Semi and Nonparametric Econometrics Part 2: IV methods in nonparametric/nonlinear models

Xavier D'Haultfœuille

ENSAE and Paris Saclay Master

Outline

Introduction

The linear model

Projection

The estimating equation approach

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The control variable approach

Introduction

Outline

Introduction

The linear model

Projection

The estimating equation approach

▲口 → ▲圖 → ▲ 臣 → ▲ 臣 → □ 臣 □

The control variable approach

- Introduction

The importance of IV

- Assessing the causal effect of a factor X on an outcome Y is one of the most difficult task in social sciences (economics but also epidemiology, sociology...).
- The main problem is that X is seldom affected randomly, but rather chosen, at least partly. This choice may then be related to unobserved factors that also affect Y: the endogeneity problem.
- Other sources of endogeneity: measurement error on X, simultaneity.
- One of the most common way to tackle this issue is to use instrumental variables (IV), namely variables affecting X but not directly Y.
- Intuition behind: the variations of X induced by Z are exogenous and can thus be used to identify the causal effect of X.

Introduction

The importance of nonlinear and nonparametric models

- Why focusing on nonlinear models? Very pervasive:
 - Discrete choice models: models based on the maximization of a random utility are nonlinear (logit, probit, multinomial logit...).
 - Other limited dependent variable models are also nonlinear: censored models or integer valued variables.
 - Using quantile restrictions make the model nonlinear as well.
- Why nonparametric? Theory may predict shape restrictions (monotonicity, convexity/concavity...) but rarely the functional form of the dependence between X and Y.
- Important to understand if identification stems from the functional form restrictions or the instrumental variable itself.

Introduction

A search for "universal solution"

- The linear model, where the situation is simple, provides insights on general solutions to handle IV estimation in more complex cases.
- In the linear case, three equivalent ways can be used to define β₀, the slope parameter of X.
- Two of them will extend to nonlinear/nonparametric models. However, they are not equivalent anymore, neither in terms of identification nor for estimation.
- We consider hereafter nonparametric models. In general, semiparametric identification / estimation can be easily treated as particular cases.

Outline

Introduction

The linear model

Projection

The estimating equation approach

▲口 → ▲圖 → ▲ 臣 → ▲ 臣 → □ 臣 □

The control variable approach

Introduction

Consider the IV linear model:

$$Y = X'\beta_0 + \varepsilon, \quad E(Z\varepsilon) = 0.$$

- In this model, there are three equivalent ways to define β_0 :
 - 1. through a projection;
 - 2. through an estimating equation;
 - 3. through a control variable approach.
- The conditions for identification are the same in the three cases. The corresponding estimator are also the same for 1 and 3, but not necessarily for 2.

Projection

▶ In the first, we project linearly X on Z:

$$X = \Gamma_0 Z + \nu$$
, with $E(Z\nu) = 0$

• Then, instead of regressing Y on X, we regress Y on $\hat{X} = \Gamma_0 Z$:

$$Y = X'\beta_0 + \varepsilon$$

= $\hat{X}'\beta_0 + \nu'\beta_0 + \varepsilon$

- ▶ In this regression, \hat{X} is exogenous because $E(Z\nu) = 0$ and $E(Z\varepsilon) = 0$.
- Identification is ensured as soon as the regressors X are linearly independent, or, equivalently E(ZX') being full rank.
- This idea directly translates into the 2SLS estimator.

Estimating equation

The second way is to write:

$$E(ZY)=E(ZX')\beta_0,$$

and solve the linear equation to find β_0 .

- Identification directly follows from the standard condition of E(ZX') being full rank.
- An estimator following from this strategy is the GMM, since $E[Z(Y X'\beta_0)] = 0.$
- Note that the GMM estimator is equal to the 2SLS when dim(X) =dim(Z), but they may not coincide in the overidentified case where dim(X) <dim(Z).</p>

The control variable approach

• The third way to identify β_0 is to project ε on $\nu (= X - \Gamma_0 Z)$:

$$\varepsilon = \nu' \delta_0 + \zeta$$
, with $E(\nu \zeta) = 0$.

