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Introduction

Brief history

I Median regression is older than linear regression: introduced by
Boscovitch in 1760, then Laplace (1789).

I Revisited by Edgeworth by the end of the 19th century. But overall
and compared to OLS, totally forgotten for a long time.

I Brought up to date with Koenker’s work, starting in the end of the
70’s.

I Has gained popularity in applied economics by the end of the 90’s,
when people realize the importance of heterogeneity.
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Introduction

Basic definitions and properties

I The τ -th quantile (τ ∈ (0, 1)) of a random variable U is defined by

qτ (U) = inf{x/FU(x) ≥ τ},

where FU denotes the distribution function of U. Note that when
FU is strictly increasing, qτ (U) = F−1

U (τ). Otherwise, qτ (U)
satisfies for instance:



q(U)



q(U)
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Introduction

Basic definitions and properties

I The quantile function τ 7→ qτ (U) is an increasing, left continuous
function which satisfy, for all a > 0 and b:

qτ (aU + b) = aqτ (U) + b. (1)

I Caution: qτ (U + V ) 6= qτ (U) + qτ (V ) in general.

I Conditional quantiles are simply defined as:

qτ (Y |X ) = inf{u/FY |X (u|X ) ≥ τ}.

I Similarly to conditional expectations, conditional quantiles are
random variables (as they depend on the random variable X ).

I Example: Y =monthly wage, X = 1male. Then if median wages are
1,770 for men and 1,420 for women,

q0.5(Y |X ) = 1, 420 + 350X .
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Model and motivation

The model

I Let Y ∈ R be the dependent variable and X ∈ Rp be the
explanatory variables, including the intercept. We consider here a
model of the form

Y = X ′βτ + ετ , qτ (ετ |X ) = 0. (2)

Equivalently, we have

qτ (Y |X ) = X ′βτ .

I This model is similar to the standard linear regression, except that
we replace the conditional expectation E (Y |X ) by a conditional
quantile.

I An important point is that βτ depends on the τ we consider.
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Model and motivation

First motivation: measuring heterogenous effects

I The effect of a variable may not be the same for all individuals.
Ignored in standard linear regressions, which focus on average
effects.

I But this heterogeneity may be important for public policy.

I First example: the effect of a class size reduction may have an effect
for low achieving students only ⇒ may be an effective policy even if
does not rise the average level by much.

I Second example: the effect of an increase of the minimum wage
(MW) on wages is likely large on low wages and far smaller on other
wages (still with some diffusion effects) ⇒ effect on inequalities.

I Formally, τ 7→ βMW ,τ decreases towards 0 as τ ↑ 1.
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Model and motivation

First motivation: measuring heterogenous effects

I Graphical interpretation with Y =wage and X = (1,1male)′.

I In the left plot, the wage gap is similar for each quantile ⇒ βmale,τ

does not depend on τ .

I In the right plot, the wage gap is a function of the quantile we
consider. βmale,τ is first negative, then positive.
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Model and motivation

First motivation: measuring heterogenous effects

I Second example: growth curve.
1-year children may gain from
' 200 grams per month (bottom
curve) to ' 400 grams per month
(top curve).

I Formally, this means that the age
(in month) coefficient satisfies
β0.03 ' 0.2 and β0.97 ' 0.4.

I Note that here, the effect of age is
not linear. One would have to add
age2 in the quantile regression.
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Model and motivation

Interpretation of the heterogeneity

I Consider for instance the “location-scale” model:

Y = X ′β + (X ′γ)ε,

where ε is independent of X and we suppose X ′γ ≥ 0.

I Restriction here: the shape of Y given X = x is the same for all x .
Example: wages are (approximately) lognormal for all
subpopulations.

I In this case, by (1):

qτ (Y |X ) = X ′ (β + γqτ (ε)) .

Hence, (2) holds with βτ = β + γqτ (ε).

