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Introduction

Introduction

I Sample data are not sufficient to draw conclusions on the
whole population. This issue is similar to the general problem
of induction in science.

I Statistical theory has defined assumptions which allows to
draw such conclusions. But it has mainly focused on the issue
of the accuracy of point estimators. Point identification is
usually assumed from the beginning.

I Before recently, identification was indeed considered as a
binary event, the parameter of interest being either point
identified or not identified at all.

I But, sometimes, overly strong assumptions must be imposed
to point identify parameters of interest. Instead, we may get
partial identification under more credible conditions.
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Introduction

Introduction

I We first present important examples where partial
identification arises:

I missing data problems: nonresponse, interval data, treatment
effects...

I incomplete models: models which do not predict a unique
outcome for given “inputs”.

I We then consider some issues in inference on partially
identified parameters/models.
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Introduction

A formal definition

I Let us consider a statistical model (Ω,A, (Pθ)θ∈Θ), M a set of
probability measures such that Pθ ∈ M and define the function

ϕ : Θ → M

θ 7→ Pθ

I The minimal identification region of θ0 is R(θ0) = ϕ−1(Pθ0 ). It
represents the set of all parameters θ that can be rationalized by the
data. An identification region is any set R such that R(θ0) ⊂ R.

I If R(θ) = {θ} for all θ, the model is said to be identifiable.

I The minimal identification region of g(θ0) is R(g(θ0)) = {g(θ),
θ ∈ R(θ0)}. g(θ0) is point identified if R(g(θ0)) = {g(θ0)}.

I Suppose that g(θ0) ∈ R and we have an identification interval
R = [g , g ]. The upper bound g is sharp if g = sup R(g(θ0)).
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Introduction

A formal definition

I To establish point identification in a model where X ∼ Pθ, we often
prove that there exists q such that θ = q(PX ) (constructive proof).

I Consider for instance the model (Pθ)θ∈Θ = (N (µ, σ2))(µ,σ2)∈R×R+ .
Then µ and σ can be identified by µ = E (X ) and σ2 = V (X ).

I Now consider the model (N (µ1 + µ2, 1))(µ1,µ2)∈R2 . This model is
not point identified. The identification region for (µ1, µ2) is

R(µ1, µ2) = {(µ′1, µ′2) ∈ R2/µ′1 + µ′2 = µ1 + µ2}.

I On the other hand, g(µ1, µ2) = µ1 + µ2 is identified since for all
(µ′1, µ

′
2) ∈ R(µ1, µ2), we have µ′1 + µ′2 = µ1 + µ2.
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Missing data

Missing data: identification with the data alone

I We are interested in the distribution of a variable Y , but we face a
missing data problem. Letting D be the binary indicator of
response, we only observe D and Y when D = 1.

I A standard assumption is to ignore nonresponse by supposing that
Y ⊥⊥ D. In this case the distribution of Y , PY , is identified since
PY = PY |D=1.

I However, this assumption is restrictive. In a labor force survey, for
instance, it is likely that unemployment status is related to
nonresponse.

I Suppose that Y ∈ Y and let M be the set of probability measures on
Y. Without any assumption, we can still infer that PY belongs to

R(PY ) =
{

PY |D=1p + µ(1− p), µ ∈ M
}
,

with p = P(D = 1).
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Missing data

Missing data: identification with the data alone

I If we focus on a parameter g(PY ), the corresponding
identification region is

R(g(PY )) = {g(P), P ∈ R(PY )}.

I This set is abstract and can be rather difficult to characterize.
Consider for instance g(PY ) = V (Y ) , with Y ∈ [0, 1] and let
D denote the set of cdf on [0, 1]. Then the upper bound of
g(PY ) solves the functional problem:

max
F∈D

∫ [
y −

∫
ydF (y)

]2

dF (y) s.t. (F−pFY |D=1)/(1−p) ∈ D.
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Missing data

Missing data: identification with the data alone

I However, solutions are simple when Y ∈ R and for D−
parameters, i.e. parameters that respect (first order)
stochastic dominance:

F1(y) ≤ F2(y) ∀y ⇒ g(F1) ≥ g(F2).

