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Introduction

The importance of IV

I Assessing the causal effect of a factor X on an outcome Y is one of
the most difficult task in social sciences (economics but also
epidemiology, sociology...).

I The main problem is that X is seldom affected randomly, but rather
chosen, at least partly. This choice may then be related to
unobserved factors that also affect Y : the endogeneity problem.

I Other sources of endogeneity: measurement error on X ,
simultaneity.

I One of the most common way to tackle this issue is to use
instrumental variables (IV), namely variables affecting X but not
directly Y .

I Intuition behind: the variations of X induced by Z are exogenous
and can thus be used to identify the causal effect of X .
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Introduction

The importance of nonlinear and nonparametric models

I Why focusing on nonlinear models? Very pervasive:

I Discrete choice models: models based on the maximization of a
random utility are nonlinear (logit, probit, multinomial logit...).

I Other limited dependent variable models are also nonlinear:
censored models or integer valued variables.

I Using quantile restrictions make the model nonlinear as well.

I Why nonparametric? Theory may predict shape restrictions
(monotonicity, convexity/concavity...) but rarely the functional form
of the dependence between X and Y .

I Important to understand if identification stems from the functional
form restrictions or the instrumental variable itself.
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Introduction

A search for “universal solution”

I The linear model, where the situation is simple, provides insights on
general solutions to handle IV estimation in more complex cases.

I In the linear case, three equivalent ways can be used to define β0,
the slope parameter of X .

I Two of them will extend to nonlinear/nonparametric models.
However, they are not equivalent anymore, neither in terms of
identification nor for estimation.

I We consider hereafter nonparametric models. In general,
semiparametric identification / estimation can be easily treated as
particular cases.
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The linear model

Introduction

I Consider the IV linear model:

Y = X ′β0 + ε, E (Zε) = 0.

I In this model, there are three equivalent ways to define β0:

1. through a projection;

2. through an estimating equation;

3. through a control variable approach.

I The conditions for identification are the same in the three cases.
The corresponding estimator are also the same for 1 and 3, but not
necessarily for 2.
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The linear model

Projection

I In the first, we project linearly X on Z :

X = Γ0Z + ν, with E (Zν) = 0

I Then, instead of regressing Y on X , we regress Y on X̂ = Γ0Z :

Y = X ′β0 + ε

= X̂ ′β0 + ν′β0 + ε.

I In this regression, X̂ is exogenous because E (Zν) = 0 and
E (Zε) = 0.

I Identification is ensured as soon as the regressors X̂ are linearly
independent, or, equivalently E (ZX ′) being full rank.

I This idea directly translates into the 2SLS estimator.
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The linear model

Estimating equation

I The second way is to write:

E (ZY ) = E (ZX ′)β0,

and solve the linear equation to find β0.

I Identification directly follows from the standard condition of E (ZX ′)
being full rank.

I An estimator following from this strategy is the GMM, since
E [Z (Y − X ′β0)] = 0.

I Note that the GMM estimator is equal to the 2SLS when
dim(X ) =dim(Z ), but they may not coincide in the overidentified
case where dim(X ) <dim(Z ).
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The linear model

The control variable approach

I The third way to identify β0 is to project ε on ν(= X − Γ0Z ):

ε = ν′δ0 + ζ, with E (νζ) = 0.

I Then we regress Y on (X , ν):

Y = X ′β0 + νδ0 + ζ.

I Regressors are exogenous because E (νζ) = 0 and

E (X ζ) = E ((Γ0Z + ν)ζ) = Γ0E (Z (ε− νδ0)) = 0.

I Intuition behind: by exogeneity of Z , ν contains all the endogeneity
of X . Once we control for ν in the regression, X is exogenous.

I Identification is ensured as soon as X and ν are not linearly
dependent, which once more is equivalent to E (ZX ′) being full rank.

I The corresponding estimator is, as in the first case, the 2SLS
estimator.
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Projection

Why this fails in general

I Consider a general model

Y = ϕ(X , ε),

where Z is exogenous, namely satisfy some restrictions w.r.t. ε:
mean independence E (ε|Z ) = 0, quantile independence
qε|Z (τ) = 0, full independence Z ⊥⊥ ε... We denote this restriction
by r(fZ ,ε) = 0.