I In the location-scale model with E (ε) = 0, βOLS = β. Running
OLS, we miss the fact that the effect of X differs according to
quantiles of the unobserved variable ε.
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Model and motivation

Interpretation of the heterogeneity

I Consider the more general random coefficient model:

Y = X ′βU , U|X ∼ U [0, 1], (3)

where for all x , τ 7→ x ′βτ is suppose to be strictly increasing.

I We thus consider a random coefficient model with a unique
underlying random variable, which determines the ranking of each
individual in terms of Y , within his “subpopulation” X (e.g.,
unobserved ability in the class size example).

I Under these assumptions,

P(Y ≤ X ′βτ |X ) = P(X ′βU ≤ X ′βτ |X ) = P(U ≤ τ |X ) = τ.

In other words, (2) holds for all τ ∈ (0, 1).



Semi and Nonparametric Econometrics

Model and motivation

Second motivation: robustness to outliers and to heavy
tails

I We want to draw inference on a variable Y ∗ but observe, instead of
Y ∗, “contaminated” data Y = CX ′α + (1− C )Y ∗, where C = 1 if
data are contaminated, 0 otherwise (C is unobserved). We suppose
that p = P(C = 1) is small but X ′α is large.

I Consider first a linear model E (Y ∗|X ) = X ′β.
Then, instead of β, OLS estimate (1− p)β + pα. The bias
p(α− β) may be large even if p is small.

I Now consider the quantile model qτ (Y ∗|X ) = X ′βτ .
In this case, qτ (Y |X ) = X ′β τ

1−p
so instead of βτ , we estimate β τ

1−p
.

It is independent of α and will typically be close to βτ . If some
components of βτ are independent of τ (homogenous effects), the
contamination does not affect their estimation.
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Model and motivation

Second motivation: robustness to outliers and to heavy
tails

I In a similar vein, consider a linear model

Y = X ′β + ε, X ⊥⊥ ε.

I If ε is symmetric around zero, we can estimate β with OLS or
median regression but we may prefer to estimate it with
median regression if ε has heavy tails.

I Indeed, if E (|ε|) =∞ (examples ?), OLS are inconsistent
whereas the median is always defined. One can show that the
estimator of the median regression is consistent.

I Useful in finance, insurance...
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Interpretation

Distinguishing several effects

I The interpretation of β in a linear regression E (Y |X ) = X ′β is
simple:

β =
∂E (Y |X = x)

∂x
= E

[
∂E (Y |X )

∂x

]
.

β is thus the average marginal effect of X on Y , either for those s.t.
X = x or for the whole population.

I Similarly, βτ in a quantile regression satisfies

βτ =
∂qτ (Y |X = x)

∂x
= E

[
∂qτ (Y |X )

∂x

]
,

which is the average marginal effect of X on the conditional
quantile of Y .

I It is often tempting to also interpret βτ as the effect of a small
variation in X for individuals at the τ -th quantile of Y |X = x .

I But this is possible only under a rank invariance condition.
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Interpretation

Individual vs aggregated effects

I To better understand this condition, consider the following potential
outcome model:

Y (x) = x ′βUx , with Ux ∼ U [0, 1] and τ 7→ x ′βτ ↑ . (4)

I Y (x) is the outcome an individual would have if his covariate was
equal to x . Observed outcome: Y = Y (X ).

I Example: Y (x) =wage an individual would get if his education level
was equal to X = x .

I In this model, for each possible x , an individual “draws” a random
term Ux , which then corresponds to his ranking in the distribution
of Y (x).

I Note that under the assumptions above, we have qτ (Y |X ) = X ′βτ .
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Interpretation

Individual vs aggregated effects

I In this setting, for someone at Ux = τ , we have

dY (x)

dx
= βτ + x ′

dβτ
dτ

dUx

dx
6= βτ in general.

I But the equality holds if Ux = U for all x , i.e. under a rank
invariance condition: individuals have the same ranking in the
distribution of Y (x), whatever x .

I Sometimes reasonable: e.g. X =minimum wage.

I Sometimes harder to swallow: e.g. X =education.