I This includes E (h(Y )) for all h increasing, quantiles...
I For these parameters, we have, letting y = inf Y and

y = supY,

R(g(PY )) =
[
g
(

pPY |D=1 + (1− p)δy
)
, g
(

pPY |D=1 + (1− p)δy
)]
.
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Missing data

Missing data: identification with the data alone

I A simple example: suppose that we observe 10% of
unemployed people in a labor force survey with 15% of
nonresponse. Then without any assumption, the identification
region on unemployment rate is between 8, 5% (all
nonrespondents work) and 23, 5% (all nonrespondents are
unemployed).

I Another example: we observe the following distribution of
wages on a survey with 20% of nonresponse:

Mean D1 D2 Q1 D3 D4 D5

1,800 800 1,000 1,200 1,300 1,400 1,600

I What is the minimal identification region of the fourth decile
of the wages? Of the mean?
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Missing data

Incomplete data: identification with the data alone

I In some cases, rather than observing completely Y or not at
all, we have partial observation of it. A usual example is
interval data, for example on wages: we only observe
Y ∈ [Y ,Y ].

I Missing data is a particular case, with D = 1 when Y = Y ,
and D = 0 when Y = y and Y = y .

I Inference on D−parameters is easy in this case, since we have

FY ≤ FY ≤ FY .

In this case,

R(g(PY )) =
[
g
(
PY
)
, g
(

PY
)]
.
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Missing data

Missing data: identification with IV

I Usually, using the data alone does not provide much information on
Y . We can shrink bounds on parameters of interest using various
restrictions. Let Z be a variable which is always observed. Then
suppose

Y ⊥⊥ Z .

I Such an assumption is similar to that used in sample selection
models, where we use instruments which affect D but not Y .

I Under this assumption, we have, for all z ,

PY (A) = PY |Z=z(A)

= PY |Z=z,D=1(A)P(D = 1|Z = z) + PY |Z=z,D=0(A)P(D = 0|Z = z).

Thus, letting Z denote the support of Z ,

R(PY ) = ∩z∈Z

{
PY |Z=z,D=1P(D = 1|Z = z) + µP(D = 0|Z = z), µ ∈ M

}
.
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Missing data

Missing data: identification with IV

I If P(D = 1|Z = z) = 1 for some z , then PY is point identified.
More generally, the identification region shrinks as the effect of Z
on D increases.

I The set may also be empty. In this case, we reject the assumption
Y ⊥⊥ Z . This assumption is thus refutable.

I Example (continued): suppose that nonresponse is related to the
kind of interviewer (experimented, Z = 1, or not). For experimented
interviewer, we have 13% of nonresponse and an unemployment
rate of 8%, while for unexperimented the nonresponse rate is 17%
and the unemployement rate is 14%. Finally, P(Z = 1) = 0.5.

I Then the identification interval for the unemployment rate is
[7%; 20%] ∩ [11.6%; 28.6%] = [11.6%; 20%]. Without any
assumption it would be equal to [9.3%, 24.3%].
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Missing data

Missing data: identification with monotonicity

I Instead of using Y ⊥⊥ Z , we may suppose that Y is missing at
random, i.e., for covariates X ,

Y ⊥⊥ D|X .

I This assumption points identify the distribution of Y
conditional on X , since PY |X = PY |D=1,X . The marginal
distribution PY is also point identified.

I However, this assumption is often considered too stringent.
We may instead suppose a mean missing monotonically
assumption, which asserts that for all increasing h,

E (h(Y )|D = 0,X ) ≤ E (h(Y )|X ) ≤ E (h(Y )|D = 1,X ).
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Missing data

Missing data: identification with monotonicity

I In this case, the minimal identification region of
g(PY ) = E (h(Y )) is

R(g(PY )) =
[
pE (h(Y )|D = 1) + (1− p)h(y),E (E (h(Y )|D = 1,X ))

]
.

