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1 Introduction

This paper provides point identification for additive nonparametric and semiparametric models in

which some continuously distributed regressor X∗ is measured with error, and none of the additional

information that is usually used to deal with measurement errors is available. In particular, there

are no excluded regressors, no repeated measures, and no validation samples or other outside sources

of error distribution information. All we are assumed to observe is a dependent variable Y , correctly

measured covariates Z, and the mismeasured X. The main model we consider is

E [Y | X∗, Z] = g (X∗) + h (Z) , X = X∗ + U , (1)

where g and h are unknown functions, the true X∗ is unobserved, and U is the unobserved mea-

surement error. Our goal is point identification of the functions g and h.

These results extend the literature on nonparametric additive models, widely used in statistics

and econometrics (see, e.g., Hastie and Tibshirani, 1990; Linton, 2000; Wood, 2006, and many

references therein), to allow for measurement error. A common motivation for additivity (relative

to a general nonparametric regression) is to overcome the curse of dimensionality, since additive

models typically converge at faster rates than ordinary nonparametric regressions. However, our

motivation is different. In our case, we are looking to relax the exclusion restrictions that are

ordinarily needed for nonparametric identification with measurement error. If the function h was

identically zero, then Z would be excluded from the model and could be used as instruments.

Identification could then be based on, e.g., Schennach (2007). See also Hu (2008) and Hu and

Schennach (2008) for general approaches based on exclusion restrictions, with respectively discrete

and continuous mismeasured regressors. At the other extreme, if no restrictions are placed on

E [Y | X∗, Z], then identification would not be possible at all. Additivity substantially relaxes the

usual instrumental variables exclusion assumption, while, as we show in this paper, still allowing

for identification.

Another way to think of this same framework is to consider a nonparametric structural model of

the form Y = g (X∗) + ε∗ where we replace the usual exogeneity assumption that E [ε∗ | X∗, Z] = 0

with the much weaker assumption that E [ε∗ | X∗, Z] = h (Z). Essentially, we still interpret Z as a

vector of instruments, but instead of the usual exclusion restrictions that Z drops out entirely from

the model, we allow Z to appear in the model, but only additively. So Z are invalid instruments,

but we nevertheless are able to use them like instruments to obtain point identification. Note that

we allow h (Z) to be identically zero, but unlike existing results, we do not require it.

It is often difficult to be certain that candidate instruments satisfy exclusion restrictions, yet consis-

tency of almost all instrumental variable estimators critically depend on instruments satisfying these

exclusions. Allowing the instruments to directly affect outcomes, thereby allowing for violations of

the exclusion restrictions, should therefore be a valuable contribution for empirical researchers. For

example, Chetty et al. (2011) investigate the effects of unobserved early childhood achievement, X∗,
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on later life outcomes, Y , using observed kindergarten performance, X, and random assignment to

kindergarten teachers, Z. However, Kolesár et al. (2014) argue that the assignment to kindergarten

teachers may have a direct effect on outcomes, so Z may not satisfy the exclusion assumption, de-

spite having been randomly assigned. They deal with the issue by assuming a linear model (which

is a special case of our additive model) and with some uncorrelatedness assumptions. In contrast,

we allow for measurement error in X∗ and for Y to be a nonparametric function of X∗.

In our main result, we place restrictions on how X∗ covaries with Z, and show nonparametric

identification of both g and h. We then consider an alternative model where g (X∗) is replaced with

a polynomial in both X∗ and Z, still keeping h (Z) nonparametric. So this alternative model is

E [Y | X∗, Z] =
∑J

j=0

∑K
k=1 αjkZ

jX∗k+h (Z). To give an empirical example where such interactions

matter, consider the returns to education literature, where it is important to include interactions

between education and measures of cognitive ability in wage models. See, e.g., Heckman et al.

(2006), who measure cognitive ability using the Armed Forces Qualifying Test, and include in their

analysis the covariates schooling, parental income, family background variables and interaction

terms.

Consider the general class of models Y = M (X∗, Z) + ε with restrictions placed on M and ε.

There exists a small literature on point identifying such models, where no additional information

like excluded instruments, multiple measures, or known error distributions are available to deal with

the measurement error problem. The existing results in this literature impose restrictions on higher

order moments of ε (in addition to placing restrictions on M). For example, Chen et al. (2008, 2009)

and Schennach and Hu (2013) assume ε is independent of X∗, Erickson and Whited (2002) and

Lewbel (1997) assume ε has a conditional third moment of zero, while Klein and Vella (2010) and

Lewbel (2012) impose constraints on how the variance of ε depends on X∗ and Z. In contrast, the

only constraint the present paper imposes on ε is the standard conditional mean (nonparametric

regression) assumption E [ε | Z,X∗] = 0. This should be useful in practice because many if not

most behavioral models do not provide higher order moment or alternative additional restrictions

on ε.

Our model conceptually combines features of Robinson (1988) and Schennach (2007), however, nei-

ther of their approaches can be used to establish identification of our model. In the measurement

error model E [Y | X∗, Z] = g (X∗), Schennach (2007) gains identification by exploiting moments

like E [Y X | Z], which in her model equals E [g (X∗)X | Z]. We cannot use this same method be-

cause in our model E [Y X | Z] = E [g (X∗)X + h (Z)X | Z], and we would not be able to separate

the effect of Z on h from the effect of Z on g. Robinson’s (1988) estimator of a partially linear model

can be interpreted as using the conditional covariance Cov (Y,X | Z) to project off the unknown

function h. This can suffice to identify g when it is linear and when X∗ is not mismeasured as in

Robinson’s model, but not in our case.

Our identification strategy starts by extending the moments from Robinson (1988) and Schennach

(2007) to the set of conditional covariances Cov
(
Y, (X − E[X | Z])k | Z

)
. These moments are
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related to convolutions of g (X∗) with the density of (X∗ − E[X∗ | Z]). We find that the function

g (X∗) can be identified from these moments either when g equals a polynomial of unknown degree,

or when it is bounded by a polynomial of unknown degree. When g is bounded by a polynomial,

we convert the problem from a system of equations of convolutions to a system of equations that

involve products of Fourier transforms. We then use methods from Mattner (1992), D’Haultfœuille

(2011) and Zinde-Walsh (2014) to show that these equations exist and have a unique solution,

and then solve the resulting system of equations to recover g. When g is a polynomial, we first

identify reduced form coefficients by regressing the above conditional covariances on moments of X

conditional on Z. We then identify the structural coefficients by solving for them using the reduced

form coefficients, analogous to the indirect least squares estimator of linear models. Unlike related

polynomial model results in, e.g., Hausman et al. (1991), we can obtain closed-form expressions

for these coefficients. Finally we show that we can distinguish between the non-polynomial and

polynomial cases.

The next section provides our main model and its identification, and then some alternative ways to

achieve identification. One such way is to replace a nonparametric g (X∗) with a polynomial in both

X∗ and Z. Another variant we consider weakens our main assumptions regarding the relationship

between X∗ and Z. Our identification strategies are constructive, so estimators can be based on

them. Although our main focus is on identification rather than estimation, in Section 3 we show

root-n convergence and asymptotic normality in the semiparametric model when g is a polynomial

and h is nonparametric. We then present some Monte Carlo simulation studies of the corresponding

estimators. Section 5 concludes.

2 The model and its identification

2.1 Main result

We consider the nonparametric additive model{
Y = g (X∗) + h (Z) + ε,

X = X∗ + U,
(2)

where Y ∈ R and X ∈ R are observed random variables, Z ∈ Rr is an observed random vector,

X∗ ∈ R, ε ∈ R and U ∈ R are unobserved random variables and g : R → R and h : Rr → R are

unknown functions to be identified. We impose the following normalization and moment conditions.

Assumption 2.1. (i) g(x∗0) = 0 for some x∗0 ∈ Support(X∗); (ii) E[ε|X∗, Z, U ] = 0 and (iii)

E[Uk|X∗, Z] = E[Uk] for k ∈ {1, 2, 3} and E[U ] = 0.

Condition (i) is a harmless location normalization because we can always add a constant to g and

subtract it from h. Condition (ii) says that X∗ and Z are exogenous regressors, or equivalently
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that E [Y | X∗, Z] = g (X∗) + h (Z). Importantly, this allows for heteroscedasticity of unknown

form in ε, as well as not restricting dependence in any higher order moments of ε. As noted in

the introduction, this is in sharp contrast to previously existing results that obtain identification

without outside information, and may be of considerable importance in practice. Condition (iii) is

similar to, but strictly weaker than, the classical measurement error assumption of full independence

between U and (X∗, Z).

Assumption 2.2. X∗ = m(Z) + V with V ⊥⊥ Z, ν1 = 0 and ν2 > 0, where νk = E[V k].

The functionm(Z) is defined bym(Z) = E [X∗ | Z] and throughout the rest of the paper is identified

by m(Z) = E[X|Z]. The assumption that V is independent of Z is a strong restriction on how X∗

covaries with Z, but it is also a common assumption both in the measurement error literature (see,

e.g., Hausman et al., 1991; Schennach, 2007), and in control function type estimators of endogeneity

(see, e.g., Newey et al., 1999). In the next subsections, we provide additional results without such

an assumption. The condition ν1 = 0 is a free location normalization, while the condition ν2 > 0

simply rules out the degenerate case where X∗ is a deterministic function of Z, in which case g

could obviously not be separately identified from h.

When the function h is known to be identically zero, Schennach (2007) shows that identification of

g can be achieved using E[Y |Z] and E[XY |Z]. We instead obtain identifying equations on g using

conditional covariances rather than conditional means, which are equations that do not depend on

the h function. The functions Cov(Y, (X −m(Z))k|Z = z) depend on z only through m(z), so we

let qk(m) = Cov(Y, (X −m(Z))k|m(Z) = m). These conditional covariances satisfy

q1(m) = E[V g(m+ V )], (3)

q2(m) = E[(V 2 − ν2)g(m+ V )], (4)

q3(m) = E[(V 3 − ν3)g(m+ V )] + 3(m2 − ν2)q1(m), (5)

where mk = E[(X −m(Z))k], for k ≥ 1. These equations, which we use to identify the function g,

are functionals of the unknown density of V and of the function g. The identification strategies are

different for polynomial and non-polynomial g so we divide identification into two theorems, one

for each case, and then present a proposition that shows how to distinguish between the cases.

First, we consider the case with non-polynomial g. For this case, as in Schennach (2007) and

Zinde-Walsh (2014), we work with Fourier transforms because Fourier transforms of convolutions

are products of Fourier transforms. Despite this fundamental similarity, the details of our proof

differ substantially from theirs due primarily to the greater complexity of our identifying equations

above. Denote the characteristic function of a random variable A by ΨA(t) = E[eitA] and the Fourier

transform of a real function f by F(f). A technical issue here is that f may not be integrable, so

F(f) cannot be defined in the usual sense. In such a case, F(f) is the Fourier transform of f seen

as a tempered distribution. Formal definitions related to the theory of distributions are provided

in Appendix A.
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Assumption 2.3. (i) g is bounded by a polynomial and the interior of the support of F(g) is

not empty; (ii) Support(m(Z)) = R; (iii) E[exp(|V |β)] < ∞ for some β > 0 and (iv) Ψ′−V , the

derivative of the characteristic function of −V , only vanishes at 0.

Assumption 2.3(i) is weaker than those made by Schennach (2007) and Zinde-Walsh (2014). In par-

ticular, we do not require 0 to belong to the support of F(g). Nevertheless, it rules out polynomials

and finite combinations of sine and cosine functions, since the support of their Fourier transforms

is discrete. The large support condition on m(Z), which implies that Support(X∗) = R, is also

made by Schennach (2007) and is required for our approach based on Fourier transforms. We will

not require this large support assumption for the case of a polynomial g below. Assumption 2.3(iii)

ensures that Ψ−V is analytic on a strip of the complex plane including the real line, so that Ψ′−V and

all higher order derivatives are well defined. Assumption 2.3(iv) is similar to the standard condition

in measurement error problems that Ψ−V does not vanish.

Theorem 2.1. Suppose that Equation (2) and Assumptions 2.1, 2.2 and 2.3 hold. Then g and h

are identified.