I Then Y = ϕ(X̂ + ν, ε) but in general there exists no ζ such that

ϕ(X̂ + ν, ε) = ϕ(X̂ , ζ), with r(fX̂ ,ζ) = 0.

I This works in the linear model where ϕ(X , ε) = X ′β0 + ε and
E (Zε) = 0 but not in general when ϕ or r are nonlinear.
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Projection

A first example: quadratic model with a mean restriction

I Suppose that ϕ(X , ε) = α0 + Xβ0 + X 2γ0 + ε and the regression of
X on Z is heteroskedastic:

X = X̂ (1 + ν̃), with ν̃ ⊥⊥ X̂ .

I Then:

Y = α0 + X̂β0 + X̂ 2γ0 +
[
X̂ 2ν̃2γ0 +

(
ε+ X̂ (β0 + 2X̂γ0)ν̃

)]
I The first term into the brackets is correlated with X̂ and induces a

bias in the regression.
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Projection

Another example: linear model with a quantile restriction

I Consider the model

Y = X ′βτ + ετ , with qτ (ετ |Z ) = 0. (1)

I This is the same idea as linear IV models, except that we replace
E (ε|Z ) = 0 by a quantile restriction.

I In such models, some people have proposed (i) to regress X on Z

and (ii) to run a quantile regression of Y on the projection X̂ .

I However, this is valid only under the very weird condition that

qτ (ετ + (X − X̂ − qτ (X − X̂ ))βτ |Z ) = 0,

I This does not hold in general, even when qτ (ετ |Z ) = 0 and

qτ (X − X̂ |Z ) = qτ (X − X̂ ) because in general,

qτ (U + V ) 6= qτ (U) + qτ (V ).

I Thus, this method leads in general to an inconsistent estimator.
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Estimating equations

A first generalization to nonparametric additive models

I Instead of Y = X ′β0 + ε, consider the nonparametric additive
model (see Newey and Powell, 2003, and Darolles et al., 2005)

Y = ϕ(X ) + ε, with E (ε|Z ) = 0.

I Then one can identify ϕ(.) through the estimating equation:

E (Y |Z ) = E (ϕ(X )|Z )

or, equivalently, the conditional moment condition

E (Y − ϕ(X )|Z ) = 0.
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Estimating equations

A first generalization to nonparametric additive models

I The identifying condition is

E (g(X )|Z ) = 0⇒ g(X ) = 0. (2)

I This is known as the completeness condition (because of the link
with complete statistics).

I Condition (2) is far less intuitive than in the linear case. Suppose
for instance that X = Z + U:

I Then if U ∼ N (0, σ2), the completeness condition holds;
I But if U ∼ U [−1/2, 1/2], it fails to hold because there are

periodic functions for which∫ 1/2

−1/2
g(z + u)du = 0 ∀z .

I Not much is known about this condition: see Newey and Powell
(2003) and D’Haultfœuille (2011) for sufficient conditions.
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Estimating equations

A first generalization to nonparametric additive models

I Note that this model is not well suited when Y is limited, and
Y = g(µ(X ) + ε). On the other hand, X can be limited.

I As for estimation, this is a rather difficult problem since we have to
solve an infinite dimensional inverse problem.

I A simple solution is to rely on “sieve estimation”, namely replace
the nonparametric model by a parametric one, but of growing
dimension.

I For instance, we could approximate ϕ by a polynomial of degree
kn →∞ at an appropriate speed.

I Then, to estimate ϕ, we would simply solve the empirical
counterpart of the moment conditions

E

Z k

Y −
kn∑
j=0

λjX
j

 = 0 with 1 ≤ k ≤ K (≥ kn).
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Estimating equations

Nonparametric additive models: example

I Example: revisiting Angrist & Lavy (1999)’s paper on the effect of
class size on students’ achievement.

I Idea of A & L: use an exogenous rule on class openings to build an
IV. In Israel, such a rule, established by Mainmonides in the 12th
century, states that classroom size cannot not exceed 40.

I This implies that if there are 80 pupils of a given cohort in a school,
there may be only 2 classrooms (each of size 40), but there should
be at least 3, of average size 27, with 81 such pupils.