I Remark 1: the lower bound is −∞ when h(y) = −∞,
whereas the upper bound is always finite.

I Remark 2: contrary to the independence assumption Y ⊥⊥ Z ,
the mean missing monotonically assumption is non-refutable.
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Missing data

Treatment effects: introduction

I An important example of missing data arises in analyzing
treatment effects. Let D ∈ D denote a treatment and Y (d)
denote the potential outcome corresponding to D = d . We do
not observe, for each individual, (Y (d))d∈D but only
Y ≡ Y (D).

I The aim is to recover the distribution of Y (d), or treatment
effects such as E (Y (d)− Y (d ′)), d 6= d ′.

I Using the empirical evidence alone, we get, as previously:

R(PY (d)) =
{

PY |D=dP(D = d) + µ(1− P(D = d)), µ ∈ M
}
.
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Missing data

Treatment effects: first assumptions

I We can rely on similar assumptions as previously. Suppose for
instance that treatment is exogenous:

(Y (d))d∈D ⊥⊥ D|X .

Then PY (d)|X (and PY (d)) is point identified by

PY (d)|X = PY |X ,D=d .

I Suppose that we have an instrument affecting D and such that

(Y (d))d∈D ⊥⊥ Z . (1)

Then we have an identification region defined by

R(PY (d)) = ∩z∈Z

{
PY |Z=z,D=dP(D = d |Z = z) + µP(D 6= d |Z = z), µ ∈ M

}
.

I N.B.: randomized experiments are a special case of (1), where
Z = D. In this case P(D = d |Z = z) = 1{z = d} and R(PY (d)) is
reduced to the singleton {PY |D=d}.
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Missing data

Treatment effects: monotonicity conditions

I Another interesting assumption is monotone treatment response
(MTR). Suppose that D is ordered, and assume that:

d ≥ d ′ ⇒ Y (d) ≥ Y (d ′).

I Such an assumption is relevant in production analysis, demand
estimation, returns to schooling...

I Let

Y (d) = Y1{D ≤ d}+ y1{D > d}
Y (d) = Y1{D ≥ d}+ y1{D < d}.

I Then the minimal identification region of any D− parameter
g(PY (d)) is

R(g(PY (d))) = [g(PY (d)), g(PY (d))].
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Missing data

Treatment effects: monotonicity conditions

I Let for instance g(PY (d)) = E [h(Y (d))], with h increasing. In this
case,

R(g(PY (d))) =
[
h(y)P(D > d) + E [h(Y )|D ≤ d ]P(D ≤ d),

h(y)P(D < d) + E [h(Y )|D ≥ d ]P(D ≥ d)] .

I We can also characterize the minimal identification region of
∆1 = g(PY (d))− g(PY (d′)), whenever g(PY (d)) is a D− parameter
and d > d ′:

R(∆1) = [0, g(PY (d))− g(PY (d′))].

I Similarly, we have the following minimal identification region for
∆2 = g(PY (d)−Y (d′)):

R(∆2) = [g(δ0), g(PY (d)−Y (d′))].
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Missing data

Treatment effects: monotonicity conditions

I Monotonicity allows in general to shrink the identification
region.

I However, when Y (d) is not bounded a priori, y = −∞ and
y =∞, the identification region on E [Y (d)] (or
E [Y (d)]− E [Y (d ′)]) is [−∞,+∞].

I Now suppose that we combine MTR with a monotone
treatment selection assumption (MTS):

d2 ≥ d1 ⇒ E [Y (d)|D = d2] ≥ E [Y (d)|D = d1].

I In the returns to schooling example, this assumption posits a
positive ability bias: individuals who make more schooling are
those with the higher “intrinsic productivity”.
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Missing data

Treatment effects: monotonicity conditions

I Under MTR-MTS, the minimal identification interval of
m(d) = E [Y (d)] is:

R(m(d)) =

[∑
d′<d

E(Y |D = d ′)P(D = d ′) + E(Y |D = d)P(D ≥ d),

∑
d′>d

E(Y |D = d ′)P(D = d ′) + E(Y |D = d)P(D ≤ d)

]
.