• Then we regress Y on (X, ν) :

$$Y = X'\beta_0 + \nu\delta_0 + \zeta.$$

• Regressors are exogenous because $E(\nu\zeta) = 0$ and

$$E(X\zeta) = E((\Gamma_0 Z + \nu)\zeta) = \Gamma_0 E(Z(\varepsilon - \nu \delta_0)) = 0.$$

- Intuition behind: by exogeneity of Z, ν contains all the endogeneity of X. Once we control for ν in the regression, X is exogenous.
- Identification is ensured as soon as X and v are not linearly dependent, which once more is equivalent to E(ZX') being full rank.
- The corresponding estimator is, as in the first case, the 2SLS estimator.

Projection

Outline

Introduction

The linear model

Projection

The estimating equation approach

The control variable approach

Semi and Nonparametric Econometrics

Projection

Why this fails in general

Consider a general model

$$Y = \varphi(X, \varepsilon),$$

where Z is exogenous, namely satisfy some restrictions w.r.t. ε : mean independence $E(\varepsilon|Z) = 0$, quantile independence $q_{\varepsilon|Z}(\tau) = 0$, full independence $Z \perp \varepsilon$... We denote this restriction by $r(f_{Z,\varepsilon}) = 0$.

• Then $Y = \varphi(\widehat{X} + \nu, \varepsilon)$ but in general there exists no ζ such that

$$\varphi(\widehat{X} + \nu, \varepsilon) = \varphi(\widehat{X}, \zeta), \text{ with } r(f_{\widehat{X}, \zeta}) = 0.$$

► This works in the linear model where $\varphi(X, \varepsilon) = X'\beta_0 + \varepsilon$ and $E(Z\varepsilon) = 0$ but not in general when φ or r are nonlinear.

Projection

A first example: quadratic model with a mean restriction

Suppose that φ(X, ε) = α₀ + Xβ₀ + X²γ₀ + ε and the regression of X on Z is heteroskedastic:

$$X = \widehat{X}(1 + \widetilde{\nu}), \text{ with } \widetilde{\nu} \perp \widehat{X}.$$

Then:

$$Y = \alpha_0 + \widehat{X}\beta_0 + \widehat{X}^2\gamma_0 + \left[\widehat{X}^2\widetilde{\nu}^2\gamma_0 + \left(\varepsilon + \widehat{X}(\beta_0 + 2\widehat{X}\gamma_0)\widetilde{\nu}\right)\right]$$

The first term into the brackets is correlated with X and induces a bias in the regression.

Semi and Nonparametric Econometrics

Projection

Another example: linear model with a quantile restriction

Consider the model

$$Y = X' \beta_{\tau} + \varepsilon_{\tau}, \quad \text{with } q_{\tau}(\varepsilon_{\tau} | Z) = 0.$$
 (1)

- ► This is the same idea as linear IV models, except that we replace E(ε|Z) = 0 by a quantile restriction.
- In such models, some people have proposed (i) to regress X on Z and (ii) to run a quantile regression of Y on the projection X.
- However, this is valid only under the very weird condition that

$$q_{\tau}(\varepsilon_{\tau}+(X-\widehat{X}-q_{\tau}(X-\widehat{X}))\beta_{\tau}|Z)=0,$$

► This does not hold in general, even when $q_{\tau}(\varepsilon_{\tau}|Z) = 0$ and $q_{\tau}(X - \hat{X}|Z) = q_{\tau}(X - \hat{X})$ because in general,

$$q_{ au}(U+V)
eq q_{ au}(U)+q_{ au}(V).$$

► Thus, this method leads in general to an inconsistent estimator.

Outline

Introduction

The linear model

Projection

The estimating equation approach

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

The control variable approach

A first generalization to nonparametric additive models

Instead of Y = X'β₀ + ε, consider the nonparametric additive model (see Newey and Powell, 2003, and Darolles et al., 2005)

$$Y = \varphi(X) + \varepsilon$$
, with $E(\varepsilon|Z) = 0$.

• Then one can identify $\varphi(.)$ through the estimating equation:

$$E(Y|Z) = E(\varphi(X)|Z)$$

or, equivalently, the conditional moment condition

$$E(Y - \varphi(X)|Z) = 0.$$

A first generalization to nonparametric additive models

The identifying condition is

$$E(g(X)|Z) = 0 \Rightarrow g(X) = 0.$$
(2)

- This is known as the completeness condition (because of the link with complete statistics).
- ➤ Condition (2) is far less intuitive than in the linear case. Suppose for instance that X = Z + U:
 - Then if $U \sim \mathcal{N}(0, \sigma^2)$, the completeness condition holds;
 - ▶ But if U ~ U[-1/2, 1/2], it fails to hold because there are periodic functions for which

$$\int_{-1/2}^{1/2} g(z+u) du = 0 \quad \forall z.$$

 Not much is known about this condition: see Newey and Powell (2003) and D'Haultfœuille (2011) for sufficient conditions.