I Under the rank invariance condition, βτ can be interpreted as the
effect on Y of an increase of one unit of X among individuals at the
rank τ in the distribution of Y |X = x .
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Interpretation

An illustrative example

I Suppose we are interested in the effect of a new pedagogical
method on test score achievement.

I Let X = 1{new method} and Y (x) = test score when X = x .

I We use a randomized experiment to evaluate the effect of this
method. We observe X and Y = Y (X ).

I Suppose we have 5 equal-sized groups of students who react
differently to this method. For simplicity, students are supposed to
be identical in terms of (Y (0),Y (1)) within each group.
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Interpretation

An illustrative example

Using the table below, determine:

I the effect of the new method on the median score.

I the effect of the new method on individuals initially at the median;

I the median effect of the new method.

I what parameter(s) a median regression of Y on X identifies.

Group Y |X = 0 Y |X = 1

A 1 4
B 2 6
C 4 3
D 7 7
E 9 10
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Inference

The check functions

I It is easy to estimate the τ -th quantile of a random variable Y : we
simply consider the order statistic Y(1) < ... < Y(n) and estimate
qτ (Y ) by

q̂τ (Y ) = Y(dnτe),

where dnτe ≥ nτ > dnτe − 1.

I It does not seem obvious, however, to generalize this to quantile
regression.

I The key observation is the following property:

Proposition
Consider the check function ρτ (u) = (τ − 1{u < 0})u. Then:

qτ (Y ) ∈ arg min
a

E [ρτ (Y − a)] .
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Inference

The check functions

Proof: suppose for simplicity that Y admits a density fY . Then
we have

E [ρτ (Y − a)] = τ(E (Y )− a)−
∫ a

−∞
(y − a)fY (y)dy .

This function is differentiable, with

∂E [ρτ (Y − a)]

∂a
= −τ − (a− a)fY (a) +

∫ a

−∞
fY (y)dy = FY (a)− τ.

This function is increasing, thus a 7→ E [ρτ (Y − a)] is convex and
reaches its minimum at qτ (Y ) �
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Inference

The check functions

I The minimum need not be unique (there may be several solutions to
FY (a) = τ). When Y is not continuous, there may be no solution
to FY (a) = τ but we can still show that qτ (Y ) is a minimum of
E [ρτ (Y − a)].

I The τ -th quantile minimizes the risk associated with the
(asymmetric) loss function ρτ (.). This is similar to the expectation
which minimizes the risk corresponding to the L2-loss :

E (Y ) = arg min
a

E
[
(Y − a)2

]
.

I Similarly to conditional expectation, we can extend the reasoning to
conditional quantiles. We have

qτ (Y |X = x) ∈ arg min
a

E [ρτ (Y − a)|X = x ] .

Thus,integrating over PX ,

(x 7→ qτ (Y |X = x)) ∈ arg min
h(.)

E [ρτ (Y − h(X ))] .
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Inference

Definition of the estimator
I Suppose that qτ (Y |X ) = X ′βτ . We have, by the preceding

argument,
βτ ∈ arg min

β
E
[
ρτ (Y − X ′β)

]
. (5)

I We use this property to define the quantile regression
estimators. Suppose that we observe a sample (Yi ,Xi )i=1...n

of i.i.d. data, we let

β̂τ ∈ arg min
β

1

n

n∑
i=1

ρτ (Yi − X ′i β). (6)

I N.B.: when τ = 1/2 (median), this is equivalent to minimizing

1

n

n∑
i=1

|Yi − X ′i β|.

The corresponding solution is called the least absolute
deviations (LAD) estimator.
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Inference

Identification

I Before proving consistency of the estimator, we have to prove
identification of βτ by (5).

I In other words, is βτ the unique minimizer of

β 7→ E
[
ρτ (Y − X ′β)

]
?

I Sufficient condition: the residuals are continuously distributed
conditional on X and the matrix E

[
fετ |X (0)XX ′

]
is positive

definite.

I Very similar to the rank condition in linear regression
(=E [XX ′] positive definite).