I Both bounds are finite here.
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Missing data

Treatment effects: monotonicity conditions

I Similarly, we have a finite (not minimal) identification region
for treatment effect parameters
∆(d1, d2) = E [Y (d2)− Y (d1)], d2 > d1:

R =

0,
∑
d>d2

E [Y |D = d)P(D = d) + E(Y |D = d2)P(D ≤ d2)

−
∑
d′<d1

E(Y |D = d ′)P(D = d ′)− E(Y |D = d1)P(D ≥ d1)

 .
I The upper bound is sharp, but not the lower bound.
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Missing data

Treatment effects: example of the returns to schooling

I Manski and Pepper (2000) investigate returns to schooling using
MTR-MTS instead of standard instrumental variables satisfying
Z ⊥⊥ (Y (d))d∈D.

I They use data from the NLSY 1979, and restrict themselves to the
1257 white males who reported in 1994 that they were full-time
year-round workers but not self-employed, and who reported their
wages:

Variable 12 13 14 15 16 17 18 19

E(Y |D = d) 2.50 2.66 2.64 2.69 2.87 2.78 3.01 3.01
P(D = d) 0.413 0.074 0.083 0.035 0.189 0.038 0.051 0.020

Empirical mean hourly log(wage) and distribution of years of schooling
(taken from Manski & Pepper, 2000)
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Missing data

Treatment effects: example of the returns to schooling

I The previous result allows to compute the upper bound of
∆(d1, d2) = E (Y (d2)− Y (d1)):

Upper bound 12-13 13-14 14-15 15-16 16-17 17-18 18-19 12-16

Estimate 0.25 0.16 0.20 0.30 0.16 0.39 0.37 0.40
0.95 quantile 0.31 0.23 0.29 0.37 0.26 0.48 0.54 0.45

I The upper bounds on ∆(t − 1, t) are above the usual estimates in
the literature. Thus MTS-MTR does not, in this application, have
sufficient identifying power to change the consensus on the returns
to schooling.

I On the other hand, the upper bound on ∆(12, 16) implies that the
average value of the four year-by-year treatment effects are at most
0.10, which is below the point estimates of Card (1993) and
Ashenfelter and Krueger (1994).
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Incomplete models

Introduction

I In many economic settings such as entry games (see, e.g.,
Tamer, 2003), bargaining models (see Engers and Stern,
2002) or discrete choice models with social interactions (see,
e.g., Krauth, 2006), we are confronted with multiple equilibria.

I In this case, we only know that the decision Y ∈ Y satisfies
Y ∈ G (ε|X , θ), where ε (resp. X ) denotes the unobserved
component (resp. covariates), θ is the parameter of interest
and G (.|X , θ) is a correspondence, i.e., a set valued function.

I Such models are called incomplete, because they do not
specify a unique outcome for given (X , ε). Because of this, θ
will generally be set identified only.
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Incomplete models

Example: a simple entry game

I Consider the two player entry game of the introduction:

2 enters 2 does not enter

1 enters (α1 + β + ε1, α2 + β + ε2) (α1 + ε1, 0)
1 does not enter (0, α2 + ε2) (0, 0)

I We also assume that β ≤ 0 and suppose for simplicity that
(ε1, ε2) ∼ N (0, I2).

I When (ε1, ε2) ∈ [−α1,−α1 − β]× [−α2,−α2 − β], there are
two equilibria, (0, 1) and (1, 0) (otherwise there is just one
equilibrium).
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Incomplete models

The problem

I Even if the model is fully parametric, the problem is that we may
not be able to write down the likelihood of Y = y , because this
event may not correspond to a well specified region of ε.

I Instead, we have inequalities which come from the definition of (for
instance) Nash equilibria. Let Ui (yi , y−i ,Xi , εi , θ) denote the utility
for i when playing yi , given that others play y−i . We have:

Ui (Yi ,Y−i ,Xi , εi , θ) ≥ Ui (y ,Y−i ,Xi , εi , θ) ∀y . (2)

I This provides necessary conditions for observing Y = (Yi ,Y−i ).