A first generalization to nonparametric additive models

- ▶ Note that this model is not well suited when Y is limited, and $Y = g(\mu(X) + \varepsilon)$. On the other hand, X can be limited.
- As for estimation, this is a rather difficult problem since we have to solve an infinite dimensional inverse problem.
- A simple solution is to rely on "sieve estimation", namely replace the nonparametric model by a parametric one, but of growing dimension.
- For instance, we could approximate φ by a polynomial of degree $k_n \to \infty$ at an appropriate speed.
- Then, to estimate φ, we would simply solve the empirical counterpart of the moment conditions

$$E\left[Z^{k}\left(Y-\sum_{j=0}^{k_{n}}\lambda_{j}X^{j}\right)\right]=0 \text{ with } 1\leq k\leq \mathcal{K}(\geq k_{n}).$$

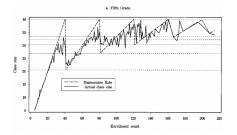
Nonparametric additive models: example

- Example: revisiting Angrist & Lavy (1999)'s paper on the effect of class size on students' achievement.
- Idea of A & L: use an exogenous rule on class openings to build an IV. In Israel, such a rule, established by Mainmonides in the 12th century, states that classroom size cannot not exceed 40.
- This implies that if there are 80 pupils of a given cohort in a school, there may be only 2 classrooms (each of size 40), but there should be at least 3, of average size 27, with 81 such pupils.
- ▶ Let *S* denote the cohort size. A& L use ([*x*] =integer part of *x*):

$$Z = S/([(S-1)/40] + 1),$$

the expected average classroom size, as an instrument for the class size X.

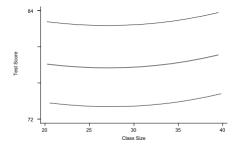
Nonparametric additive models: example



Link between predicted and average class size (taken from A& L)

- Using 2SLS, A& L show that increasing class size by ten students decreases students' average achievement by 4 to 6 points, for average scores around 60-70.
- It is unlikely, however, that class size has a linear effect on test scores. Horowitz (2011) revisit their paper, by supposing instead that Y = φ(X) + ε.

Nonparametric additive models: example



Estimated effect between class size and students' achievement, under a nonparametric model (taken from Horowitz, 2011)

- Conclusion: when using nonparametric methods, we do not find a significant effect anymore.
- Important policy implications!

A second generalization to nonadditive models

 Consider a nonadditive model (see Chernozhukov and Hansen, 2005):

$$Y = \varphi(X, \varepsilon), \quad \text{with } q_{\tau}(\varepsilon | Z) = q_{\tau}(\varepsilon).$$
 (3)

and $\varphi(x,.)$ is strictly increasing. The condition $q_{\tau}(\varepsilon|Z) = q_{\tau}(\varepsilon)$ is a "quantile independence" restriction similar to the mean independence condition $E(\varepsilon|Z) = 0$.

- We can suppose without loss of generality (provided that ε is continuous) that ε ~ U[0,1].
- Then

$$\begin{aligned} \tau &= P(\varepsilon \leq \tau) = P(\varepsilon \leq \tau | Z) \\ &= P(\varphi(X, \varepsilon) \leq \varphi(X, \tau) | Z) = P(Y \leq \varphi(X, \tau) | Z). \end{aligned}$$

A second generalization to nonadditive models

• Thus, $\varphi(., \tau)$ solves the conditional moment conditions:

$$E\left(\mathbb{1}\left\{Y \leq \varphi(X,\tau)\right\} - \tau | Z\right) = 0. \tag{4}$$

- Identification of φ(., τ) based on (4) is even more complicated to establish than in the additive case Y = φ(X) + ε. It is known to hold only in very particular cases.
- Estimation is also more difficult than previously because g → E (1{Y ≤ g(X, τ)} − τ|Z) is not linear. Several solutions proposed recently: Chernozhukov, Imbens and Newey (2007), Horowitz and Lee (2007) and Chen and Pouzo (2012).
- Though model (3) generalizes the previous additive model, it still cannot handle limited Y. For a binary threshold model for instance, Y = 1{X'β₀ + ε ≥ 0} so that φ(x, ε) = 1{x'β₀ + ε ≥ 0} is not strictly increasing in ε.