I N.B.: this fails to hold when fετ |X (0) = 0. In the case without
covariate, this is close to being necessary because the
minimizer of (5) is not unique when the d.f. of ετ is flat at τ .
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Inference

Consistency

I Achieving consistency of β̂τ is not as easy as with OLS because we
have no explicit form of the estimator.

I We may use the special feature of ρτ , or use general consistency
theorems on M-estimators defined as

θ̂ = arg min
θ

1

n

n∑
i=1

ψ(Ui , θ). (7)

Theorem
(van der Vaart, 1998, Theorem 5.7) Let Θ denote the set of parameters θ
and suppose that for all δ > 0:

sup
θ∈Θ

∣∣∣∣∣1n
n∑

i=1

ψ(Ui , θ)− E (ψ(U1, θ))

∣∣∣∣∣ P−→ 0, (8)

inf
θ/d(θ,θ0)≥δ

E (ψ(U1, θ)) > E (ψ(U1, θ0)). (9)

Then any sequence of estimators θ̂n defined by (7) converges in
probability to θ0.
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Inference

Consistency

I Here Ui = (Yi ,Xi ) and ψ(U, θ) = ρτ (Y − X ′θ).

I Condition (9) is a “well-separated” minimum condition, which
is typically satisfied in our case under the identification
condition above and if we restrict Θ to be compact.

I The first condition is the most challenging. By the law of
large numbers, we have pointwise convergence but not, a
priori, uniform convergence. To achieve this, we may use
Glivenko-Cantelli theorems.

I The idea behind is that if the set of functions (ψ(., θ))θ∈Θ is
not “too large”, one can approximate the supremum by a
maximum over a finite subset of Θ and applies the law of
large numbers to each of the elements of this subset.
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Inference

Consistency
Example: the standard Glivenko-Cantelli theorem. Let us consider the
functions ψ(x , t) = 1{x ≤ t}. Then:

sup
t∈R

∣∣∣∣∣1n
n∑

i=1

ψ(Yi , t)− E (ψ(Y1, t))

∣∣∣∣∣ P−→ 0.

N.B.: letting Fn denote the empirical d.f. of Y , this can be written in a
more usual way as

sup
t∈R
|Fn(t)− F (t)| P−→ 0.

Proof (here for continuous Y ): fix δ > 0 and consider
t0 = −∞ < ... < tK =∞ such that F (tk)− F (tk−1) < δ. Then for all
t ∈ [tk−1, tk ],

Fn(t)− F (t) ≤ Fn(tk)− F (tk−1) ≤ Fn(tk)− F (tk) + δ

Similarly, Fn(t)− F (t) ≥ Fn(tk−1)− F (tk−1)− δ. Thus,

|Fn(t)− F (t)| ≤ max{|Fn(tk)− F (tk)|, |Fn(tk−1)− F (tk−1)|}+ δ.
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Inference

Consistency
As a result,

sup
t∈R
|Fn(t)− F (t)| ≤ max

i∈{0,...,K}
|Fn(ti )− F (ti )|+ δ.

By the weak law of large numbers, the maximum tends to zero. The
result follows �

This proof can be generalized to classes of functions different from
(1{. ≤ t})t∈R. A δ-bracket in Lr is a set of functions f with l ≤ f ≤ u,

where l and u are two functions satisfying
(∫
|u − l |rdF

)1/r
< δ . For a

given class of functions F , define the bracketing number N[ ](δ,F , Lr ) as
the minimum number of δ-brackets needed to cover F .

Proposition
(van der Vaart, 1998, Theorem 19.4) Suppose that for all δ > 0,
N[ ](δ,F , L1) <∞. Then

sup
f∈F

∣∣∣∣∣1n
n∑

i=1

f (Xi )− E (f (X1))

∣∣∣∣∣ P−→ 0.
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Inference

Consistency

The proposition applies to many cases, see van der Vaart (1998), chapter
19, for examples. In particular, it holds with parametric families satisfying

|ψ(Ui , θ1)− ψ(Ui , θ2)| ≤ m(Ui )||θ1 − θ2||, E (m(U1)) <∞. (10)

In quantile regression,

|ρτ (Y − X ′β1)− ρτ (Y − X ′β2)| ≤ max(τ, 1− τ)|X ′(β1 − β2)|
≤ ||X || × ||β1 − β2||.