I In the example above, for instance, we have

(Y1 = 0,Y2 = 1)⇒ (α1 + β + ε1 < 0, α2 + ε2 ≥ 0).

I This implies the inequality:

P(Y1 = 0,Y2 = 1|θ) ≤ Φ(−α1 − β)Φ(α2).
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Incomplete models

Results for parametric models

I More generally, for any A ⊆ Y, let

G−1(A|x , θ) = {u : G (u|x , θ) ∩ A 6= ∅}.

I We have, for the true parameter θ0 and for all A ⊆ Y,

Y ∈ A ⇐⇒ Y ∈ G (ε|X , θ0) ∩ A

=⇒ G (ε|X , θ0) ∩ A 6= ∅
⇐⇒ ε ∈ G−1(A|X , θ0).

As a result,

P(Y ∈ A|X ) ≤ P(ε ∈ G−1(A|X , θ0)).
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Incomplete models

Results for parametric models
I In a parametric model, the distribution of ε is fully specified

and depends only on θ. Thus, we can compute, for a given θ,
the function

L(A|x , θ) ≡ P(ε ∈ G−1(A|x , θ)|θ).

and the true parameter satisfies, for all A ⊆ Y,

P(Y ∈ A|X = x) ≤ P(ε ∈ G−1(A|x , θ0)|θ0).

I This implies

R(θ0) ⊂ {θ ∈ Θ : ∀A ⊆ Y,∀x ,P(Y ∈ A|X = x) ≤ L(A|x , θ)}.

I Actually, Galichon and Henry (2011) prove the stronger result:

R(θ0) = {θ ∈ Θ : ∀A ⊆ Y,∀x ,P(Y ∈ A|X = x) ≤ L(A|x , θ)}
= {θ ∈ Θ : min

x
min
A⊆Y
L(A|x , θ)− P(Y ∈ A|X = x) ≥ 0}.
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Incomplete models

Results for parametric models

I The latter form is convenient as it shows that finding R(θ)
amounts to minimize several times the submodular function
A 7→ L(A|X , θ)− P(Y ∈ A|X ). A real function f on sets is
submodular if, for all (A,B), it satisfies the inequality

f (A ∩ B) + f (A ∪ B) ≤ f (A) + f (B).

I Submodularity for functions on sets is equivalent to convexity
for functions on Rk , and there are efficient algorithms for
minimizing them.

I Another way to compute R(θ0) is to reduce the number of
inequalities to check for each (x , θ) (namely, 2|Y| − 2 if Y is
discrete). This is possible if outcomes satisfy a monotonicity
condition (see Galichon and Henry, 2011).
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Incomplete models

Application to the entry game

I At a first glance, we have 24 − 2 = 14 inequalities to check.
However, this number can be much reduced.

I Let pij = P(Y1 = i ,Y2 = j), we have indeed

p00 ≤ Φ(−α1)Φ(−α2)

p11 ≤ Φ(α1 + β)Φ(α2 + β)

1− p00 − p11 ≤ 1− Φ(−α1)Φ(−α2)− Φ(α1 + β)Φ(α2 + β)

I Thus, the three inequalities are actually equalities. Then one can
show that the identification region is defined by

p00 = Φ(−α1)Φ(−α2)

p11 = Φ(α1 + β)Φ(α2 + β)

p10 ≤ Φ(α1)Φ(−α2 − β)

p01 ≤ Φ(−α1 − β)Φ(α2).
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Incomplete models

Application to the entry game

I Note that the identification region has at most dimension 1 since α2

and β are functions of α1.

I Example: suppose that the true values are α1 = 1, α2 = 0.5 and
β = −1. When there are two equilibria, each one is drawn with
probability 0.5. In this case,

R(α1) = [0.86, 1.10]
R(α2) = [0.35, 0.67]
R(β) = [−1.03,−0.95].