We provide some intuition for the proof, leaving the details to Appendix A. The expressions for

qk in Equations (3), (4) and (5) can be written as a convolution between g and the density of −V .

Hence, taking Fourier transforms of these covariances gives

F(q1) = F(g)× (iΨ′−V ), (6)

F(q2) = −F(g)× (Ψ′′−V + ν2Ψ−V ), (7)

F(q3) = −F(g)× (iΨ′′′−V − 3i(m2 − ν2)Ψ′−V + ν3Ψ−V ). (8)

Intuitively, identification comes from showing that a unique F(g) solves the above equations. De-

spite the simplicity of these equations, however, they are functionals of tempered distributions and

standard algebraic manipulations may not be valid. Even without this complication, and unlike

Schennach (2007), it is not obvious that we do not need more than three equations to solve for the

unknown Fourier transform F(g) and the characteristic function Ψ−V (the moments ν2 and ν3 being

given by Ψ−V ). Further, adding additional equations qk, for k > 3, leads to additional unknown

moments and more complicated differential equations. In Appendix A we in fact show that there

is a unique g and distribution of V that solve this system.

Now consider the case with polynomial g. Note that we do not impose hereafter that the degree of

g, nor an upper bound on it, is known by the econometrician. The assumptions made by Schennach

(2007) rule out polynomials, so we adopt a completely different proof strategy for this case that

loosely resembles Hausman et al. (1991). Some of the conditions required for the nonparametric g

case can be substantially weakened here where g is a polynomial. In particular, we do not require

a large support condition on m(Z), but only that it takes a sufficient number of distinct values, so

Z can even be discrete.
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Assumption 2.4. (i) g is a polynomial of unknown degree K > 1; (ii) E[|V |K+3] < ∞ and (iii)

the support of m(Z) contains at least K + 1 elements.

Theorem 2.2. Suppose that Equation (2) and Assumptions 2.1, 2.2 and 2.4 hold. Then g and h

are identified.

The proof is quite different from the non-polynomial case. Instead of using Fourier transforms we

substitute g(x) =
∑K

k=1 αkx
k into Equations (3), (4) and (5) to obtain, after some algebra, the

regression equations

q1(m) =
K−1∑
j=0

[
K∑

k=j+1

αk

(
k

j

)
νk−j+1

]
mj, (9)

q2(m) =
K−1∑
j=0

[
K∑

k=j+1

(
k

j

)
αk(νk−j+2 − ν2νk−j)

]
mj, (10)

q3(m) =
K−1∑
j=0

[
K∑

k=j+1

(
k

j

)
αk(νk−j+3 + 3(m2 − ν2)νk−j+1 − ν3νk−j)

]
mj. (11)

In Appendix A we show that these polynomials in m can be solved to identify the unknown coeffi-

cients and moments (α1, . . . , αK , ν2, . . . , νK+3).

Because the identification proofs in the polynomial and non-polynomial cases are distinct, one may

be worried that in practice, we cannot tell which case holds. Fortunately, it is possible to identify

a priori whether g is a polynomial or not, using the following proposition.

Proposition 2.1. Suppose that Equation (2), Assumptions 2.1, 2.2 and either Assumption 2.3 or

2.4 hold. Then g is a polynomial if and only if q1 is a polynomial.

Taken together, Proposition 2.1 and Theorems 2.1 and 2.2 imply that under the conditions of

Proposition 2.1, g and h are identified.

Finally, our results do not cover the case of a linear function g. The same is true of related

identification theorems including Schennach (2007). In our case, this is not a limitation of our

proofs, but rather a fundamental feature of the model, as the lemma below shows. In the next

subsections, we show how identification of a linear g can be restored with heteroscedasticity.

Lemma 2.1. Suppose that Equation (2) and Assumptions 2.1 and 2.2 hold. Assume that g is

linear, E[|V |] <∞ and the support of m(Z) contains at least two elements. Then g is not identified

in general.

We prove this lemma by providing a specific example of a data generating process with a linear

g that is not identified. The intuition for this non-identification is that if g(x∗) = αx∗, then

qk(m) = αE[V (V + U)k] does not depend on Z. Hence variation in Z cannot distinguish between

α and E[V (V + U)k].
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2.2 Identification through heteroscedasticity of the first stage

Homoscedasticity of V imposed by Assumption 2.2, while helpful for constructing and simplifying

moments for nonparametric identification in Theorems 2.1 and 2.2, actually prevents identification

in some cases, as emphasized in Lemma 2.1. In this section we achieve identification by allowing

for heteroscedasticity.

We note that identification based on assumptions regarding higher order moments can sometimes

be fragile. Still, there are many examples of such methods being used successfully in empirical

applications. For example, Erickson and Whited (2012) use estimates of higher order moments

to deal with measurement error in Tobin’s Q model. In the literature on market risk assessment

and asset allocation, several papers (e.g. Fama, 1965 and Jondeau and Rockinger, 2006) have

used the higher order moments of non-normal asset returns to analyze optimal portfolio choices.

Lewbel (2012) exploits heteroscedasticity to identify Engel curves with measurement errors without

exclusion restrictions.

Consider again the model in Equation (2) with the following assumption replacing Assumption 2.1.

Assumption 2.5. (i) h(z0) = 0 for some z0 ∈ Support(Z) ⊂ R; (ii) E[ε|X∗, Z, U ] = 0 and (iii) U

is independent of (X∗, Z).

Assumption 2.5(i) places the free location normalization on h instead of g because it will be more

convenient in this setting. Assumption 2.5(iii) is stronger than Assumption 2.1(iii) because iden-

tification will use characteristic functions that require full independence instead of just having

independent low order moments. As discussed earlier, this independence is a standard assumption

of measurement error models.

The next assumption replaces Assumption 2.2 by allowing for heteroscedasticity, albeit in multi-

plicative form.

Assumption 2.6. X∗ = m(Z) + σ(Z)V with Support(m(Z)) = R, V ⊥⊥ Z, E[V ] = 0 and

E[V 2] = 1. The function σ(.) is differentiable and there exists z0 ∈ Support(Z) such that σ(z0) > 0

and σ′(z0) 6= 0.

Under this assumption Var(σ(Z)V |Z) = σ2(Z) and so the variance of the relationship between

X∗ and Z is now permitted to depend nonparametrically on Z by equaling the unknown function

σ2(Z). The condition E[V 2] = 1 is a free normalization because we can always divide V by E[V 2]

and multiply σ(Z) by the same constant.

Finally, we need to impose regularity conditions similar to Assumption 2.3(iv).

Assumption 2.7. (i) E[U2] <∞; (ii) the characteristic functions of U and V do not vanish and

(iii) V admits a density with respect to the Lebesgue measure with support equal to the real line.
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Under these conditions, identification proceeds by the following steps (with details in Appendix

A). First, using X − m(Z) = σ(Z)V + U , independence of U , and nonconstant σ(.), we show

that the distributions of U and V are identified up to the scalar σ0 = σ(z0), the value of the

function σ(Z) at one point Z = z0. Next we identify g and h, up to the unknown σ0, using

the moment E[Y exp(it(X − m(Z)))|Z = z0]. Finally, to identify σ0, we use Cov(Y,X|Z = z),

which holds for all z, and thus provides an infinite number of equations (through variation in

z) in the single scalar unknown σ0. We therefore expect σ0 to be greatly overidentified. These

equations are, however, extremely complicated functions of σ0, and so we cannot produce low-level

assumptions that guarantee that these equations identify σ0. We therefore impose the following

high-level condition.

Assumption 2.8. The mapping σ 7→
[
z 7→ σσ(z)

∫
gσ (m(z) + σσ(z)v) vfσV (v)dv

]
is injective; where

the superscript σ indicates the dependence in σ0, e.g., gσ is the g function obtained when σ0 is set

equal to σ.

Under this condition and the previous ones, the model is identified.

Theorem 2.3. Suppose that Equation (2) and Assumptions 2.6, 2.7 and 2.8 hold. Then g and h

are identified.

This result relies on Assumption 2.8, which despite being high-level, can be verified in some par-

ticular settings. For example, the following proposition shows that this assumption holds when U

and V are normal and g is linear.

Proposition 2.2. Suppose that Equation (2) and Assumptions 2.5 and 2.6 hold. Suppose also that

g is linear, not constant, and U and V are normally distributed. Then Assumption 2.8 holds and

thus g and h are identified.

This proposition is of interest in view of Lemma 2.1, where we showed that the model is not identified

under homoscedasticity in the equation X∗ = m(Z) + V when g is linear and U and V are normal.

Now, replacing Assumption 2.2 with Assumption 2.6, the model with linear g and normal U and

V is identified, since we have verified in this case that Assumption 2.8 holds. We conjecture that

heteroscedasticity identifies the model more generally. Basically, the heteroscedasticity function

σ(z) provides additional variation to help in the identification of g, and is identified up to σ0 using

only X and Z. Then using Y , we have an infinite number of additional equations that should

generally suffice to identify the single scalar σ0.

2.3 A polynomial restriction with interaction terms

In this subsection, we replace the function g with a polynomial in both X∗ ∈ R and Z ∈ R, so{
Y = g (X∗, Z) + h (Z) + ε =

∑J
j=0

∑K
k=1 αjkZ

jX∗k + h (Z) + ε,

X = X∗ + U.
(12)
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Here, h : R → R is an unknown function and {αjk}j,k are unknown parameters with αjK 6= 0 for

some j. This model is more general than Model (2) in relaxing additivity by allowing interactions

between X∗ and Z, but it is less general in constraining g to be a polynomial. The model extends

readily to the cases where Z or X∗ are vectors, and in Appendix B we also show that identification

can be adapted quite easily to the case of multiplicative instead of additive measurement errors.

The following assumption replaces Assumption 2.1.

Assumption 2.9. (i) E[ε|X∗, Z, U ] = 0 and (ii) E[Uk|X∗, Z] = E[Uk] for k ∈ {1, 2, . . . , K + 1}
and E[U ] = 0.

When K > 2 Assumption 2.9(ii) is stronger than Assumption 2.1(iii) because higher order moments

of U are assumed to not depend on X∗ or Z, though in practice, one would typically assume that the

measurement error is independent of the true covariates, which would then satisfy either assumption

regardless of K. Finally, we do not need to include an explicit location normalization on g here,

because Equation (12) already satisfies the location normalization g(0, z) =
∑K

j=0

∑K
k=1 αjkz

j0k = 0.

Equation (12) and Assumption 2.9 imply that

Cov(X, Y |Z) =
J∑
j=0

Zj

K∑
k=1

αjk
(
E[X∗k+1|Z]− E[X|Z]αjkE[X∗k|Z]

)
. (13)

To identify this model, we recursively substitute Xk = (X∗ + U)∗k into the binomial expansion

X∗k = Xk −
k−1∑
l=0

(
k

l

)
X∗lUk−l

and end up expressing Cov(X, Y |Z) as a linear combination of terms of the form ZjE[Xk|Z] and

ZjE[X|Z]E[Xk|Z]. All we need now for identification is to replace Assumptions 2.2 and 2.4 with

a rank condition that allows us to obtain the coefficients on these conditional moments.

Assumption 2.10. Define

Q(Z) = (E[XK+1|Z],−E[XK |Z]E[X|Z], . . . , E[X2|Z],−E[X|Z]E[X|Z], E[X|Z], 1)′,

R(Z) = (Z0Q(Z)′, Z1Q(Z)′, . . . , ZJQ(Z)′)′.

Let E
[
R (Z)R (Z)′

]
be finite and nonsingular.

Assumption 2.10, like Assumption 2.4(iii), allows the support of Z to be limited or discrete, even if

X is continuous. However, the rank condition requires that Z have at least K+2 points of support.

The assumption gives us identification by ensuring that variation in Z induces sufficient relative

variation in the moments E[Xk|Z] for k = 1, . . . , K + 1. The vector R (Z) includes, for example,

E[X2|Z] and (E[X|Z])2 so that nonsingularity of E
[
R (Z)R (Z)′

]
requires relative variation in

E[X|Z] and Var(X|Z). Relative variation is also required for higher conditional moments of X.