Thus (10) holds provided that E (||X ||) <∞. This establishes

consistency of β̂τ since we can then apply the theorem above.
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Inference

Asymptotic normality

I We now investigate the asymptotic distribution of β̂τ .

I The usual method for smooth M-estimator is to use a Taylor
expansion. The first order condition writes as

1

n

n∑
i=1

∂ψ

∂θ
(Ui , θ̂) = 0. (11)

Then expanding around θ̂, we get

0 =
1

n

n∑
i=1

∂ψ

∂θ
(Ui , θ0)+

[
1

n

n∑
i=1

∂2ψ

∂θ∂θ′
(Ui , θ0)

]
(θ̂−θ0)+oP(||θ̂−θ0||).

Hence, provided that one can show that ||θ̂ − θ0|| = OP(1/
√

n), we
have[

1

n

n∑
i=1

∂2ψ

∂θ∂θ′
(Ui , θ0)

]
√

n(θ̂ − θ0) =
1√
n

n∑
i=1

∂ψ

∂θ
(Ui , θ0) + oP(1).
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Inference

Asymptotic normality

I By the weak law of large numbers, the central limit theorem and
Slutski’s lemma, we get:

√
n
(
θ̂ − θ0

)
L−→ N (0, J−1HJ−1),

where J = E
[
∂2ψ
∂θ∂θ′ (Ui , θ0)

]
and H = V (∂ψ∂θ (Ui , θ0)). This kind of

variance is often called a “sandwich formula”.

I N.B.: in the maximum likelihood case, −J = H = I0, the Fisher
information matrix, and the formula simplifies.

I In quantile regression, we cannot use such a Taylor expansion
directly since the derivative of ρτ (for u 6= 0) is the step function
ρ′τ (u) = τ − 1{u < 0}, which is not differentiable.

I The first order condition (11) may not hold exactly either. However,

0 can be replaced by oP

(
1√
n

)
, which will be sufficient subsequently.
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Inference

Asymptotic normality
Two key ideas for these kinds of situations:

I Even if θ 7→ ∂ψ
∂θ (Ui , θ) is not differentiable at θ0,

θ 7→ Q(θ) = E
[
∂ψ
∂θ (Ui , θ)

]
is usually (continuously) differentiable.

I Starting from (11), we then write:

0 =
1√
n

n∑
i=1

[
∂ψ

∂θ
(Ui , θ̂)− Q(θ̂)

]
+
√

n
(

Q(θ̂)− Q(θ0)
)

= Gn(θ̂) + Q ′(θ̃)
√

n(θ̂ − θ0). (12)

where θ̃ ∈ (θ0, θ̂) and Gn(θ) = 1√
n

∑n
i=1

[
∂ψ
∂θ (Ui , θ)− Q(θ)

]
. Gn is

a stochastic process (i.e., a random function) which is called the
empirical process.

I To show asymptotic normality of
√

n(θ̂ − θ0), it suffices to show

that Gn(θ̂) converges to a normal distribution.
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Inference

Asymptotic normality

I By the central limit theorem, for any fixed θ, Gn(θ) converges to a

normal distribution. Here however, θ̂ is random.

I The idea is to extend “simple” central limit theorem to convergence
of the whole process Gn to a continuous gaussian process G . This is
achieved through Donsker theorems.

I Such theorems may be seen as uniform CLT, just as
Glivenko-Cantelli were uniform LLN. Under such conditions, we can

prove that Gn(θ̂)
L−→ G (θ0), a normal variable.