I Let S denote the cohort size. A& L use ([x ] =integer part of x):

Z = S/([(S − 1)/40] + 1),

the expected average classroom size, as an instrument for the class
size X .
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Estimating equations

Nonparametric additive models: example

Link between predicted and average class size (taken from A& L)

I Using 2SLS, A& L show that increasing class size by ten students
decreases students’ average achievement by 4 to 6 points, for
average scores around 60-70.

I It is unlikely, however, that class size has a linear effect on test
scores. Horowitz (2011) revisit their paper, by supposing instead
that Y = ϕ(X ) + ε.
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Estimating equations

Nonparametric additive models: example

Estimated effect between class size and students’ achievement, under a

nonparametric model (taken from Horowitz, 2011)

I Conclusion: when using nonparametric methods, we do not find a
significant effect anymore.

I Important policy implications!
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Estimating equations

A second generalization to nonadditive models

I Consider a nonadditive model (see Chernozhukov and Hansen,
2005):

Y = ϕ(X , ε), with qτ (ε|Z ) = qτ (ε). (3)

and ϕ(x , .) is strictly increasing. The condition qτ (ε|Z ) = qτ (ε) is a
“quantile independence” restriction similar to the mean
independence condition E (ε|Z ) = 0.

I We can suppose without loss of generality (provided that ε is
continuous) that ε ∼ U [0, 1].

I Then

τ = P(ε ≤ τ) = P(ε ≤ τ |Z )

= P(ϕ(X , ε) ≤ ϕ(X , τ)|Z ) = P(Y ≤ ϕ(X , τ)|Z ).
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Estimating equations

A second generalization to nonadditive models

I Thus, ϕ(., τ) solves the conditional moment conditions:

E (1{Y ≤ ϕ(X , τ)} − τ |Z ) = 0. (4)

I Identification of ϕ(., τ) based on (4) is even more complicated to
establish than in the additive case Y = ϕ(X ) + ε. It is known to
hold only in very particular cases.

I Estimation is also more difficult than previously because
g 7→ E (1{Y ≤ g(X , τ)} − τ |Z ) is not linear. Several solutions
proposed recently: Chernozhukov, Imbens and Newey (2007),
Horowitz and Lee (2007) and Chen and Pouzo (2012).

I Though model (3) generalizes the previous additive model, it still
cannot handle limited Y . For a binary threshold model for instance,
Y = 1{X ′β0 + ε ≥ 0} so that ϕ(x , ε) = 1{x ′β0 + ε ≥ 0} is not
strictly increasing in ε.
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Estimating equations

Semiparametric example: quantile IV models

I Suppose also that ϕ(X , ε) = X ′βε, with u 7→ x ′βu strictly
increasing.

I This is the same as the linear quantile IV model (1). We then get

E [1{Y ≤ X ′βτ} − τ |Z ] = 0,

which implies that for any g ,

E [(1{Y ≤ X ′βτ} − τ)g(Z )] = 0. (5)

I Identification of βτ holds if there exists g such that (5) has a
unique solution. As with linear IV, this requires X and Z to be
related, but the conditions are more difficult to write formally
because of the nonlinearity of the equations.

I The first idea to estimate βτ would be to do some GMM, using
K ≥dim(X ) real functions g1, ..., gK .

I Problem: the moment conditions (5) are discontinuous in βτ . They
are therefore difficult to solve numerically.
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Estimating equations

Semiparametric example: quantile IV models

I Computationally convenient method proposed by Chernozhukov and
Hansen (2006, 2008). Let X = (X0,X1) where X0 is endogenous
while X1 is exogenous, let βτ = (α0, β0) be the corresponding
parameters. Then:

Y − X ′0α0 = X ′1β0 + Z ′00 + ετ , qτ (ετ |X1,Z0) = 0.

I In other words,

(β0, 0) = arg min
(β,γ)

E [ρτ (Y − X ′0α0 − X ′1β − Z ′0γ)] (6)

I For a given value of α (not necessarily α0), it is easy to obtain the
parameters of the quantile regression of Y − X ′0α on (X1,Z0). Let
β(α) and γ(α) be the corresponding parameters.

I Then the idea is to choose α such that γ(α) is “small”.
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Estimating equations

Semiparametric example: quantile IV models

I In practice, define a grid on α, {α1, ..., αJ}. Then, for j = 1 to J:

I Compute the quantile regression of Y − X ′0αj on (X1,Z0). Let

(β̂(αj), γ̂(αj)) be the corresponding estimators.
I Compute the Wald statistic corresponding to the test of
γ(αj) = 0:

Wn(αj) = nγ̂(αj)
′V̂−1as (γ̂(αj))γ̂(αj).