Such a model is very informative on β, less so for α1 and α2.

I Same model with α1 = α2 = 1. In this case we get almost point
identification of β: R(β) = [−1,−0.99].

I Same model with a true probability of selection of equilibria at 0, we
get R(α1) = [1, 1.20], R(α2) = [0.19, 0.50], R(β0) = [−1,−0.87].
Intuition?
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Incomplete models

Results for semiparametric models

I Consider an additively separable utility function:

Ui (y ,Y−i ,Xi , εi , θ) = g(y ,Y−i ,Xi , θ) + εiy ,

where εiy is a shock specific to decision y . Suppose that
E (εiy |X ) is independent of y . Then (2) implies:

E [g(Yi ,Y−i ,Xi , θ0)− g(y ,Y−i ,Xi , θ0)|X ] ≥ 0 ∀y .

I We can use these moment inequalities to characterize R(θ0).

I Note that moment inequalities conditions also arise in linear
models with interval-valued outcome:

Y ∗ = X ′θ0 + ε, E (ε|X ) = 0, Y ∗ ∈ [Y ,Y ].
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Inference for partially identified models

Introduction

I Inference for identified sets has been developed very recently,
since the middle of the 00’s only (see, e.g., Imbens and
Manski, 2004, Chernozhukov et al, 2007, Beresteanu and
Molinari, 2008, Rosen, 2008, Bontemps et al., 2012, and
several papers by Andrews, Shaikh...).

I There still lacks a unifying theory for the moment.

I I will only present inference when either the identification
region is an interval or is defined by moment inequalities.
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Inference for partially identified models

Inference with interval region

I Suppose that R(θ0) = [θ, θ]. We can estimate it by

R̂(θ) = [θ̂, θ̂].

I The choice of a confidence interval is more delicate. We can
impose one of the two conditions:

lim
n→∞

P(CI1−α ⊃ R(θ0)) ≥ 1− α (3)

inf
θ∈R(θ0)

lim
n→∞

P(CI1−α 3 θ) ≥ 1− α (4)

I The first condition is more restrictive and thus leads to larger
confidence intervals.
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Inference for partially identified models

Inference with interval region

I Suppose that
√
n
(
θ̂ − θ, θ̂ − θ

)
L−→ N (0,Σ) .

I Then (3) is satisfied if we take

CI11−α =
[
θ̂ − q1−α/2

√
Σ11, θ̂ + q1−α/2

√
Σ22

]
,

where qβ is the β-th quantile of a N (0, 1).

I On the other hand, if θ < θ, (4) is satisfied with the smaller interval

CI21−α =
[
θ̂ − q1−α

√
Σ11, θ̂ + q1−α

√
Σ22

]
.

I A problem is that the latter is valid only if θ < θ. There is a
discontinuity at θ = θ since the asymptotic coverage of the interval
is only 1− 2α in this case. See Imbens and Manski (2004) for a
modification of CI21−α that overcomes this issue.
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Inference for partially identified models

Inference with moment inequalities

I Consider the case where R(θ0) corresponds to all θ satisfying

E [m(Y , θ)] ≥ 0,

where m(., .) ∈ Rk and inequalities hold componentwise. This
is the case in some missing data problems, in games with
multiple equilibria or in regression with interval data outcomes:

E (Y − X ′θ|X ) ≥ 0, E (X ′θ − Y |X ) ≥ 0.

These conditional inequalities imply indeed that for all positive
g(.),

E
(
g(X )

(
Y − X ′θ

)]
≥ 0, E

(
g(X )

(
X ′θ − Y

)]
≥ 0.
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Inference for partially identified models

Inference with moment inequalities: estimation

I Let En(.) denote the empirical mean. Following Rosen (2008),
consider the objective function

Qn(θ) = min
t≥0

[En(m(Y , θ))− t]′ V̂−1
θ [En(m(Y , θ))− t] ,

where V̂θ is the estimator of the variance matrix of m(Y , θ).