I As previously, Donsker theorems can be obtained when the class of
functions F is not too large. For instance:

Proposition
(van der Vaart, Theorem 19.5) Gn, as a process indexed by f ∈ F ,
converges to a continuous gaussian process if∫ 1

0

√
ln N[ ](δ,F , L2)dδ <∞.
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Inference

Asymptotic normality

I Like previously, many classes of functions satisfy the bracketing
integral condition. In parametric classes where (10) holds, for
instance, one can show that for δ small enough,

N[ ](δ,F , L2) ≤ K

δd
.

Thus the bracketing integral is finite and one can apply the previous
theorem.

I Coming back to (12), we have, under the bracketing integral
condition,

√
n
(
θ̂ − θ0

)
L−→ N

(
0,Q ′(θ0)−1V

(
∂ψ

∂θ
(Ui , θ0)

)
Q ′(θ0)−1

)
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Inference

Asymptotic normality

I Application to the quantile regression: the bracketing integral
condition is satisfied, thus it suffices to check the differentiability of
Q(β) at βτ . Here, ∂ψ/∂θ(Ui , θ) = − (τ − 1{Y − X ′θ < 0}) X .
Thus,

−Q(β) = τE (X )− E [1{ετ < X ′(β − βτ )}X ]

= τE (X )− E
[
Fετ |X (X ′(β − βτ )|X )X

]
I Thus, provided that ετ admits a density conditional on X at 0, Q(.)

is differentiable and

Q ′(βτ ) = E
[
fετ |X (0|X )XX ′

]
.

I Besides,

V

(
∂ψ

∂θ
(Ui , θ0)

)
= E {V [(τ − 1{Y − X ′βτ < 0}) X |X ]}

= τ(1− τ)E [XX ′] .
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Inference

Asymptotic normality

I Finally, we get:

√
n
(
β̂τ − βτ

)
L−→ N

(
0, τ(1− τ)E

[
fετ |X (0|X )XX ′

]−1
E
[
XX ′

]
E
[
fετ |X (0|X )XX ′

]−1
)
.

I Remark 1: if Y = X ′β + ε where ε is independent of X (location
model), ετ = ε− qτ (ε) and the asymptotic variance Vas reduces to

Vas =
τ(1− τ)

fε(qτ (ε))2
E [XX ′]

−1
.

This formula is similar to the one for the OLS estimator, except that
σ2 is replaced by τ(1− τ)/fε(qτ (ε))2. In general, as we let τ → 1

or 0, fε(qτ )2 becomes very small and thus β̂τ becomes imprecise.
This is logical since data are often more dispersed at the tails.
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Inference

Asymptotic normality

I Remark 2: this result applies in particular to simple quantiles q̂τ , in
which case we have:

√
n (q̂τ − qτ )

L−→ N
(

0,
τ(1− τ)

f 2
Y (qτ )

)
.

I Remark 3: we can also generalize it to parameters (βτ1 , ..., βτm)
corresponding to different quantiles:

√
n
(
β̂τk − βτk

)m
k=1

L−→ N (0,V ) , (13)

where V is a m ×m block-matrix, whose (k , l) block Vk,l satisfies

Vk,l = [τk ∧ τl − τkτl ] H(τk)−1E [XX ′] H(τl)
−1

and as before, H(τ) = E
[
fετ |X (0)XX ′

]
.
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Inference

Confidence intervals and testing

I This result is useful to build confidence intervals or test
assumptions on βτ .

I However, to obtain estimators of the asymptotic variance, one
has to estimate fετ |X (0|X ), which is a difficult task.

I Alternative solutions have thus been proposed for inference:
I using rank tests (not presented here);
I using bootstrap or, more generally, resampling methods;
I making finite sample inference.
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Inference

Asymptotic variance estimation

I In the location model, Vas = τ(1− τ)E (XX ′)−1/fε(qτ (ε)), and the
only problem is the denominator. Note that

1

fε(qτ (ε))
=

1

fε(F−1
ε (τ))

=
∂F−1

ε

∂τ
(τ)

= lim
h→0

F−1
ε (τ + h)− F−1

ε (τ − h)

2h
.