Semiparametric example: quantile IV models

- Suppose also that φ(X, ε) = X'β_ε, with u → x'β_u strictly increasing.
- ▶ This is the same as the linear quantile IV model (1). We then get

$$E\left[\mathbb{1}\left\{Y \leq X'\beta_{\tau}\right\} - \tau|Z\right] = 0,$$

which implies that for any g,

$$E\left[(\mathbb{1}\{Y \le X'\beta_{\tau}\} - \tau)g(Z)\right] = 0.$$
 (5)

- Identification of β_τ holds if there exists g such that (5) has a unique solution. As with linear IV, this requires X and Z to be related, but the conditions are more difficult to write formally because of the nonlinearity of the equations.
- The first idea to estimate β_τ would be to do some GMM, using K ≥dim(X) real functions g₁,..., g_K.
- Problem: the moment conditions (5) are discontinuous in β_τ. They are therefore difficult to solve numerically.

Semiparametric example: quantile IV models

• Computationally convenient method proposed by Chernozhukov and Hansen (2006, 2008). Let $X = (X_0, X_1)$ where X_0 is endogenous while X_1 is exogenous, let $\beta_{\tau} = (\alpha_0, \beta_0)$ be the corresponding parameters. Then:

$$Y - X_0'\alpha_0 = X_1'\beta_0 + Z_0'0 + \varepsilon_\tau, \quad q_\tau(\varepsilon_\tau | X_1, Z_0) = 0.$$

In other words,

$$(\beta_0, 0) = \arg\min_{(\beta, \gamma)} E\left[\rho_\tau (Y - X'_0 \alpha_0 - X'_1 \beta - Z'_0 \gamma)\right]$$
(6)

- For a given value of α (not necessarily α_0), it is easy to obtain the parameters of the quantile regression of $Y X'_0 \alpha$ on (X_1, Z_0) . Let $\beta(\alpha)$ and $\gamma(\alpha)$ be the corresponding parameters.
- Then the idea is to choose α such that $\gamma(\alpha)$ is "small".

Semiparametric example: quantile IV models

- ▶ In practice, define a grid on α , $\{\alpha_1, ..., \alpha_J\}$. Then, for j = 1 to J:
 - Compute the quantile regression of $Y X'_0 \alpha_j$ on (X_1, Z_0) . Let $(\widehat{\beta}(\alpha_j), \widehat{\gamma}(\alpha_j))$ be the corresponding estimators.
 - Compute the Wald statistic corresponding to the test of γ(α_j) = 0:

$$W_n(\alpha_j) = n\widehat{\gamma}(\alpha_j)'\widehat{V}_{as}^{-1}(\widehat{\gamma}(\alpha_j))\widehat{\gamma}(\alpha_j).$$

• Then define the estimator of α_0 as

$$\widehat{\alpha} = \arg\min_{j=1...J} W_n(\alpha_j)$$

and $\widehat{\beta} = \widehat{\beta}(\widehat{\alpha})$.

- See Chernozhukov and Hansen (2006) for the asymptotics and inference, and Christian Hansen's webpage for the Matlab code.
- N.B.: the method is especially convenient when dim(α) is low (1 or 2), otherwise it may be time consuming.

Quantile IV: an example

- There has been much debate on the efficiency of subsidized training programs (classroom training, on-the-job training, job search assistance...) on earnings.
- The usual problem for evaluating its causal effect is endogeneity (why here?).
- Abadie et al. (2002) use a large random experiment conducted in the US on the Job Training Partnership Act (JTPA).
- In this experiment, 11,202 people were assigned randomly in a "treatment" or "control". However, among people of the treatment group, only 60% actually receive training. Thus, receiving training is probably endogenous.
- On the other hand, the experiment provides us with a valid instrument.