Assumption 2.10 therefore conflicts with Assumption 2.2, where Var(X|Z) is constant, and so should

be considered as an alternative to it.
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Theorem 2.4. Suppose that Equation (12) and Assumptions 2.9 and 2.10 hold. Then the functions

g and h and the moments E[U ], E[U2], . . . , E[UK+1] are identified.

The proof is based directly on the above covariance expansion in Equation (13). It is similar to

the proof of Theorem 2.2 but instead of first identifying g and moments of V , Theorem 2.4 first

identifies g and moments of U . The proof uses Assumption 2.10 to identify the reduced form

coefficients on R(Z) by projecting Cov(X, Y |Z) on R(Z). The coefficients on R(Z) are known

but complicated functions of αj1, . . . , αjK and E[U ], . . . , E[UK+1], which are then manipulated to

recover these parameters and moments and hence g.

Both Theorems 2.2 and 2.4 identify g when it is a nonlinear polynomial in X∗ only. However, unlike

the theorems in Section 2.1, Theorem 2.4 can identify a linear g. This is shown by the following

example, which is the classical linear errors-in-variables model but with an additional nonparametric

term that is a function of a correctly measured Z.

Example 2.1. Suppose that Equation (12) holds with Y = α1X
∗ + h(Z) + ε, i.e., g is linear, and

Assumptions 2.9 and 2.10 hold. Then g and h are identified.

Results like Reiersøl (1950) show that without Z this model would not be identified under normality.

In contrast, by projecting off Z and using it as an instrument for X∗, Theorem 2.4 shows that this

model can be identified even when the model and measurement errors are normal. As in the previous

subsection, the key for identification here is that Assumption 2.9 requires Var (X|Z) to vary with

Z, thereby requiring heteroscedasticity in the relationship between X∗ and Z. The main tradeoff

between this result and that of the previous subsection is that here we do not require a location-scale

model, but now g is restricted to be parametric.

3 Semiparametric estimation

In this section, we show how the steps in our identification proof can be used to construct estimators

of g and h in our main Model (2) when g is a polynomial while h is left unspecified. The estimator

is simple in this case, as it only involves linear ordinary least squares estimators and a minimum

distance step that can be achieved without numerical optimization. We show that the corresponding

estimators are asymptotically normal with the parametric part achieving a root-n convergence rate.

Nonparametric estimation of g based on Theorem 2.1 and testing between polynomial and non-

polynomial g are considered in Appendix C.

Let g(x) =
∑K

k=1 αkx
k where K > 1 is assumed to be known. We impose the normalization

g(0) = 0 so that α0 = 0. As proved in Proposition 2.1 and shown in Equations (9), (10) and

(11), q1, q2 and q3 are polynomials in this setting. The idea is then to estimate first the coefficients

{βkj}K−1
j=0 , for k ∈ {1, 2, 3}, of these polynomials, and then recover (α1, . . . , αK) and (ν2, . . . , νK+3)

(with νk = E[V k]) from the estimates of βkj. Finally, we estimate h.
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First consider the estimation of {βkj}K−1
j=0 , for k ∈ {1, 2, 3}. We have

qk(m) = E
[
Y
(
(X −m(Z))k − E[(X −m(Z))k|m(Z)]

)
|m(Z) = m

]
and, under Assumptions 2.1 and 2.2,

E[(X −m(Z))k|m(Z)] = E[(U + V )k|m(Z)] = E[(U + V )k] = E[(X −m(Z))k].

Letting mk = E[(X −m(Z))k], we obtain

qk(m) = E
[
Y
(
(X −m(Z))k −mk

)
|m(Z) = m

]
. (14)

This equality is convenient because it shows that qk corresponds to a simple conditional expectation.

Here, m(Z) = E[X|Z] can be estimated by any uniformly consistent nonparametric regression

estimator of E[X|Z]. The case where Z is discrete is straightforward because m(.) can be estimated

at the root-n rate by simple averages, so we focus hereafter on the continuous Z case. We consider

a series estimator for m(.). For any positive integer L, let pL(z) = (p1L(z), . . . , pLL(z))′ be a vector

of basis functions and PL = (pL(Z1), . . . , pL(Zn)). We then estimate m(z) by

m̂(z) = pLn(z)′
(
PLnPLn ′

)−
PLn (X1, . . . , Xn)′ ,

where (.)− denotes a generalized inverse and (Ln)n∈N is a sequence of integers tending to infinity at

a rate specified below. Then we estimate mk = E[(X −m(Z))k] for k ∈ {2, 3} by simply taking the

average of (Xi − m̂(Zi))
k. Note that m1 = 0 need not be estimated. Next, we estimate {βkj}K−1

j=0

by regressing Q̂k = Y
[
(X − m̂(Z))k − m̂k

]
on (1, m̂(Z), . . . , m̂(Z)K−1). We denote hereafter by θ̂

the estimator of θ0 = (m2,m3, β10, . . . , β3K−1)′.

In a second step, we can then use a classical minimum distance estimator (see, e.g., Wooldridge,

2002, Section 14.6) to estimate the 2K+2 unknown parameters η0 = (τ2, τ3, α1, . . . , αK , ν2, . . . , νK+3)

from θ0 = Π(η0), where Π(η0) = (Π1(η0), . . . ,Π3K+2(η0))′ and

Πj(η) =

∣∣∣∣∣∣∣∣∣∣∣∣

τj+1 if j ∈ {1, 2},∑K−j+3
k=1

(
k+j−3
j−3

)
αk+j−3νk+1 if j ∈ {3, . . . ,K + 2},∑2K+3−j

k=1

(
k+j−K−3
j−K−3

)
αk+j−K−3(νk+2 − ν2νk) if j ∈ {K + 3, . . . , 2K + 2},∑3K+3−j

k=1

(
k+j−2K−3
j−2K−3

)
αk+j−2K−3(νk+3 − 3(τ2 − ν2)νk+1 − ν3νk) if j ∈ {2K + 3, . . . , 3K + 2}.

We refer the reader to the proof of Theorem 2.2 in Appendix A on how we obtain these equations

and note that τk = mk is introduced here to ensure that Π(.) is a function of η only. We also recall

that ν1 = 0 need not be estimated. We therefore estimate η0 by

η̂ = arg min
η∈H

(
θ̂ − Π(η)

)′
Wn

(
θ̂ − Π(η)

)
, (15)

where Wn is a random, symmetric positive definite matrix and H is a compact set. Using η̂, we

estimate g(.) by

ĝ(x) =
K∑
k=1

α̂kx
k.

12



Note that in the proof of Theorem 2.2, identification comes from a closed-form expression of η0 in

terms of β0, which can also be used for estimation. The corresponding estimator is not efficient

in general, though. On the other hand, we can use it to compute a one-step estimator (see, e.g.,

van der Vaart, 2000, Section 5.7) based on (15). Such an estimator is asymptotically efficient and

does not require numerical optimization.

Our asymptotic results on η̂ and ĝ(.) are based on the following conditions.

Assumption 3.1. We observe a sample (Xi, Yi, Zi)i=1,...,n of i.i.d. variables with the same distri-

bution as (X, Y, Z).

Assumption 3.2. (i) θ0 and η0 belong to the interior of two compact sets, Θ and H respectively;

(ii) E[X6] <∞, E[Y 2] <∞ and E[Y 2X6] <∞;

(iii) z 7→ E[X|Z = z] is not constant and is s times continuously differentiable on Support(Z) ⊆
Rr, with s > 3r;

(iv) Support(Z) is a Cartesian product of compact intervals on which Z has a probability density

function that is bounded away from zero;

(v) The series terms p`Ln, 1 ≤ ` ≤ Ln, are products of polynomials orthonormal with respect to

the uniform weight. Moreover, L
4(s/r−1)
n /n→∞ and L7

n/n→ 0;

(vi) Wn
p−→ W , which is nonstochastic and positive definite and

(vii) The matrix J = ∂Π/∂η|η=η0 has full rank.

These are standard regularity conditions (e.g., Frölich, 2007). In Condition (iii), the fact that

z 7→ E[X|Z = z] is not constant may be seen as our rank condition. In the polynomial model, in

contrast to the nonparametric case, we do not require large variation on z 7→ E[X|Z = z] to achieve

identification but just that Z has some effect on the conditional expectation of X.

Theorem 3.1. Suppose that Equation (2) and Assumptions 2.1, 2.2, 2.4, 3.1 and 3.2 hold. Then

√
n (η̂ − η0)

d−→ N
(
0, (J ′WJ)−1J ′WG−1HG−1′WJ(J ′WJ)−1

)
,

where G and H are defined respectively in Equations (31) and (35) in Appendix A. The optimal

weighting matrix is W ∗ = (G−1HG−1′)
−1

. Finally, ĝ(x) is also asymptotically normal for any

x ∈ R.

Finally, we estimate h using h(Z) = E[Y |Z]− E[g(X∗)|Z]. The term E[Y |Z] can be estimated by

standard nonparametric regression, while

E[g(X∗)|Z = z] =
K∑
k=0

αkE[(m(z) + V )k] =
K∑
j=0

[
K∑
k=j

(
k

j

)
αkνk−j

]
m(z)j

13



can be estimated by

Ê[g(X∗)|Z = z] =
K∑
j=0

[
K∑
k=j

(
k

j

)
α̂kν̂k−j

]
m̂(z)j

and we can then estimate h by ĥ(z) = Ê[Y |Z = z] − Ê[g(X∗)|Z = z]. Because η̂ is root-n

consistent by Theorem 3.1 above, it will have no effect on the asymptotic distribution of ĥ(z):

only the nonparametric estimation of E[X|Z = z] and E[Y |Z = z] will matter. Under standard

regularity conditions, ĥ(z) will be asymptotically normal (with nonparametric rate of convergence)

by the joint asymptotic normality of m̂(z) and Ê[Y |Z = z] and the delta method.

Note that estimation based on Theorem 2.4 can be done in a similar way as the polynomial case

above. Specifically, E[Xk|Z] is estimated using a standard nonparametric estimator and β is then

estimated by regressing Ĉov(X, Y |Z) on R̂(Z):

β̂ = Ê[R̂(Z)R̂(Z)′−1]Ê[R̂(Z)Ĉov(X, Y |Z)].

Then (α01, . . . , αKK), (E[U2], . . . , E[UK+1]), and (E[X∗|Z], . . . , E[X∗K |Z]) are estimated by replac-

ing β with β̂. Finally, we can estimate h(Z) by ĥ(Z) = Ê[Y |Z]−
∑J

j=0 Z
j
∑K

k=1 α̂jkÊ[X∗k|Z].

4 Monte Carlo Simulations

In this section, we explore the finite sample properties of our measurement error-corrected estimators

developed above. Our simulation designs are chosen to illustrate the stability of the estimator for

different amounts of measurement error.

Data {Yi, Xi, Zi}ni=1 are generated from one of the following two model designs:

Y = α1X
∗ + α2X

∗2 + ln(|Z|) + ε, X∗ = Z + V, X = X∗ + U (Model 1)

Y = α1X
∗ + ln(|Z|) + ε, X∗ = Z + ZV, X = X∗ + U (Model 2)

where α1 = α2 = 1 and V ∼ N (0, 1), ε ∼ N (0, 1), Z ∼ N (0, 2) and U ∼ N (0, σ2
U), are independent.

The various choices of σ2
U ∈ {0, 1/4, 1} allow us to consider different amounts of measurement error.

Model 1 is identified by Theorem 2.2 while Model 2, for which g(.) is linear, is identified because

of the heteroscedasticity by Proposition 2.2 or Theorems 2.4. We consider 100 simulations with

sample size n ∈ {500, 1000, 2000}.

Even though we have parameterized g as a polynomial, for estimation we do not assume that

the h (Z) function (given by ln(|Z|) in the simulations) is known or parameterized, and therefore

the regression is not parametrically specified. If σ2
U and hence the measurement errors were zero,

then the model would be equivalent to a partially linear specification. We therefore compare our

estimator to the partially linear model estimator of Robinson (1988).
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Table 1 compares biases, standard deviations (SD) and root mean squared errors (RMSE) in Model

1 and Model 2, respectively, using (a) Robinson’s (1988) estimator, which first nonparametrically

estimates conditional moments and then estimates α by regressing Y − Ê[Y |Z] on X− Ê[X|Z] and

(b) the measurement error-corrected estimator (MEC) we propose in Section 3.