I Thus we can estimate this term by, e.g.,
(F̂−1
ε (τ + hn)− F̂−1

ε (τ − hn))/2hn.

I Like often, hn must be chosen so as to balance bias and variance.
Several choices have been proposed. Minimally, we must have,
hn → 0 and nhn →∞.

I This is (roughly) the estimator provided by default in Stata.
However, the corresponding variance estimator is inconsistent in
general when ε is not independent of X .
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Inference

Asymptotic variance estimation

I In this general case, main difficulty: estimate J = E (fετ |X (0|X )XX ′].
A simple solution (Powell, 1991) relies on the following idea:

J = lim
h→0

E

[
1{|ετ | ≤ h}

2h
XX ′

]
.

I Letting ε̂iτ = Yi − X ′i β̂τ , we thus may estimate J by (with also hn

“small but too small”):

Ĵ =
1

2nhn

n∑
i=1

1{|ε̂iτ | ≤ hn}XiX
′
i . (14)

I Other solution (cf. Koenker and Machado, 1999): if
qτ ′(Y |X ) = X ′βτ ′ for τ ′ close to τ ,

fετ |X (0|X ) =
1

∂qτ (Y |X )/∂τ
= lim

h→0

2h

X ′βτ+h − X ′βτ−h
.
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Inference

Asymptotic variance estimation

I With a consistent estimator of Vas in hand, we can easily make
inference on βτ .

I Confidence interval on βτ :

ICα =

[
β̂τ − z1−α/2

√
V̂as, β̂τ + z1−α/2

√
V̂as

]
,

where z1−α/2 is the 1− α/2-th quantile of the N (0, 1) distribution.

I The Wald statistic test of g(βτ ) = 0 writes

T = ng(β̂τ )′
[
∂g

∂β′
(βτ )V̂as

∂g

∂β
(βτ )

]−1

g(β̂τ ),

and it tends to a χ2
dim(g) under the null hypothesis.
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Inference

Bootstrap

I The previous approach requires to choose a smoothing
parameter hn, and results may be sensitive to this choice.

I Alternatively, we can use bootstrap by implementing the
algorithm:
For b = 1 to B:
- Draw with replacement a sample of size n from the initial
sample (Yi ,Xi )i=1...n. Let (k∗b1, ..., k

∗
bn) denote the

corresponding indices of the observations;
- Compute β̂∗τb = arg minβ

∑n
j=1 ρτ (Yk∗bj

− X ′k∗bj
β).
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Inference

Bootstrap

I Then we can estimate the asymptotic variance by

V ∗as =
1

B

B∑
b=1

(β̂∗τb − β̂)2.

I Confidence intervals or hypothesis testing may be conducted
as before, using the normal approximation.

I Alternatively (percentile bootstrap), you can compute the
empirical quantiles q∗u of (β̂∗τ1, ..., β̂

∗
τB) and then define a

confidence interval as

IC1−α = [q∗α/2, q
∗
1−α/2].

I N.B.: there are other (quicker) resampling methods
specialized for the quantile regression, see Koenker (1994),
Parzen et al. (1994) and He and Hu (2002).
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Inference

Finite sample inference

I Simple yet very recently developed idea (Chernozhukov et al., 2009,
Coudin and Dufour, 2009): if βτ = β0, then
Bi (β0) = 1{Yi − X ′i β0 ≤ 0} is such that

Bi (β0)|Xi ∼ Be(τ).

I As a result, for all g(.) and positive definite Wn, under the
hypothesis βτ = β0, the distribution of

Tn(β0) =

(
1√
n

n∑
i=1

(τ − Bi (β0))g(Xi )

)′
Wn

(
1√
n

n∑
i=1

(τ − Bi (β0))g(Xi )

)

is known (theoretically at least). Letting z1−α denote its (1− α)-th
quantile, we reject the null hypothesis if Tn(β0) > z1−α.