I Note that Qn(θ) can be computed more easily by applying
Kuhn-Tucker conditions (which are necessary and sufficient here).

I Under standard assumptions,

Qn(θ)
P−→ Q(θ) = min

t≥0
[E (m(Y , θ))− t]′ V−1

θ [E (m(Y , θ))− t] .

I Moreover, Q(θ) = 0 if and only if θ ∈ R(θ0). Thus, to estimate
R(θ0), the idea is to consider the set of θ such that Qn(θ) is small.



Recent Developments in Semi and Nonparametric Econometrics

Inference for partially identified models

Inference with moment inequalities: estimation

I More formally, let εn be such that εn →∞ and εn/n→ 0,

and define R̂(θ0) by

R̂(θ0) = {θ : nQn(θ) ≤ εn}.

Theorem
(Chernozhukov et al, 2007) Suppose that

supθ |Qn(θ)− Q(θ)| P−→ 0. Then, letting dH(., .) denote the
Hausdorff distance between sets (i.e.,
dH(A,B) = max(supa∈A infb∈B ||a− b||, supb∈B infa∈A ||a− b||)) :

dH(R̂(θ0),R(θ0))
P−→ 0.
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Inference with moment inequalities: estimation

I Intuition behind: we have Qn(θ)→ 0 for all θ ∈ R(θ0) and
Qn(θ)→ c > 0 otherwise. Thus, choosing the θ such that
Qn(θ) ≤ εn/n→ 0 will asymptotically pick only elements of
R(θ0).

I Note however that such a set may be large for finite n. Under
some additional restrictions, we can show that taking the

smaller set R̃(θ0) defined by

R̃(θ0) = arg min
θ

nQn(θ)

is also consistent (see Chernozhukov et al, 2007).



Recent Developments in Semi and Nonparametric Econometrics

Inference for partially identified models

Inference with moment inequalities: confidence interval

I Confidence intervals can be built using the following distributional
result.

Theorem
(Rosen, 2008) Let b(θ) denote the number of components mj(Y , θ) such
that E (mj(Y , θ)) = 0, V ∗(θ) denotes the variance matrix of these
components and let Z ∼ N (0,V ∗(θ)). Then

nQn(θ)
L−→ min

s≥0
(Z − s)′V ∗(θ)−1(Z − s) if θ ∈ R(θ0), b(θ) > 0,

nQn(θ)
L−→ 0 if θ ∈ R(θ0), b(θ) = 0,

nQn(θ)
P−→ ∞ if θ /∈ R(θ0). (5)

I To construct a confidence region on R(θ0), we will therefore
consider CI1−α = {θ : nQn(θ) ≤ c1−α}, for an appropriate c1−α.
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Inference with moment inequalities: confidence interval

I The theorem shows that strict moment inequalities are not binding
asymptotically and we may only focus on moment equalities (as
when we test θ ≤ 0 versus θ > 0).

I If b(θ) and V ∗(θ) were known, the distribution of
T = mins≥0(Z − s)′V ∗(θ)−1(Z − s) could be tabulated (by
simulations).

I However, b(θ) and V ∗(θ) are unknown.
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Inference with moment inequalities: confidence interval

I To overcome this issue, one can use the following inequality (see
Rosen, 2008, Corollary 1):

inf
θ∈R(θ0)

lim
n→∞

P(nQn(θ) ≤ c) ≥ 1

2
P(χ2

b ≤ c) +
1

2
P(χ2

b−1 ≤ c).

for any b ≥ supθ∈R(θ0) b(θ). One can choose for instance
b =dim(m(Y , θ)).

I Thus, we can define c1−α to be such that

1

2
P(χ2

b ≤ c1−α) +
1

2
P(χ2

b−1 ≤ c1−α) = 1− α.

I Such a c1−α yields an asymptotically conservative confidence
interval. It is possible to build exact confidence intervals when
V ∗(θ) is diagonal (see Rosen, 2008).

I Note that the above procedure can also be used to test whether
θ1 ∈ R(θ0). Such a test is consistent by (5).
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