Table 1: Performances of the measurement error corrected (MEC) and Robin-

son’s estimators with V ∼ N (0, 1)

α1 α2

Model Estimator σ2
U bias SD RMSE bias SD RMSE

Model 1 MEC 0 -0.019 0.102 0.103 0.009 0.069 0.069

1/4 -0.017 0.115 0.116 -0.015 0.065 0.066

1 -0.028 0.132 0.132 0.001 0.072 0.072

Robinson’s 0 0.004 0.032 0.033 0.002 0.012 0.012

1/4 -0.201 0.098 0.223 -0.200 0.033 0.203

1 -0.492 0.113 0.505 -0.505 0.038 0.506

Model 2 MEC 0 -0.020 0.043 0.047

1/4 -0.003 0.052 0.052 —

1 0.005 0.057 0.057

Robinson’s 0 0.015 0.033 0.036

1/4 -0.197 0.028 0.199 —

1 -0.495 0.026 0.496

Notes: results from 100 simulations of sample size 1, 000.

The MEC estimator for Model 1 nonparametrically estimates the conditional moments Ĉov(X, Y |Z),

Ĉov(X − E[X|Z]2, Y |Z) and Ĉov(X − E[X|Z]3, Y |Z), regresses these estimated covariances on

Ê[X|Z] and an intercept to obtain β̂1, β̂2, β̂3 and finally uses the minimum distance estimator to

estimate α1 and α2. The quadratic function g in Model 1 is exactly identified because the number

of unknowns is exactly equal to the number of equations (dim(τ2, τ3, α1, α2, ν2, ν3, ν4, ν5) = 8 =

3K + 2 = dim(θ0)), so we have closed-form solutions for the parameters that make the minimum

distance exactly zero. Thus, the minimum distance estimator is in this case equivalent to using

sample analogs of the formulas for the parameters in Equation (24) and the paragraph that follows

it. For example α̂1 = β̂11− α̂2ν̂3/ν2 and α̂2 = β̂12/ν̂2. The MEC estimator for Model 2 nonparamet-

rically estimates the conditional moment Ĉov(X, Y |Z), regresses it on (Ê[X|Z])2, Ê[X2|Z] and an

intercept to obtain β̂. Then, by Equation (28) and the paragraph that follows it, we use α̂1 = β̂1.

Two observations can be made. First, the MEC estimators are quite insensitive to the amount of

measurement error, with very little increase of their RMSE as σ2
U grows. Second, Robinson’s (1988)

estimator has the smallest RMSE when there is no measurement error but large RMSE even with

small amounts of measurement error. For example, the average of the estimates using Robinson
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(1988) in Model 1 with σ2
U = 1/4, which represents about 6% of the total variance of X, is over 2

standard deviations away from α1 and 6 standard deviations away from α2.

Table 2 shows the biases, SDs and RMSEs of the MEC estimators in Models 1 and 2 respectively

with σ2
U = 1 and sample sizes 500, 1, 000 and 2, 000. Even when n = 500, the MEC estimators have

small biases and the standard deviations decline with sample size.

Table 2: Performances of the MEC estimator as a function of n

α1 α2

Model n bias SD RMSE bias SD RMSE

Model 1 500 -0.027 0.196 0.197 -0.016 0.109 0.109

1, 000 -0.018 0.132 0.132 0.001 0.072 0.072

2, 000 0.013 0.093 0.093 0.015 0.044 0.046

Model 2 500 0.014 0.079 0.079

1, 000 -0.003 0.067 0.067 —

2, 000 -0.004 0.054 0.054

Notes: results from 100 simulations.

To test the robustness of the results to fat-tailed, bimodal or discontinuous densities we conducted

Monte-Carlo simulations where the measurement error had a t, bimodal or uniform distribution.

We found that although fat tails have a slight adverse affect on all the estimators the results are

qualitatively unchanged. Specifically, the MEC estimators had relatively small RMSEs and were

almost the same for all choices of σ2
U . Robinson’s estimator had the lowest RMSE when there was

no measurement error but high RMSEs with even small amounts of measurement error. We refer

to Appendix D for tables with these additional simulations.

5 Conclusions

Observing only Y , X, and Z, we have provided conditions for point identification of the models

Y = g (X∗) + h (Z) + ε and Y =
∑K

j=0

∑K
k=1 αjkZ

jX∗k + h (Z) + ε, where g and h are unknown

functions, and X is a mismeasured version of X∗. Unlike previous results in the literature that

identify measurement error models without exclusion restrictions or other outside information, we

place no assumptions on ε other than having conditional mean zero.

Measurement error is a common source of endogeneity in economic models, and two of the classic

ways to obtain identification in structural econometric models is either by exclusion restrictions

or by imposing parametric functional forms. This paper’s results can be interpreted as a middle

ground between these cases. The potential instrument Z is not excluded, and can affect the outcome
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through the unknown function h, but the model either rules out interactions between X∗ and Z,

or only allows parametric (polynomial) interactions. These types of restrictions on interaction

terms are much weaker than imposing exclusion restrictions, but as we show, still suffice for model

identification.

Our identification proofs are constructive, and so can be used to form estimators. In the polynomial

case, we have provided a two-step estimator that consists only of linear ordinary least squares to

obtain reduced form parameters, followed by a minimum distance estimator. No numerical opti-

mization is required for this estimator because we have a closed-form expression for the structural

model in terms of these reduced form parameters. This closed form can be used to obtain a con-

sistent estimator. Then a one-step estimator, as in van der Vaart (2000, Section 5.7), based on the

minimum distance program in Equation (15), can be applied for efficiency.

Estimation based on our identification constructions in the nonparametric g case is more challeng-

ing. A possible route, detailed in Appendix C, is to consider plug-in estimators. While the statistical

properties of such estimators may be hard to establish, they are also computationally tractable. Fk

are tempered distributions but the estimators F̂k are proper functions, so they can be handled more

easily. Also, Fourier transforms and their inverses can be computed numerically at low computa-

tion cost using Fast Fourier Transforms. Further, the nonparametric g case does not require any

numerical searches or optimization procedures (apart from bandwidth selection). Still, one might

want to consider alternative estimators such as sieve maximum likelihood for the nonparametric

g case, or to provide estimators that are the same in both polynomial and non-polynomial cases.

Analysis of such alternative estimators is left for future research.

One general application of our results would be to test instrument validity, i.e., testing whether the

standard exclusion assumption for identification holds. This could be done by estimating h (Z) and

testing whether this estimated function is identically zero. Our model also nests standard linear

and partially linear models, and so could be applied in some of those contexts as well.
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A Proofs

A.1 Definitions related to the theory of distributions

We recall here some definitions related to the theory of distributions (see, e.g., Schwartz, 1973). The

Schwartz space S is the subspace of C∞ functions s such that for any (k, j) ∈ N2, limx→±∞ |x|js(k)(x) =

0. Tempered distributions are then linear forms defined on S. We say that f in S ′, the space of

tempered distributions, is zero on an open set O if for any φ ∈ S with support included in O,

f(φ) = 0. Then the support of f is the complement of the largest open set on which f is zero. For

any f ∈ S ′, its Fourier transform is the unique F ∈ S ′ satisfying, for any φ ∈ S, F (φ) = f(F(φ)),

where F(φ) =
∫
R exp(itu)φ(u)du denotes the Fourier transform of φ, seen as a function in L1(R).

When f is a function bounded by a polynomial, the linear form f̃ : s 7→
∫
f(u)s(u)du defined on S

is a tempered distribution. In the absence of ambiguity, we assimilate f with f̃ hereafter.

A.2 Proof of Theorem 2.1

We proceed in two main steps. First, we show that Equations (6), (7) and (8) hold. Then we show

that g and h are identified from these equations.

1. Equations (6), (7) and (8) hold.

We only prove that Equation (6) holds, as the exact same reasoning applies to Equations (7) and

(8). We use a similar approach as Mattner (1992) in the beginning of the proof of his Theorem

1.3. We check in particular that the conditions of his Lemma 2.1 apply. For that purpose, let

gn = g × 1[−n,n] and f be the linear form defined by f(φ) = E[φ(−V )V ]. Mattner’s h function is

q1 in our context. First, because g is bounded by a polynomial, it is tempered. Second, because

E[|V |] <∞, the total variation measure associated with f is finite, which implies that f is tempered

(see Schwartz, 1973, Théorème VII p. 242). Third, by assumption, there exists C > 0, k ≥ 1 such

that for all x, |g(x)| ≤ C(1 + |x|k). Then the inequality (x+ y)k ≤ 2k−1(xk + yk) yields

|q1(m)| ≤ E[|V ||g(m+ V )|] ≤ C
[
E[|V |] + 2k−1(E[|V |k+1] + E[|V |]mk)

]
, (16)

with E[|V |k+1] < ∞ by Assumption 2.3(ii). Thus q1 is bounded by a polynomial and as such,

is tempered. Fourth, because gn is a tempered distribution with compact support, it belongs to

the space of quickly decreasing distributions O′C (see Schwartz, 1973, p. 244). Reasoning exactly

as in D’Haultfœuille (2011, pp. 469-470), we also have gn → g in S ′. Finally, let us show that

q1n = f ? gn → q1 in S ′. Let Φ be any bounded set in S, the space of rapidly decreasing functions.

There exists (see Schwartz, 1973, p. 235) a continuous function b with b(x) = o(|x|−j) as |x| → ∞
and for every j, such that |φ(x)| ≤ b(x) for every x ∈ R and every φ ∈ Φ. Then (16) implies that
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b × q1 is integrable. The same inequality (16) applies to q1n, implying that b × (q1n − q1) is also

integrable. Further, by dominated convergence,

sup
φ∈Φ

∣∣∣∣∫ φ(m)(q1n(m)− q1(m))dm

∣∣∣∣ ≤ ∫ ∫ b(m)1c[−n,n](m− v)|vg(m− v)|dmdP−V (v) −→ 0,

where P−V denotes the probability measure of −V . Hence, all conditions of Mattner’s Lemma 2.1

are fulfilled. As a result, for any open set U ⊂ R such that F(f), the Fourier transform of f , is

infinitely differentiable, we have

F(F1|U) = F(g|U)×F(f|U),

where q|U denotes the restriction of the distribution q to U . Given the definition of f , its Fourier

transform satisfies F(f)(t) = E[exp(−itV )V ]. By Assumption 2.3(iii), F(f) is analytic on the strip

{z ∈ C : |Im(z)| < β} and therefore infinitely differentiable on R. Thus, we can choose U = R.

Moreover, by dominated convergence, F(f) = iΨ′−V . As a result, Equation (6) holds.

2. g and h are identified from Equations (6), (7) and (8).

To show the identification of g and h, we prove first that Equations(6), (7) and (8) admit a unique

solution in Ψ−V and F(g), up to a parameter. By taking the inverse Fourier transform of F(g) and

using the normalization g(x∗0) = 0, we then recover g, and finally h. We decompose the proof into

several substeps.

(a) The equation λF(q1) = 0 for λ meromorphic admits a unique solution, λ = 0.

Recall that a meromorphic function is the ratio between two analytic functions. We use a similar

reasoning as Zinde-Walsh (2014, p. 1224). Let us reason by contradiction and suppose that there

exists a nonzero meromorphic function λ such that λF(q1) = 0. Similarly to analytic functions,

non-zero meromorphic functions have isolated zeros (see, e.g., Rudin, 1987, p. 209) and thus λ does

not vanish on a bounded open set O ⊂ Support(F(g))\{0}. By Assumption 2.3(iv), Ψ′−V does not

vanish on O either. Hence, for any φ ∈ S with support included in O, φ/(λΨ′−V ) belongs to S and

has a support included in O. Further, by Equation (6),

F(g)(φ) = λ×
[
F(g)×Ψ′−V

]
(φ/λΨ′−V ) = (λF(q1))(φ/λΨ′−V ) = 0.