I Then define the estimator of α0 as

α̂ = arg min
j=1...J

Wn(αj)

and β̂ = β̂(α̂).

I See Chernozhukov and Hansen (2006) for the asymptotics and
inference, and Christian Hansen’s webpage for the Matlab code.

I N.B.: the method is especially convenient when dim(α) is low (1 or
2), otherwise it may be time consuming.
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Estimating equations

Quantile IV: an example

I There has been much debate on the efficiency of subsidized training
programs (classroom training, on-the-job training, job search
assistance...) on earnings.

I The usual problem for evaluating its causal effect is endogeneity
(why here?).

I Abadie et al. (2002) use a large random experiment conducted in
the US on the Job Training Partnership Act (JTPA).

I In this experiment, 11,202 people were assigned randomly in a
“treatment” or “control”. However, among people of the treatment
group, only 60% actually receive training. Thus, receiving training is
probably endogenous.

I On the other hand, the experiment provides us with a valid
instrument.
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Estimating equations

Quantile IV: an example

Here are the results obtained by Abadie et al. (2002):

Impact of training on 30-month earnings (in percentage of earnings)
Men Women

Method Without IV IV Without IV IV
Linear reg. 21.2 8.6 18.5 14.6
q0.15 135.6 5.2 60.8 35.5
q0.25 75.2 12.0 44.4 23.1
q0.50 34.5 9.6 32.3 18.4
q0.75 17.2 10.7 14.5 10.1
q0.85 13.4 9.0 8.1 7.4
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Control variables

A first generalization to additive model

I Consider the model (see Newey, Powell and Vella, 1999):{
Y = ϕ(X ) + ε
X = ψ(Z ) + ν

Z ⊥⊥ (ε, ν) (also, E (ε) = 0)

I The exogeneity condition on Z implies that E (ε|X , ν) = E (ε|ν).
Then:

E (Y |X , ν) = ϕ(X ) + E (ε|ν,X )

= ϕ(X ) + E (ε|ν).

I We can identify ϕ by 1) regressing nonparametrically X on Z to
obtain ν and 2) regressing nonparametrically Y on X and ν.
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Control variables

A first generalization to additive model

I Identification is secured if

h1(X ) + h2(ν) = 0⇒ h1(X ) = −h2(ν) = constant.

I This is a mild restriction that holds if Z is continuous but even with
a discrete (at least ternary) Z .

I Thus this approach requires far less than the completeness condition
in terms of the dependence between X and Z .

I On the other hand, it is more restrictive than the estimating
equation approach on the instrument: Z ⊥⊥ (ε, ν) is stronger than
E (ε|Z ) = 0.

I Also, this approach rules out limited X or limited Y .
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Control variables

A first generalization to additive model

I To estimate ϕ, we first estimate νi . We regress nonparametrically X
on Z and let ν̂i = Xi − ψ̂(Zi ).

I We then have to recover ϕ in the nonparametric additive model
E (Y |X , ν) = ϕ(X ) + g(ν), with E [g(ν)] = 0.

I A first solution is marginal integration, which is based on the
following equality:∫

E (Y |X , ν = u)dFν(u) = ϕ(X ) + E (g(ν)) = ϕ(X ).

Then: 1) estimate by a kernel estimator Ê (Y |X , ν̂) and 2) define
ϕ̂(.) by:

ϕ̂(x) =
1

n

n∑
i=1

Ê (Y |X = x , ν̂ = ν̂i )

I Another solution is to rely on sieves: regress Y on (separate)
functions of X and functions of ν̂.
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Control variables

A second generalization to nonadditive model

I Consider the nonadditive model (see Imbens and Newey, 2009):{
Y = ϕ(X , ε)
X = ψ(Z , ν)

Z ⊥⊥ (ν, ε)

I Suppose also that ψ(Z , .) is strictly increasing.

I In this model it is difficult to recover ϕ directly. However, we can
recover other quantities of interest such as:

I the average structural function E (ϕ(x , ε)) or quantile
structural function τ 7→ qτ (ϕ(x , ε)), i.e. averages or quantiles
if everybody had X = x ;

I Average effects if X moved to `(X ): E [ϕ(`(X ), ε)− Y ];

I Average marginal effects ∆ = E
[
∂ϕ
∂x (X , ε)

]
.