Quantile IV: an example

Here are the results obtained by Abadie et al. (2002):

Impact of training on 30-month earnings (in percentage of earnings)

	Men		Women	
Method	Without IV	IV	Without IV	IV
Linear reg.	21.2	8.6	18.5	14.6
$q_{0.15}$	135.6	5.2	60.8	35.5
q _{0.25}	75.2	12.0	44.4	23.1
q 0.50	34.5	9.6	32.3	18.4
q _{0.75}	17.2	10.7	14.5	10.1
q _{0.85}	13.4	9.0	8.1	7.4

Outline

Introduction

The linear model

Projection

The estimating equation approach

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

The control variable approach

A first generalization to additive model

Consider the model (see Newey, Powell and Vella, 1999):

$$\begin{cases} Y = \varphi(X) + \varepsilon \\ X = \psi(Z) + \nu \end{cases} \quad Z \perp (\varepsilon, \nu) \text{ (also, } E(\varepsilon) = 0) \end{cases}$$

The exogeneity condition on Z implies that E(ε|X, ν) = E(ε|ν). Then:

$$E(Y|X,\nu) = \varphi(X) + E(\varepsilon|\nu,X)$$

= $\varphi(X) + E(\varepsilon|\nu).$

We can identify φ by 1) regressing nonparametrically X on Z to obtain ν and 2) regressing nonparametrically Y on X and ν.

A first generalization to additive model

Identification is secured if

$$h_1(X) + h_2(\nu) = 0 \Rightarrow h_1(X) = -h_2(\nu) = \text{constant.}$$

- This is a mild restriction that holds if Z is continuous but even with a discrete (at least ternary) Z.
- Thus this approach requires far less than the completeness condition in terms of the dependence between X and Z.
- On the other hand, it is more restrictive than the estimating equation approach on the instrument: Z ⊥⊥ (ε, ν) is stronger than E(ε|Z) = 0.
- Also, this approach rules out limited X or limited Y.

A first generalization to additive model

- To estimate φ , we first estimate ν_i . We regress nonparametrically X on Z and let $\widehat{\nu}_i = X_i - \psi(Z_i)$.
- We then have to recover φ in the nonparametric additive model $E(Y|X,\nu) = \varphi(X) + g(\nu)$, with $E[g(\nu)] = 0$.
- A first solution is marginal integration, which is based on the following equality:

$$\int E(Y|X,\nu=u)dF_{\nu}(u)=\varphi(X)+E(g(\nu))=\varphi(X).$$

Then: 1) estimate by a kernel estimator $\widehat{E}(Y|X,\widehat{\nu})$ and 2) define $\widehat{\varphi}(.)$ by:

$$\widehat{\varphi}(x) = \frac{1}{n} \sum_{i=1}^{n} \widehat{E}(Y|X = x, \widehat{\nu} = \widehat{\nu}_i)$$

Another solution is to rely on sieves: regress Y on (separate) functions of X and functions of $\hat{\nu}$.

A second generalization to nonadditive model

Consider the nonadditive model (see Imbens and Newey, 2009):

$$\begin{cases} Y = \varphi(X,\varepsilon) \\ X = \psi(Z,\nu) \end{cases} \quad Z \perp (\nu,\varepsilon) \end{cases}$$

- ► Suppose also that ψ(Z,.) is strictly increasing.
- In this model it is difficult to recover φ directly. However, we can recover other quantities of interest such as:
 - the average structural function E(φ(x, ε)) or quantile structural function τ → q_τ(φ(x, ε)), i.e. averages or quantiles if everybody had X = x;
 - Average effects if X moved to ℓ(X): E[φ(ℓ(X), ε) − Y];
 - Average marginal effects $\Delta = E\left[\frac{\partial \varphi}{\partial x}(X,\varepsilon)\right]$.
- We focus hereafter on Δ. The identification of structural functions requires far more restrictive support conditions.

A second generalization to nonadditive model

First, we suppose without loss of generality that ν is uniform. Let $\psi_2^{-1}(z,.)$ denote the inverse of $\psi(z,.)$. Then

$$\begin{aligned} F_{X|Z}(x|Z) &= P(X \leq x|Z) = P(\psi(Z,\nu) \leq x|Z) \\ &= P(\nu \leq \psi_2^{-1}(Z,x)|Z) = \psi_2^{-1}(Z,x). \end{aligned}$$

Thus, $\nu = \psi_2^{-1}(Z, X) = F_{X|Z}(X|Z)$ is identified (as a generalized residual).