This implies that F(g) is zero on O, a contradiction. Hence, λ = 0.

(b) Ψ−V is identified.

From Equations (6), (7) and (8) we get λ0F(q1) + iF(q2) = 0 and µ0F(q1) + iF(q3) = 0, with

λ0 =
Ψ′′−V + ν2Ψ−V

Ψ′−V
, (17)

µ0 =
iΨ′′′−V + ν3Ψ−V

Ψ′−V
− 3i(m2 − ν2). (18)
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Because E[exp(|V |β)] < ∞, Ψ−V is analytical on the strip {z ∈ C : |Im(z)| < β}. Thus, the

functions λ0 and µ0 defined by Equations (17) and (18) respectively are meromorphic on that strip,

as ratios of analytic functions. By step (a), the equations λF(q1)+iF(q2) = 0 and µF(q1)+iF(q3) =

0 in λ and µ respectively and restricted to meromorphic functions admit unique solutions λ0 and

µ0. As a result, λ0 and µ0 are identified. Then some algebra shows that[
λ0(t)2 + λ′0(t) + iµ0(t)− 3m2 + 2ν2

]
Ψ′−V (t)− [λ0(t)ν2 + iν3] Ψ−V (t) = 0. (19)

Now, suppose that Ψ−V (t) = 0 for some t > 0. Then, because limt→+∞Ψ−V (t) = 0, we would

have, by Rolle’s theorem, Ψ′−V (t′) = 0 for some t′ > t, a contradiction by Assumption 2.3(iv). The

same argument for t < 0 and Ψ−V (0) = 1 then implies that Ψ−V does not vanish on the real line.

Further, because λ2
0 + λ′0 + iµ0 − 3m2 + 2ν2 is meromorphic, it has isolated zeros on the real line.

Let Z denote this set of zeros. Equation (19) then implies that for all t 6∈ Z,

Ψ′−V (t)

Ψ−V (t)
=

λ0(t)ν2 + iν3

λ0(t)2 + λ′0(t) + iµ0(t)− 3m2 + 2ν2

. (20)

Thus, Ψ′−V /Ψ−V is identified on R\Z and, by continuity, on the whole real line. Next, by L’Hôpital’s

rule, a Taylor expansion of Ψ′−V (t)/Ψ−V (t) around 0 and Ψ−V (0) = 1 and Ψ′′−V (0) = −ν2 6= 0, we

obtain

λ0(0) = lim
t→0

λ0(t) = lim
t→0

Ψ′′−V (t) + ν2Ψ−V (t)

Ψ′−V (t)
= lim

t→0

Ψ′′′−V (t) + ν2Ψ′−V (t)

Ψ′′−V (t)

=
Ψ′′′−V (0) + ν2Ψ′−V (0)

Ψ′′−V (0)
= −iν3

ν2

, (21)

Ψ′−V (t)

Ψ−V (t)
=

Ψ′−V (0)

Ψ−V (0)
+

(
Ψ′′−V (0)Ψ−V (0)−Ψ′2−V (0)

(Ψ−V (0))2

)
t+ o(t) = −ν2t+ o(t). (22)

Substituting (21) and (22) into (20) and letting t→ 0, we obtain

ν2 =
1

2
(3m2 − (λ0(0))2 − 2λ′0(0)− iµ0(0)). (23)

This implies that ν2 and ν3 = iν2λ0(0) are identified. In turn Ψ−V is identified as the unique solution

of the differential equation (20) satisfying Ψ−V (0) = 1 and Ψ′−V (0) = 0.

(c) g and h are identified.

By Assumption 2.3(iv), Ψ′−V vanishes only at 0. Moreover, Ψ′′−V (0) = −ν2 6= 0. Then, any other

solution F̃g of (6) satisfies F̃g − F(g) = cδ0 for some real c. Because the Fourier transform is an

automorphism on the space of tempered distributions, any g̃ whose Fourier transform F̃g satisfies (6)

is such that g̃ = g + c. The normalization g(x∗0) = 0 then implies that g̃ = g. Hence g is identified.

Finally, because g and the distribution of V are identified, so is E[g(X∗)|Z = z] = E[g(m(z) + V )].

Hence h(Z) = E[Y − g(X∗)|Z] is also identified.
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A.3 Proof of Theorem 2.2.

Let g(x) =
∑K

k=0 αkx
k with αK 6= 0 and νk = E[V k] for k ≥ 0. Note first that we just have to

identify K and (α1, . . . , αK), since α0 is then identified by the normalization g(x∗0) = 0. First,

Equation (9) shows that q1 is a polynomial of order at most K − 1. The coefficient corresponding

to mK−1 is αKν2 6= 0, so its degree is actually equal to K − 1. Thus K is identified. Equation (9)

also shows that for j ∈ {0, .., K − 1}, the quantities

β1j+1 =
K∑

k=j+1

(
k

j

)
αkνk−j+1

are identified. Next Equations (10) and (11) identify, for j ∈ {0, . . . , K − 1}, the quantities

β2j+1 =
K∑

k=j+1

(
k

j

)
αk(νk−j+2 − ν2νk−j),

β3j+1 =
K∑

k=j+1

(
k

j

)
αk(νk−j+3 + 3(m2 − ν2)νk−j+1 − ν3νk−j).

We now show that this information allows us to identify (α1, . . . , αK , ν2, . . . , νK+3). For that purpose,

let us first show that ν2 is identified. From above, we identify β1K = KαKν2, β1K−1 = (K −
1)αK−1ν2 + K(K − 1)αKν3/2, β2K = KαKν3, β2K−1 = (K − 1)αK−1ν3 + K(K − 1)αK(ν4 − ν2

2)/2

and β3K = KαK(ν4 + 3(m2 − ν2)ν2). Note also that β1K 6= 0. Then, after some tedious but

straightforward algebra, we obtain

ν2 =
3m2β1K − β3K + 2β2K−1

K−1
− 2β1K−1β2K

(K−1)β1K
+

β2
2K

β1K

2β1K

, (24)

which ensures that ν2 is identified.

Now, let us prove that if we know αk+1, . . . , αK and ν2, . . . , νK−k+2, with 1 ≤ k ≤ K (in the case

k = K, this amounts to supposing that we only know ν2), then we identify αk and νK−k+3. Taking

j = k−1, we know
∑K

`=k

(
`

k−1

)
α`ν`−k+2. If we know αk+1, . . . , αK and ν2, . . . , νK−k+2, we know each

term of this sum except the first, that is to say αkν2. Hence, we identify αk. Similarly, we know∑K
`=k

(
`

k−1

)
α`(ν`−k+3 − ν2ν`−k+1). Each term of this sum is known except the last, that is to say

αK(νK−k+3 − ν2νK−k+1). This implies that νK−k+3 is identified.

By induction, this shows that α1, . . . , αK , ν2, . . . , νK+3 are identified and hence g is identified. In

fact, there are 3K equations and only 2K + 2 unknowns so, in general the model is overidentified.

This is not surprising because we have not used β31, . . . , β3K−1 here.

Finally,

E[g(X∗)|Z = z] =
K∑
k=0

αkE
[
(m(z) + V )k

]
,

and the right-hand side is identified by what precedes. Hence, h(Z) = E[Y |Z]−E[g(X∗)|Z] is also

identified.
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A.4 Proof of Proposition 2.1.

First suppose that g is a polynomial, with g(x) =
∑K

k=0 αkx
k for some K > 1. Then Assumption

2.4 holds, and Equation (9) implies that q1 is a polynomial of order at most K − 1.

Let us show conversely, that if q1 is a polynomial, then g is a polynomial. We reason by contradiction

by supposing that Assumption 2.3 holds. Because q1 is a polynomial, its Fourier transform satisfies

F(q1) =
∑K

k=0 akδ
(k)
0 , where δ

(k)
0 denotes the k-th derivative of the Dirac distribution at 0. Hence,

the support of F(q1) is zero. Let O denote a bounded open set that does not include 0. Let φ ∈ S
with support included in O. By Assumption 2.3(iv), Ψ′−V does not vanish on O. Because it is

continuous, 1/Ψ′−V is bounded and φ/Ψ′−V ∈ S with support included in O. Then, by Equation

(6),

0 = F(q1)(φ/Ψ′−V ) =
[
F(g)×Ψ′−V

]
(φ/Ψ′−V ) = F(g)(φ),

and F(g) is zero on O. Because the support of a distribution is the complement of the union on

all open sets where the distribution is zero, the support of F(g) is then {0}. This contradicts the

support condition in Assumption 2.3(i), which concludes the proof.

A.5 Proof of Lemma 2.1.

We prove the lemma by exhibiting a specific data generating process where we can construct g̃ 6= g

that is observationally equivalent to g.

Let ε, (U1, V ), U2 and Z be mutually independent random variables with E[ε] = E[U1] = E[U2] =

E[V ] = 0. Let (U1, V ) satisfy E[V |U1 + V ] = ρ(U1 + V ) with ρ 6= 1. This is the case for instance if

(U1, V ) is normal with Cov(U1, V ) 6= −Var(U1). Then let U = U1 + U2, X∗ = m(Z) + V for some

function m taking at least two elements and g(x) = α(x − x∗0) with α 6= 0. h is left unspecified.

Finally, define {
Y = g(X∗) + h(Z) + ε,

X = X∗ + U.

By construction, Equation (2) and Assumptions 2.1 and 2.2 are satisfied, g is linear, E[|V |] < ∞
and m(Z) contains at least two elements.

Now, we show that this model is observationally equivalent to one with ε̃ = ε+α(1−ρ)V −αρU1, Ũ =

U2, Ṽ = V +U1, X̃∗ = X∗+U1 = m(Z)+Ṽ , g̃(x) = αρ(x−x∗0) and h̃(z) = h(z)+α(1−ρ)(m(z)−x∗0).

For that purpose, we check that Equation (2) and Assumptions 2.1 and 2.2 are satisfied with these

new objects. This is sufficient to show observational equivalence because we already have that g̃ is

linear, E[|Ṽ |] <∞ and m(Z) contains at least two elements.
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First, by construction, {
Y = g̃(X̃∗) + h̃(Z) + ε̃,

X = X̃∗ + Ũ .

Second, mutual independence between ε, (U1, V ), U2 and (X∗, Z) and E[V |U1 + V ] = ρ(U1 + V )

imply that

E[ε̃|X̃∗, Z, Ũ ] = E[ε|X̃∗, Z, Ũ ] + α(1− ρ)E[V |X̃∗, Z, Ũ ]− αρE[U1|X̃∗, Z, Ũ ]

= α(1− ρ)E[V |m(Z) + V + U1, Z]− αρ(E[m(Z) + U1 + V − (V +m(Z))|m(Z) + U1 + V,Z])

= α(1− ρ)ρ(U1 + V )− αρ(1− ρ)(U1 + V )

= 0.

Moreover, E[Ũk|X∗, Z] = E[Uk
2 ]. Thus, Assumption 2.1 is also satisfied. Finally, X̃∗ = m(Z) + Ṽ

and Ṽ is independent of Z, with E[Ṽ ] = 0. Hence, Assumption 2.2 is satisfied, which implies that

g̃ 6= g is observationally equivalent to g.

A.6 Proof of Theorem 2.3

Using Assumption 2.5 and X −m(Z) = σ(Z)V + U , we obtain

ΨX−m(Z)|Z(t|z) = ΨV (tσ(z))ΨU(t),
∂ΨX−m(Z)|Z

∂z
(t|z)

ΨX−m(Z)|Z(t|z)
= tσ′(z)

Ψ′V (tσ(z))

ΨV (tσ(z))
.

Let

r(t) =

∂ΨX−m(Z)|Z
∂z

(t|z0)

2σ(z0)σ′(z0)tΨX−m(Z)|Z(t|z0)
.