I We focus hereafter on ∆. The identification of structural functions
requires far more restrictive support conditions.
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Control variables

A second generalization to nonadditive model

I First, we suppose without loss of generality that ν is uniform. Let
ψ−12 (z , .) denote the inverse of ψ(z , .). Then

FX |Z (x |Z ) = P(X ≤ x |Z ) = P(ψ(Z , ν) ≤ x |Z )

= P(ν ≤ ψ−12 (Z , x)|Z ) = ψ−12 (Z , x).

Thus, ν = ψ−12 (Z ,X ) = FX |Z (X |Z ) is identified (as a generalized
residual).

I Second, because as previously, X ⊥⊥ ε|ν,

E (Y |X , ν) =

∫
ϕ(X , e)dFε|ν(e).

I Therefore, under regularity conditions,

∂E (Y |X , ν)

∂x
=

∫
∂ϕ

∂x
(X , e)dFε|ν(e|ν) = E

[
∂ϕ

∂x
(X , ε)|X , ν

]
.
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Control variables

A second generalization to nonadditive model

I Hence,

E

[
∂E (Y |X , ν)

∂x

]
= E

[
E

[
∂ϕ

∂x
(X , ε)|X , ν

]]
= ∆.

I As a result, ∆ is identified under rather mild restrictions.

I Main one: conditional on ν, X should have a continuous
distribution ⇒ Z should be continuous as well.

I We can estimate ∆ by a three step procedure:
I estimate ν. For that we run a nonparametric regression of
1{X ≤ x} on Z , for several x . We obtain an estimator F̂X |Z of

FX |Z and then let ν̂i = F̂X |Z (Xi |Zi ).
I run a nonparametric regression of Y on X and ν̂ and takes its

derivative wrt x to get ∂Ê (Y |X , ν)/∂x .
I Define

∆̂ =
1

n

n∑
i=1

∂Ê (Y |X , ν)

∂x
(Xi , ν̂i ).
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Control variables

Application to the “IV probit” model

I Following Rivers and Vuong (1989), consider the case
ϕ(x , ε) = 1{x ′β0 + ε ≥ 0}, with ε ∼ N (0, 1).

I Suppose that X = (X0,X1) where X1 ∈ Rk is exogenous but X0 ∈ R
is endogenous (and β0 = (β01, β02)).

I Suppose also that we have an instrument Z affecting X0 but not Y
directly. Specifically, assume that

X0 = X1γ1 + Zγ2 + ν,

with (X1,Z ) ⊥⊥ (ε, ν), ε = ρν + η and η|ν ∼ N (0, σ2). The last
two conditions hold if (ε, ν) is gaussian, but they are weaker.
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Control variables

Application to the “IV probit” model

I Under these restrictions what we saw above simplifies drastically:

I ν can be estimated by the residual of a linear regression of X0

on (X1,Z ).
I We have

Y = 1{X0β00 + X1β01 + ρν + η ≥ 0},

where, under the conditions above, η ⊥⊥ (X0,X1, ν) and
η ∼ N (0, σ2). Thus, we can estimate (β00/σ, β01/σ, ρ/σ) by a
simple probit of Y on (X1,X2, ν̂).

I Remark that

∂Ê (Y |X , ν)

∂x0
=
β00
σ
ϕ

(
X0β00 + X1β01 + ρν

σ

)
.

I Thus, we can get ∆̂ using the usual formula of average
marginal effects in probit models.
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Control variables

Conclusion

I The nonseparable model is convenient because it imposes no
restriction on ϕ. Thus, we can handle limited Y .

I On the other hand, ψ(Z , .) is strictly increasing, which imposes X
to be continuous...

I To sum up, we have solutions for either Y limited and X continuous
(with control variables) or Y continuous and X limited (with
estimating equations), but not when both Y and X are limited.

I To date, there is no “universal” solution for this problem. Particular
solutions do exist, however:

I Fully parametric models such as biprobit models;
I Approaches based on “special regressors”, see e.g. Lewbel

(2000);
I Use of control variable or estimating equations, but providing

partial identification only (Chesher, 2010, Shaikh and Vytlacil,
2010...).
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