Second, because as previously, $X \perp\!\!\!\perp \varepsilon | \nu$,

$$E(Y|X, \nu) = \int \varphi(X, e) dF_{\varepsilon|\nu}(e).$$

Therefore, under regularity conditions,

$$\frac{\partial E(Y|X,\nu)}{\partial x} = \int \frac{\partial \varphi}{\partial x}(X,e) dF_{\varepsilon|\nu}(e|\nu) = E\left[\frac{\partial \varphi}{\partial x}(X,\varepsilon)|X,\nu\right].$$

A second generalization to nonadditive model

Hence,

$$E\left[\frac{\partial E(Y|X,\nu)}{\partial x}\right] = E\left[E\left[\frac{\partial \varphi}{\partial x}(X,\varepsilon)|X,\nu\right]\right] = \Delta.$$

• As a result, Δ is identified under rather mild restrictions.

- Main one: conditional on ν, X should have a continuous distribution ⇒ Z should be continuous as well.
- We can estimate Δ by a three step procedure:
 - estimate ν . For that we run a nonparametric regression of $\mathbb{1}\{X \leq x\}$ on Z, for several x. We obtain an estimator $\widehat{F}_{X|Z}$ of $F_{X|Z}$ and then let $\widehat{\nu}_i = \widehat{F}_{X|Z}(X_i|Z_i)$.
 - run a nonparametric regression of Y on X and v̂ and takes its derivative wrt x to get ∂Ê(Y|X, ν)/∂x.
 - Define

$$\widehat{\Delta} = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial \widehat{E}(Y|X,\nu)}{\partial x} (X_i, \widehat{\nu}_i).$$

Application to the "IV probit" model

- Following Rivers and Vuong (1989), consider the case φ(x, ε) = 1{x'β₀ + ε ≥ 0}, with ε ~ N(0, 1).
- Suppose that X = (X₀, X₁) where X₁ ∈ ℝ^k is exogenous but X₀ ∈ ℝ is endogenous (and β₀ = (β₀₁, β₀₂)).
- Suppose also that we have an instrument Z affecting X₀ but not Y directly. Specifically, assume that

$$X_0 = X_1 \gamma_1 + Z \gamma_2 + \nu,$$

with $(X_1, Z) \perp (\varepsilon, \nu)$, $\varepsilon = \rho \nu + \eta$ and $\eta | \nu \sim \mathcal{N}(0, \sigma^2)$. The last two conditions hold if (ε, ν) is gaussian, but they are weaker.

Application to the "IV probit" model

- Under these restrictions what we saw above simplifies drastically:
 - ν can be estimated by the residual of a linear regression of X₀ on (X₁, Z).
 - We have

$$Y = \mathbb{1}\{X_0\beta_{00} + X_1\beta_{01} + \rho\nu + \eta \ge 0\},\$$

where, under the conditions above, $\eta \perp (X_0, X_1, \nu)$ and $\eta \sim \mathcal{N}(0, \sigma^2)$. Thus, we can estimate $(\beta_{00}/\sigma, \beta_{01}/\sigma, \rho/\sigma)$ by a simple probit of Y on $(X_1, X_2, \hat{\nu})$.

Remark that

$$\frac{\partial \widehat{E}(Y|X,\nu)}{\partial x_0} = \frac{\beta_{00}}{\sigma} \varphi \left(\frac{X_0 \beta_{00} + X_1 \beta_{01} + \rho \nu}{\sigma} \right)$$

 Thus, we can get Δ using the usual formula of average marginal effects in probit models.

Conclusion

- The nonseparable model is convenient because it imposes no restriction on φ. Thus, we can handle limited Y.
- ► On the other hand, ψ(Z, .) is strictly increasing, which imposes X to be continuous...
- ▶ To sum up, we have solutions for either Y limited and X continuous (with control variables) or Y continuous and X limited (with estimating equations), but not when both Y and X are limited.
- To date, there is no "universal" solution for this problem. Particular solutions do exist, however:
 - Fully parametric models such as biprobit models;
 - Approaches based on "special regressors", see e.g. Lewbel (2000);
 - Use of control variable or estimating equations, but providing partial identification only (Chesher, 2010, Shaikh and Vytlacil, 2010...).