The function 2σ(z0)σ′(z0) = ∂Var(X|Z=z0)
∂z0

is identified, so r(t) is identified as well. Moreover,

Ψ′V (t) = 2σ(z0)r

(
t

σ(z0)

)
ΨV (t),

ΨV (t) = exp

(
2σ(z0)

∫ t

0

r

(
u

σ(z0)

)
du

)
, (25)

σ2
U = Var(X − m(Z)|Z = z0) − σ2(z0), σ2(z) = Var(X − m(Z)|Z = z) − Var(X − m(Z)|Z =

z0) + σ2(z0) and ΨU(t) =
ΨX−m(Z)|Z(t|z0)

ΨV (σ(z0)t)
are all identified up to σ0 = σ(z0), the value of the function

σ(Z) at one point Z = z0.

Next we identify g, up to the unknown σ0, using the equation

E [Y exp(it(X −m(Z)))|Z = z0] = E [g(m(z0) + σ0V ) exp(itσ0V )] ΨU(t),

where the equality follows by Assumptions 2.5(i) and 2.5(ii). Hence,

F [g(m(z0) + .)× fσ0V (.)] (t) =
E [Y exp(it(X −m(Z)))|Z = z0]

ΨU(t)
,
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where fσ0V denotes the density of σ0V . This implies in turn that

g(m(z0) + x) =
1

fσ0V (x)
F−1

(
E [Y exp(i(X −m(Z))(.))|Z = z0]

ΨU(.)

)
(x), (26)

where F−1 denotes the inverse Fourier transform. All terms on the right-hand side are either

identified or depend on σ0, so g is identified up to the scalar constant σ0.

To identify σ0, we use

Cov(Y,X|Z = z) = E [g(m(z) + σ(z)V )σ(z)V ] . (27)

The left-hand side is identified, while the right-hand side consists only of functions that are identified

up to σ0. By Assumption 2.8, Equation (27) identifies σ0. This implies that g, σ(.) and the

distribution of V are identified. Finally, h(z) is identified by

h(z) = E[Y |Z = z]− E [g(m(z) + σ(z)V )] .

A.7 Proof of Proposition 2.2

By assumption, V ∼ N (0, 1) and g(x∗) = α+ βx∗, β 6= 0. For simplicity, we consider here the case

where α = 0. The case α 6= 0 is similar but more cumbersome. We first compute Ψσ
U and Ψσ

V in

this context. Consider the function r(.) defined in the proof of Theorem 2.3. By this proof,

r(t/σ(z0)) =
Ψ′V (t)

2σ(z0)ΨV (t)
.

Hence, r(u) = −u/2 here. By (25), Ψσ
V (t) = exp(−t2/2). In other words, the distribution of V is

identified in this case, as it does not depend on σ(z0). Then

Ψσ
U(t) = exp

(
−1

2

(
Var(X|Z = z0)− σ2

)
t2
)
.

Next, we compute gσ using Equation (26). First,

E [Y exp(it(X −m(Z)))|Z = z0] = βE[exp(itU)] {m(z0)E[exp(itσ(z0)V )] + σ(z0)E[V exp(itσ(z0)V )]}

= β exp

(
−1

2
Var(X|Z = z0)t2

)[
m(z0) + iσ(z0)2t

]
.

Second,
E [Y exp(it(X −m(Z)))|Z = z0]

Ψσ
U(t)

= β exp

(
−1

2
σ2t2

)[
m(z0) + iσ(z0)2t

]
.

Third, recall that exp
(
−1

2
σ2t2

)
is the Fourier transform of the density of aN (0, σ2) variable. Hence,

F−1

[
exp

(
−1

2
σ2t2

)]
(x) =

1

σ
φ
(x
σ

)
,
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where φ is the density of a standard normal variable. Using the fact that F−1(q) = F(q ◦ s)/2π,

with s(x) = −x, we also obtain, after some algebra,

F−1

[
t exp

(
−1

2
σ2t2

)]
(x) = − ix

σ3
φ
(x
σ

)
.

Combining the previous equations with Equation (26) yields

gσ(m(z0) + x) =
σ

fV
(
x
σ

) {β
σ
φ
(x
σ

)[
m(z0) +

σ(z0)2

σ2
x

]}
= β

[
m(z0) +

σ(z0)2

σ2
x

]
.

Finally, let us consider the mapping σ0 7→
[
z 7→ σσ0(z)

∫
gσ0 (m(z) + σσ0(z)v) vfσ0V (v)dv

]
. By what

preceded,

σσ(z)

∫
gσ (m(z) + σσ(z)v) vfσV (v)dv = β

σ(z0)2

σ2
(σσ(z))2 = β

σ(z0)2

σ2

(
σ(z)2 + σ2 − σ(z0)2

)
.

This and the fact that σ(.) is not constant shows that the mapping

σ 7→
[
z 7→ σσ(z)

∫
gσ (m(z) + σσ(z)v) vfσV (v)dv

]
is injective. Hence, Assumption 2.8 holds and g and h are identified.

A.8 Proof of Theorem 2.4

We let hereafter µk = E(Uk) for k = 1 . . . K + 1. First, we find an expression for E[X∗k|Z] in

terms of moments of U and moments of X conditional on Z. By the binomial expansion Xk =

(X∗ + U)k = X∗k + UX∗k−1 +
∑k−2

l=0

(
k
l

)
Uk−lX∗l and using µ1 = 0,

E[X∗k|Z] = E[Xk|Z]−
k−2∑
l=0

(
k

l

)
µk−lE[X∗l|Z].

After recursively substituting in for E[X∗l|Z], for l = 1, . . . , k− 2, and tedious algebraic manipula-

tion,

E[X∗k|Z] = E[Xk|Z]−
3∑

k1=2

(
k

k − k1

)
µk1E[Xk−k1 |Z]

−
5∑

k1=4

(
k

k − k1

)µk1 − k1−2∑
k2=2

(
k1

k2

)
µk1−k2µk2

E[Xk−k1 |Z]

−
7∑

k1=6

(
k

k − k1

)µk1 − k1−2∑
k2=2

(
k1

k2

)
µk1−k2µk2 +

k1−2∑
k2=4

(
k1

k2

)
µk1−k2

k2−2∑
k3=2

(
k2

k3

)
µk2−k3µk3

E[Xk−k1 |Z]− · · ·

−
k∑

k1=2l

(
k

k − k1

)µk1 − k1−2∑
k2=2

(
k1

k2

)
µk1−k2µk2 +

k1−2∑
k2=4

(
k1

k2

)
µk1−k2

k2−2∑
k3=2

(
k2

k3

)
µk2−k3µk3 − · · ·

+ (−1)l−1
k1−2∑

k2=2l−2

(
k1

k2

)
µk1−k2 · · ·

kl−2−2∑
kl−1=4

(
kl−2

kl−1

)
µkl−2−kl−1

kl−1−2∑
kl=2

(
kl−1

kl

)
µkl−1−klµkl

E[Xk−k1 |Z],
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where l = bk
2
c and bxc denotes the largest integer less than or equal to k

2
.

Now adopt the notation αjk = 0 when K < k and substitute the above binomial expansion into
Cov(X, Y |Z) to get an expression that is a linear combination of moments ofX conditional on Z with
coefficients that are complicated (but known) linear combinations of α1, . . . , αK and µ1, . . . , µK+1,

Cov(X,Y |Z)

=

J∑
j=0

Zj
K∑

k=1

αjkCov(X,X∗k|Z)

=

J∑
j=0

Zj
K∑

k=1

αjk

(
E[XX∗k|Z]− E[X|Z]E[X∗k|Z]

)
=

J∑
j=0

Zj
K∑

k=1

αjk

(
E[X∗k+1|Z]− E[X|Z]E[X∗k|Z]

)
=

J∑
j=0

Zj
K∑

k=−1

[
αjk −

3∑
k1=2

αjk+k1

(
k + k1 + 1

k + 1

)
µk1
−

5∑
k1=4

αjk+k1

(
k + k1 + 1

k + 1

)(
µk1
−

k1−2∑
k2=2

(
k1
k2

)
µk1−k2

µk2

)
− · · ·

−
K∑

k1=2l

αjk+k1

(
k + k1 + 1

k + 1

)(
µk1
−

k1−2∑
k2=2

(
k1
k2

)
µk1−k2

µk2
+

k1−2∑
k2=4

(
k1
k2

)
µk1−k2

k2−2∑
k3=2

(
k2
k3

)
µk2−k3

µk3
− · · ·

(−1)
l−1

k1−1∑
k2=2l−2

(
k1
k2

)
µk1−k2

· · ·
kl−2−2∑
kl−1=4

(
kl−2
kl−1

)
µkl−2−kl−1

kl−1−2∑
kl=2

(
kl−1
kl

)
µkl−1−kl

µkl

E[Xk+1|Z]

−
J∑

j=0

Zj
K∑

k=0

[
αjk −

3∑
k1=2

αjk+k1

(
k + k1
k

)
µk1 −

5∑
k1=4

(
k + k1
k

)(
µk1 −

k1−2∑
k2=2

αjk+k1

(
k1
k2

)
µk1−k2µk2

)
− . . .

−
K∑

k1=2l

αjk+k1

(
k + k1
k

)(
µk1
−

k1−2∑
k2=2

(
k1
k2

)
µk1−k2

µk2
+

k1−2∑
k2=4

(
k1
k2

)
µk1−k2

k2−2∑
k3=2

(
k2
k3

)
µk2−k3

µk3
− · · ·

(−1)
l−1

k1−2∑
k2=2l−2

(
k1
k2

)
µk1−k2

· · ·
kl−2−2∑
kl−1=4

(
kl−2
kl−1

)
µkl−2−kl−1

kl−1−2∑
kl=2

(
kl−1
kl

)
µkl−1−kl

µkl

E[X|Z]E[Xk|Z]

=

J∑
j=0

ZjQ(Z)′βj = R(Z)′β,

where the fourth equality follows by substituting in the binomial expansion and

Q(Z) = (E[XK+1|Z],−E[XK |Z]E[X|Z], . . . , E[Xk+1|Z],−E[Xk|Z]E[X|Z], . . . , E[X2|Z],−E[X|Z]E[X|Z], E[X|Z], 1)′,

R(Z) = (Z0Q(Z)′, Z1Q(Z)′, . . . , ZJQ(Z)′)′, βj = (βj1, . . . , βj2K+2)′, β = (β′0, . . . , β
′
J)′.

By Assumption 2.10, E[R(Z)R(Z)′] is finite and nonsingular so β = E[R(Z)R(Z)′−1]E[R(Z)Cov(X, Y |Z)]

is identified. Further, µk and αjk are recursively identified by

αjK = βj1 = βj2, αjK−1 = βj3 = βj4

µ2 =
βj6 − βj5

αjK
((
K+1
K−1

)
−
(
K
K−2

)) , αjK−2 = βj5 + αjK

(
K + 1

K − 1

)
µ2,

...

µk =
βj2k+2 − βj2k+1 −

∑3
k1=2 αjK−k+k1

((
K−k+k1+1
K−k+1

)
−
(
K−k+k1
K−k

))
µk1 − . . .

αjK
((

K+1
K−k+1

)
−
(

K
K−k

)) ,
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αjK−k = βj2k+1 +
3∑

k1=2

αjK−k+k1

(
K − k + k1 + 1

K − k + 1

)
µk1 + . . . ,

...

µK−1 =
βj2K − βj2K−1 −

∑3
k1=2 αjk1+1

((
k1+2

2

)
−
(
k1+1

1

))
µk1 − . . .

αjK
((
K+1

2

)
−
(
K
1

)) ,

αj1 = βj2K−1 +
3∑

k1=2

αjk1+1

(
k1 + 2

2

)
µk1 + . . . ,

µK =
−βj2K+1 −

∑3
k1=2 αjk1

((
k1+1

1

)
−
(
k1
0

))
µk1 − . . .

KαjK

µK+1 =
−βj2K+2 −

∑3
k1=2 αjk1−1

(
k1
0

)
µk1 − . . .

αjK
.

This identifies g(X∗, Z). Identification of h(Z) follows by

h(Z) = E[Y |Z]−
J∑
j=0

Zj

K∑
k=1

αjkE[X∗k|Z],

where αjk and E[X∗k|Z] are identified above.

