prove the result, we now check the conditions of Theorem 2 in Chen and Rao

(2007). Note first that U plays the role of Bn in their theorem,
∑

k∈S dk(Wk + Yk −

γ>Xk)−
∑

k∈P Wk+Yk−γ>Xk corresponds to Un,
∑

k∈P Wk corresponds to Vn, σ2N ≡
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V
{∑

k∈S dk(Wk + Yk − γ>Xk)

∣∣∣∣U}1/2

corresponds to σ2n and σ1N ≡ V
(∑

k∈P Wk

)1/2
corresponds to σ1n.

Then, by Assumptions 1 and 2,

E(Wk|Zk) =
[
E(Rk|Zk)F (λ>0 Zk)− 1

]
E
(
Yk − γ>Xk|Zk

)
= 0.

Hence, E(Wk) = 0 and by the central limit theorem,

σ−11N

(∑
k∈P

Wk

)
d−→ N (0, 1) .

Also,
∑

k∈P Wk is U -measurable. Hence, their condition 1 holds.

Next,

E

{∑
k∈S

dk(Wk + Yk − γ>Xk)−
∑
k∈P

Wk + Yk − γ>Xk

∣∣∣∣U
}

= 0

and Condition (1) in Chen and Rao (2007) holds by Assumption 3-(iii) and Polya’s

theorem (see the remark below Theorem 2 in Chen and Rao, 2007). Thus, their

condition 2 holds. Finally their condition 3 holds by Assumption 3-(ii).

Therefore,∑
k∈S dk(Wk + Yk − γ>Xk)−

∑
k∈P Wk + Yk − γ>Xk +

∑
k∈P Wk√

σ2
1N + σ2

2N

d−→ N (0, 1) .

The result follows by (30) and Slutsky’s lemma. �

A.2 Proof of Theorem 2

1. By assumption, a solution to (14) exists. By the same reasoning as the one used

to show λ0 = λ1 in the proof of Theorem 1, the solution is unique. Moreover, still

reasoning as in the first step of the proof of Theorem 1, we have λ̂ P−→ λ∞. �

2. We can decompose the total error of estimation of t̂C as in (13). Using Assumption

3 and the same arguments as in the second step of the proof of Theorem 1, the first

three terms of the right-hand side converge to 0 in probability. On the other hand, the
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fourth term on the right-hand side does not tend to zero in probability. By the law of

large number and Assumption 3-(i), it converges towards

E
[
Rk

{
F (λ>∞Zk)− F (λ>0 Zk)

}
Yk
]
.

This in turn can be rewritten as:

E
{
Rk

{
F (λ>∞Zk)− F (λ>0 Zk)

}
Yk
}

= E
(
fk Rk Yk Z

>
k

)
(λ∞ − λ0) ,

where fk is defined in (16). Next, we prove (15). We have

−E
[
fkF (λ>0 Zk)

−1XkZ
>
k (λ∞ − λ0)

]
= E

{(
1− F (λ>∞Zk)

F (λ>0 Zk)

)
Xk

}
= E

{
F (λ>∞Zk) (RkXk − E(Rk|Zk)Xk)

}
= E

{
F (λ>∞Zk) Cov (Xk, Rk | Zk)

}
,

where the second equality comes from the nonresponse model and (14), and the third

equality from the law of iterated expectation. This shows (15), which in turn implies

that

E
{
Rk

{
F (λ>∞Zk)− F (λ>0 Zk)

}
Yk
}

= −
{{

E(fkRkZkX
>
k )
}−1 E(fkRkZkYk)

}>
E
{
F (λ>∞Zk) Cov (Xk, Rk | Zk)

}
. �
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