A.9 Proof of Example 2.1

When Y = h(Z) + α1X
∗ + ε, we have

Cov(X, Y |Z) = α1Cov(X,X∗|Z) = α1 (E[XX∗|Z]− E[X|Z]E[X∗|Z])

= α1E[X2|Z]− α1(E[X|Z])2 − α1µ2 (28)

By Assumption 2.1, Cov(X, Y |Z) = R(Z)′β where R(Z) = (E[X2|Z],−E[X|Z]E[X|Z], E[X|Z], 1)
′

and β = (α1, α1, 0,−α1µ2)′. By Assumption 2.10, β = E[R(Z)R(Z)′−1]E[R(Z)Cov(X, Y |Z)].

Hence, α1 = β1 = β2, µ1 = −β3, µ2 = −β4/α1 and h(Z) = E[Y |Z]− α1E[X|Z] are identified.

A.10 Proof of Theorem 3.1

The proof is divided into two main steps: we first show that θ̂ is asymptotically normal. Then we

prove asymptotic normality of η̂ and ĝ.

1. Asymptotic normality of θ̂

First, we note that θ̂ is a two-step GMM estimator, with a nonparametric first step. θ̂ satisfies

1

n

n∑
i=1

M(Ui, m̂; θ̂) = 0,
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with U = (X, Y, Z), M(U,m; θ) = (M1(U,m; θ), . . . ,M3K+2(U,m; θ))′ and

Mj(U,m; θ)

= (X −m(Z))j+1 −mj+1 if j ∈ {1, 2},

= m(Z)j−2
[
Y (X −m(Z))−

∑K−1
k=0 β1km(Z)k

]
if j ∈ {3, . . . ,K + 2},

= m(Z)j−(K+3)
[
Y
(

(X −m(Z))2 −m2

)
−
∑K−1

k=0 β2km(Z)k
]

if j ∈ {K + 3, . . . , 2K + 2},

= m(Z)j−(2K+3)
[
Y
(

(X −m(Z))3 −m3

)
−
∑K−1

k=0 β3km(Z)k
]

if j ∈ {2K + 3, . . . , 3K + 2}.

To prove the asymptotic normality of θ̂, we check the conditions of Theorem 6.1 of Newey (1994).

We first introduce some notation. Denote by m0(.) the true function E[X|Z = .]. Let ‖u‖ =

maxj=1,...,J |uj| for u = (u1, . . . , uJ)′ ∈ RJ and J ∈ N+. For any real function q that is d times

differentiable on Support(m0(Z)), let

|q|d = max
λ∈Nr:

∑r
k=1 λk≤d

sup
z∈Support(m0(Z))

∣∣∣∣ ∂λq(z)

∂zλ11 . . . ∂zλrr

∣∣∣∣ .
For any ξ > 0, define Sξ = {x ∈ R : ∃m ∈ Support(m0(Z)) : |x − m| < ξ} and ‖q‖ξ,∞ =

supx∈Sξ ‖q(x)‖, for any vector function q(.) defined on Sξ. Let M̃j(U, x, θ0) be defined as Mj(U,m, θ0)

except that the function m(Z) is replaced by the number x,

Mj(U, x; θ) = (X − x)j+1 −mj+1 if j ∈ {1, 2},

= xj−2
[
Y (X − x)−

∑K−1
k=0 β1kx

k
]

if j ∈ {3, . . . ,K + 2},

= xj−(K+3)
[
Y
(

(X − x)2 −m2

)
−
∑K−1

k=0 β2kx
k
]

if j ∈ {K + 3, . . . , 2K + 2},

= xj−(2K+3)
[
Y
(

(X − x)3 −m3

)
−
∑K−1

k=0 β3kx
k
]

if j ∈ {2K + 3, . . . , 3K + 2}.

To bound Mj(U,m, θ0), for all x ∈ Sξ, we use repeatedly the triangle inequality and that there

exists C0 > 0 such that for all θ ∈ Θ and all k ∈ {1, . . . , 3K+ 2}, |θk| ≤ C0 (because Θ is compact),

|M̃j(U, x; θ)| ≤ 2j
(
|X|j+1 +mj+1

)
+ C0 if j ∈ {1, 2},

≤ mj−2
[
|Y | (|X|+ |m|) + C0Km

K−1
]

if j ∈ {3, . . . ,K + 2},

≤ mj−(K+3)
[
|Y |
(
2|X|2 + 2|m|2 + C0

)
+ C0Km

K−1
]

if j ∈ {K + 3, . . . , 2K + 2},

≤ mj−(2K+3)
[
|Y |
(
4|X|3 + 4|m|3 + C0

)
+ C0Km

K−1
]

if j ∈ {2K + 3, . . . , 3K + 2},

where m = max
(

1, supx∈Sξ ‖x‖
)

. Further, because x 7→ M̃j(U, x; θ) is a polynomial, we obtain

similar inequalities for its derivatives. Hence, for ` ∈ {0, 1, 2}, there exist constants (C`1, C`2, C`3)

such that for all θ ∈ Θ,∥∥∥M̃ (`)(U, .; θ)
∥∥∥
ξ,∞
≤ b`(U) ≡

(
4|X|3 + 2|X|2 + |X|+ C`1

)
(C`2|Y |+ C`3) , (29)

where M̃ (`)(U, .; θ) denotes the derivative of order ` of M̃(U, .; θ).
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We now check that Conditions 5.4-5.6 and 6.1-6.6 of Newey (1994) are satisfied, so that we can

apply his Theorem 6.1. Instead of checking Condition 6.4(i), we verify his weaker Condition 5.1(i),

since 6.4(i) is only needed for the consistency of the asymptotic variance estimator.

First, θ 7→ M(U, θ,m0) is continuous. It is then bounded on the compact set Θ. Hence, Condition

5.4(i) holds. Moreover, for all m such that |m−m0|0 < ξ,

‖M(U,m, θ0)−M(U,m0, θ0)‖ ≤ sup
x∈Sξ

∣∣∣M̃ (1)
j (U, x, θ0)

∣∣∣ |m(Z)−m0(Z)|

≤ b1(U) |m−m0|0 ,

which implies that Condition 5.4(ii) holds.

Second, in our framework the weighting matrix of the GMM is the identity matrix. Further, suppose

that E[M(U,m0; θ)] = 0 for some θ = (m̃2, m̃3, β̃10, . . . , β̃3K−1)′. Then from the first two equations

m̃k = mk for k ∈ {2, 3}. Let Pm(Z) = (1,m(Z), . . . ,m(Z)K−1)′ and Hm(Z) = Pm(Z)Pm(Z)′.

E[M(U,m0; θ)] = 0 then implies that E[Hm0(Z)](β̃− β0) = 0. Thus, to prove that β̃ = β0, we have

to show that E[Hm0(Z)] is full rank, which is equivalent to

K−1∑
j=0

γjm0(Z)j = 0 almost surely =⇒ γ0 = . . . = γK−1 = 0. (30)

By Assumptions 3.2(iii) and (iv), m0 is differentiable and not constant on a Cartesian product of

intervals. Therefore, the support of m0(Z) contains an interval, which ensures that (30) holds.

Hence, β̃ = β0, and θ = θ0. Finally, Θ is compact. Thus Condition 5.5 holds.

Condition 5.6(i) follows by Assumption 3.2(i). θ 7→M(u,m; θ) is linear and therefore differentiable

for any (m,u), so (ii) holds as well. Now, let I2 be the 2 × 2 identity matrix, 0IJ the I × J zero

matrix, G1m = (Y Pm(Z), 0K1), G2m = (0K1, Y Pm(Z)). Then,

∂M(U,m; θ)

∂θ
= −


I2 02K 02K 02K

0K2 Hm(Z) 0KK 0KK

G1m 0KK Hm(Z) 0KK

G2m 0KK 0KK Hm(Z)

 .

Because this matrix is triangular and E[Hm0(Z)] is full rank as shown above,

G = E

[
∂M(U,m0; θ)

∂θ

∣∣∣∣
θ=θ0

]
(31)

is nonsingular and Condition 5.6(iii) holds. Next, by Equation (29),

E
[
‖M(U,m, θ0)‖2] ≤ E

[
b0(U)2

]
<∞,
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where the last equality holds by Assumption 3.2(ii). Thus, Condition 5.6(iv) holds. Condition

5.6(v), amounts to verifying Condition 5.4 on ∂Mj(U,m0; θ)/∂θ for all j ∈ {1, . . . , 3K + 2}. First,

because this function does not depend on θ, it satisfies Condition 5.4(i). Now, note that for all

i ∈ {1, . . . , 3K + 2}, ∂Mj(U,m; θ)/∂θi is either constant, equal to −m(Z)j
′

or equal to −Y m(Z)j
′

for some j′. Hence, for all m such that |m−m0|0 < ξ, there exists Cj such that∥∥∥∥∂Mj(U,m; θ)

∂θ
− ∂Mj(U,m0; θ)

∂θ

∥∥∥∥ ≤ Cj |m−m0|0 .

This ensures that ∂Mj(U,m; θ)/∂θ satisfies Condition 5.4(ii). Thus, Condition 5.6(v) holds.

Condition 6.1 holds since z 7→ Var(X|Z = z) = Var(U) + Var(V ) is bounded. Conditions 6.2 and

6.3 are satisfied here by Assumption 3.2(iv) and (v), as shown in Section 5 of Newey (1997).

We now check Condition 5.1(i), instead of Condition 6.4(i) as explained above. Define

D(U,m) = M̃ (1)(U,m0(Z); θ0)×m(Z). (32)

Then, by a second order Taylor expansion, we have, for all m such that |m−m0|0 < ξ,

‖M(U,m; θ0)−M(U,m0; θ0)−D(U,m; θ)‖ ≤ 1

2

∥∥∥M̃ (2)(U, .; θ0)
∥∥∥
ξ,∞
|m−m0|20 . (33)

So Condition 5.1(i) holds. Turning to Condition 6.4(ii), note that in our case, and using Newey’s

(1994) notation, d = 0, α = s/r (see (Newey, 1994), p. 1370) and b(U) = b0(U)/2, the latter in view

of (29) and (33). Then Assumption 3.2(ii) ensures that E[|b(U)|] <∞. Second, ζ0(Ln) ≤ C1Ln for

some constant C1 (see (Newey, 1994), p. 1371). Therefore, the two statements of Condition 6.4(ii)

hold because Ln

[√
Ln/n+ L

−s/r
n

]
= o(n−1/4) by Assumptions 3.2(v) and (vi).

We check Condition 6.5 with d = 1. Given Equations (29) and (32), we have

‖D(U,m; θ,m0)‖ ≤ b1(U) |m|0 ≤ b1(U) |m|1 .

Moreover, Assumption 3.2(ii) implies that E[b1(U)2] < ∞, and the first statement follows. The

second and third statement are satisfied by exactly the reasoning of Frölich (2007), p. 68, and the

conditions s > 3r and L7
n/n→ 0.

Finally, let δ(U) = M̃ (1)(U,m0(Z); θ0). Then Condition 6.6(i) holds by (32). Condition 6.6(ii)

holds by applying once more Frölich (2007), pp. 68-69, and because both m0 and δ are s times

differentiable.

Hence, we can apply the first part of Theorem 6.1 in Newey (1994), which implies that

√
n
(
θ̂ − θ0

)
d−→ N

(
0, G−1HG−1′) , (34)
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where G is defined in (31) and

H = V [M(U,m0; θ0) + δ(U)(X −m0(Z))] . (35)

Asymptotic normality of η̂ and ĝ(x)

We first show that η̂ is consistent. For that purpose, we check that the conditions of Theorem 2.1

of Newey and McFadden (1994) apply with, taking the same notation as Newey and McFadden,

Qn(η) = −(θ̂ − Π(η))′Wn(θ̂ − Π(η)) and Q0(η) = −(θ0 − Π(η))′W (θ0 − Π(η)). We have Q0(η) ≤ 0

and because W is nonsingular, Q0(η) = 0 if and only if θ0 = Π(η). We showed in the proof of

Theorem 2.2 that this implies that η = η0. Hence, Q0(.) is uniquely maximized at η0, and their

Condition 2.1(i) holds. By Assumption 3.2(i), H is compact so their Condition 2.1(ii) holds. Next,

Π(.) is continuous so Q0(.) is continuous as well, and their Condition 2.1(iii) holds. Finally,

Qn(η)−Q0(η) = θ′0(W −Wn)(θ0 − 2Π(η)) + [θ0 + θ̂ − 2Π(η)]′Wn(θ0 − θ̂) + Π(η)′(W −Wn)Π(η).

Hence, because θ̂ and Π(η) belong to a compact set by Assumption 3.2(i), θ̂ is consistent and

Wn
p−→ W , we obtain, by the triangular and Cauchy-Schwartz inequalities,

sup
η∈H
|Qn(η)−Q0(η)| p−→ 0,

and their Condition 2.1(iv) holds. Therefore, η̂ is consistent by Theorem 2.1 of Newey and McFadden

(1994).

Now, we check that the conditions of Theorem 3.2 of Newey and McFadden (1994) apply. First, by

Assumption 3.2(vi), Wn
p−→ W where W is positive definite and η̂ is consistent by the paragraph

above. Second by Assumption 3.2(i), η is in the interior of the compact set H, so their Condition

3.2(i) holds. Third, Π(.) is continuously differentiable so their Condition 3.2(ii) is satisfied as well.

Fourth, by Equation (34),

√
n
(
θ̂ − Π(η0)

)
d−→ N

(
0, G−1HG−1′) ,

so their Condition 3.2(iii) holds. Fifth, their Condition 3.2(iv) is automatically satisfied since Π(.)

is nonstochastic. Finally, J and W are full rank by Assumption 3.2(vii), therefore J ′WJ is full rank

as well. Then, by Theorem 3.2 of Newey and McFadden (1994),

√
n (η̂ − η0)

d−→ N
(
0, (J ′WJ)−1J ′WG−1HG−1′WJ(J ′WJ)−1

)
.

By standard results (see, e.g., Wooldridge, 2002, p. 424), the optimal weighting matrix is W ∗ =

[G−1HG−1′]
−1

. Finally, the asymptotic normality of η̂ implies that any linear combination of this

vector is also asymptotically normal, which in particular implies that ĝ(x) is asymptotically normal.
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B A polynomial restriction on g with multiplicative errors

We briefly consider the model with polynomial g and multiplicative errors,{
Y =

∑J
j=0

∑K
k=1 αjkZ

jX∗k + h (Z) + ε

X = X∗U
(36)

and assume αjk 6= 0 for all j and k. The following assumptions replace Assumptions 2.9 and 2.10

from the main text.

Assumption B.1. (i) E[ε|X∗, Z] = 0 and (ii) E[Uk|X∗, Z] = E[Uk] for k ∈ {1, 2, . . . , K} and

E[U ] = 1.

Assumption B.2. Define

Q(Z) =
(
−E[X|Z]E[X|Z], E[X2|Z],−E[X|Z]E[X2|Z], E[X3|Z], . . . ,−E[X|Z]E[XK |Z], E[XK+1|Z]

)′
R(Z) = (Z0Q(Z)′, Z1Q(Z)′, . . . , ZJQ(Z)′)′

R(Z) is finite and nonsingular.

Theorem B.1. Suppose Equation (36) and Assumptions B.1 and B.2 hold. Then g and h and the

moments E[U1], . . . , E[UK+1] are identified.

Proof: we let µk = E[Uk] for k = 1 . . . K + 1. First, we have

Cov(X, Y |Z) =
J∑
j=0

K∑
k=1

αjkZ
jCov(X,X∗k|Z)

=
J∑
j=0

K∑
k=1

αjkZ
j
(
E[XX∗k|Z]− E[X|Z]E[X∗k|Z]

)
=

J∑
j=0

K∑
k=1

αjk

(
ZjE[Xk+1|Z]

µk+1

− ZjE[X|Z]E[Xk|Z]

µk

)

=
J∑
j=0

ZjQ(Z)′βj = R(Z)′β,

where the third equality follows by E[X∗k|Z] = E[Xk|Z]
µk

, R(Z) is defined in Assumption B.2 and

βj2k−1 =
αjk
µk

, βj2k =
αjk
µk+1

, βj = (βj1, . . . , βjK), (j, k) ∈ {1, . . . , K}2,

β = (β′0, . . . , β
′
K)′.

By Assumption B.2, E[R(Z)R(Z)′] is finite and nonsingular. Thus,

β = E[R(Z)R(Z)′−1]E[R(Z)Cov(X, Y |Z)].

Then αj1 = βj1 and for k > 1, µk =
∏k−1

i=1 βj2i−1

/∏k−1
i=1 βj2i and αjk =

∏k
i=1 βj2i−1

/∏k−1
i=1 βj2i.

Further, h(Z) = E[Y |Z]−
∑J

j=0

∑K
k=1 αjkZ

jE[X∗k|Z] = E[Y |Z]−
∑J

j=0

∑K
k=1 βj2k−1Z

jE[Xk|Z].
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C Further discussion on inference

C.1 Non-polynomial case

In the non-polynomial case, identification is based on Equations (6)-(8) using Fourier transforms of

tempered distributions. An idea to develop nonparametric estimation is to consider nonparametric

estimators q̂k of qk, for k ∈ {1, 2, 3}, and then several plug-in estimators based on the same equalities

as those we use to prove identification. Specifically, we compute first F(q̂k) for k ∈ {1, 2, 3},
λ̂ = −iF(q̂2)/F(q̂1) and µ̂ = −iF(q̂3)/F(q̂1). Using Equations (20), (21) and (23), we then consider

ν̂2 =
1

2
(3m̂2 − (λ̂(0))2 − 2λ̂′(0)− iµ̂(0)),

ν̂3 = iν̂2λ̂(0),

Ψ̂−V (t) = exp

(∫ t

0

λ̂(s)ν̂2 + iν̂3

λ̂(s)2 + λ̂′(s) + iµ̂(s)− 3m̂2 + 2ν̂2

ds

)
.

We can then compute F(ĝ) using (6), and in turn ĝ. Finally, h can be estimated using h(Z) =

E[Y |Z] − E[g(m(z) + V )]. The second term involves the density of −V , which can be estimated

using f−V = F−1(Ψ−V ).

Let us now sketch how we could achieve consistency, following Zinde-Walsh (2014). Because we deal

with tempered distributions here, it is convenient to rely on the corresponding notion of convergence.

A sequence (Tn) of tempered distributions is said to converge to T ∈ S ′ (and we denote Tn ⇀ T ) if

for all ϕ ∈ S, Tn(ϕ)→ T (ϕ). Similarly, a sequence of random tempered distributions Tn converges

in probability to T ∈ S ′ (Tn
p
⇀ T ) if for all ϕ ∈ S, Tn(ϕ)

p−→ T (ϕ). Such a notion of convergence is

useful here because the Fourier transform preserves it, namely Tn ⇀ T implies that F(Tn) ⇀ F(T ) .

Convergence in probability of ĝ can then be achieved if (i) the estimators q̂k of qk satisfy q̂k
p
⇀ qk for

k ∈ {1, 2, 3} and (ii) we can prove that the problem is well-posed, namely qkn ⇀ qk for k ∈ {1, 2, 3}
implies that the corresponding gn satisfies gn ⇀ g. (i) can be obtained by using, e.g., a trimmed

kernel estimator of qk,

q̂k(m) = min(max(q̃k(m),−C(1 +m2)K), C(1 +m2)K),

where q̃k is the usual kernel estimator of qk and C and K are two tuning parameters. We refer

to Zinde-Walsh (2014) for a proof of (i) in such a context. (ii) is more challenging. It has been

established by Zinde-Walsh (2014, see Theorem 5) in a similar but simpler context. Note that

qkn ⇀ qk implies F(qkn) ⇀ F(qkn). Similarly, F(gn) ⇀ F(g) implies gn ⇀ g. But the intermediate

step establishing that F(qkn) ⇀ qkn implies F(gn) ⇀ F(g) is difficult, as it involves nonlinear

operations on the tempered distributions at hand. We leave this issue for future research.
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C.2 Testing the polynomial restriction

To distinguish between the polynomial and non-polynomial cases, note that under Assumptions

2.1, 2.2 and either Assumption 2.3 or 2.4, Proposition 2.1 ensures that g is a polynomial if and only

if E[Y (X −m(Z))|m(Z) = m] is a polynomial in m. A statistical test can be developed based on

this proposition. First, we estimate Q1 = Y (X −m(Z)) by Q̂1 = Y (X − m̂(Z)). Second, we test

whether the nonparametric regression of Q̂1 on m̂(Z) is a polynomial (of degree at most K, say)

or not. There are several such specification tests in the literature, see e.g., Zheng (1996). However,

one would need to take into account the fact that both the dependent and independent variables

are generated here. This is likely to modify the asymptotic distribution of the test statistic, so some

procedure like a bootstrap may be convenient for proper inference.

D Additional simulation results

We use the same models and data generating processes as in the simulations section but check the

robustness of the estimators to measurement error that follows a t distribution with 12 degrees of

freedom, a uniform distribution and a bimodal distribution. The tables below show results that are

qualitatively similar to those in the main section: the RMSEs for the MEC estimators are stable for

different amounts of measurement error while Robinson’s estimator has lowest RMSE when there

is no measurement error and quickly increases with small amounts of measurement error.

Table 3: Performances of MEC and Robinson’s estimators with V ∼ U [−2, 2]

α1 α2

Model Estimator σ2
U bias SD RMSE bias SD RMSE

Model 1 MEC 0 -0.020 0.098 0.100 0.006 0.035 0.035

1/4 -0.017 0.113 0.114 0.004 0.050 0.050

1 -0.013 0.141 0.141 0.015 0.067 0.068

Robinson’s 0 0.001 0.034 0.034 0.000 0.009 0.009

1/4 -0.155 0.081 0.175 -0.160 0.025 0.162

1 -0.435 0.101 0.446 -0.439 0.036 0.441

Model 2 MEC 0 0.004 0.041 0.041

1/4 -0.003 0.048 0.048 —

1 -0.004 0.059 0.059

Robinson’s 0 0.002 0.036 0.036

1/4 -0.156 0.034 0.160 —

1 -0.426 0.029 0.427

Notes: results from 100 simulations of sample size 1, 000.
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Table 4: Performances of the MEC and Robinson’s estimators with V ∼
1
2
N (−2, 1) + 1

2
N (2, 1)

α1 α2

Model Estimator σ2
U bias SD RMSE bias SD RMSE

Model 1 MEC 0 -0.001 0.085 0.085 -0.000 0.069 0.069

1/4 0.062 0.110 0.126 0.032 0.069 0.076

1 0.062 0.116 0.131 0.076 0.078 0.108

Robinson’s 0 0.001 0.018 0.018 0.000 0.004 0.004

1/4 -0.045 0.073 0.085 -0.052 0.023 0.057

1 -0.171 0.122 0.209 -0.181 0.040 0.186

Model 2 MEC 0 0.000 0.026 0.026

1/4 -0.003 0.043 0.043 —

1 0.001 0.045 0.045

Robinson’s 0 0.001 0.018 0.018

1/4 -0.047 0.019 0.051 —

1 -0.168 0.021 0.170

Notes: results from 100 simulations of sample size 1, 000.

Table 5: Performances of the MEC and Robinson’s estimators with V ∼ t(12)

α1 α2

Model Estimator σ2
U bias SD RMSE bias SD RMSE

Model 1 MEC 0 -0.026 0.129 0.130 -0.005 0.070 0.070

1/4 -0.025 0.134 0.136 0.000 0.082 0.082

1 -0.023 0.139 0.141 -0.009 0.078 0.078

Robinson’s 0 -0.001 0.037 0.037 0.001 0.011 0.011

1/4 -0.177 0.132 0.221 -0.169 0.041 0.174

1 -0.461 0.172 0.492 -0.451 0.053 0.454

Model 2 MEC 0 -0.001 0.052 0.052

1/4 -0.003 0.055 0.055 —

1 -0.004 0.069 0.069

Robinson’s 0 0.001 0.039 0.039

1/4 -0.169 0.041 0.173 —

1 -0.447 0.038 0.448

Notes: results from 100 simulations of sample size 1, 000.
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