I In practice, the distribution of Tn(β0) under the null can be
approximated by simulations.
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Inference

Finite sample inference

I We can then define a confidence region by inverting the test:
CR1−α = {β/Tn(β) ≤ z1−α}. Indeed, letting βτ denote the true
parameter,

Pr(CR1−α 3 βτ ) = Pr (Tn(βτ ) ≤ z1−α)

≥ 1− α.

I This is a general procedure to build confidence regions from a test.

I To obtain confidence interval on a real-valued parameter ψ(βτ ), we
let

IC1−α = {ψ(β), β ∈ CR1−α}.
This is known as the projection method (see, e.g., Dufour and
Taamouti). Corresponding confidence intervals are conservative.

I The computation of such confidence regions / intervals may be
demanding. See Chernozhukov et al. (2009) for MCMC methods
that partially alleviate this issue.
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Inference

Testing homogeneity of effects

I As mentioned before, an interesting property of quantile regression
is that it allows for heterogeneity of effects of X across the
distribution of Y . A byproduct is that they also provide tests for the
homogeneity hypothesis.

I Let X = (1,X−1) and βτ = (β1τ , β−1τ ) and T denote a set
included in [0, 1], the test formally writes as

β−1τ = β ∀t ∈ T .

This may be seen as testing for the location model Y = X ′β + ε,
with ε ⊥⊥ X .

I If the set T is finite, we can use (13) to implement such a test. If
the set is infinite, this is far more complex and can be achieved
using the convergence of τ 7→ β̂τ as a process (see Koenker and
Xiao, 2002).
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Computational aspects

Computation of β̂τ .

I There is no explicit solution to (6) so one has to solve the program
numerically.

I An issue is the non differentiability of the objective function.
Standard algorithms such as the Newton-Raphson cannot be used
here.

I The key idea is to reformulate (6) as a linear programming problem:

min
(β,u,v)∈Rp×R2n

+

τ1′u + (1− τ)1′v s.t. Xβ + u − v − Y = 0,

where X = (X1, ...,Xn)′, Y = (Y1, ...,Yn)′ and 1 is a n-vector of 1.

I Such linear programming problems can be efficiently solved by
simplex methods (for small n) or interior point methods (large n).
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Computational aspects

Computation of β̂τ .

I Simplex method: consider a linear programming problem of the form

min
x∈Rn

c ′x s.t. x ∈ S = {u/Au ≥ b,Bu = d}, (15)

where c ∈ Rn, A and B are two matrices and “≥” is considered
elementwise.

I Then one can show that (i) S is a convex polyhedron and (ii) if
solutions exist, then they are vertices of S .

I Basically, the simplex method consists of going from one vertex to
another, choosing each time the steepest descent.

I Interior point methods: consider (15) with A = In and b = 0, the
idea is to replace (15) by

min
x∈Rn

c ′x − µ
n∑

k=1

ln xk s.t. B x = d . (16)

(16) can be solved easily with a Newton method. Then let µ→ 0.
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Computational aspects

Software programs

I SAS: proc quantreg.

proc quantreg data=(dataset) algorithm=(choice of algo.) ci=

(method for performing confidence intervals);

class (qualitative variables);

model (y) = (x) /quantile = (list of quantiles or ALL);

run;

I By default, the simplex method is used. One should switch to
an interior point method (by letting algorithm=interior)
for n ≥ 1000.

I By default, the confidence intervals are computed by inverting
rank-score tests when n ≤ 5000 and p ≤ 20, and resampling
method otherwise (N.B.: the latter provide more robust
standard error estimates).
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Computational aspects

Software programs

I Stata: command sqreg:

sqreg depvar indepvars , quantiles(choice of quantiles)

I Standard errors are obtained by bootstrap ⇒ can be long.

I N.B: the command qreg computes only one quantile
regression, with standard errors valid for the location model
only. The command bsqreg computes only one quantile
regression, with bootstrap standard errors.
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Computational aspects

Software programs

I A very complete R package has been developed by R.
Koenker: quantreg.

library(quantreg)

rq(y ~ x1 + x2, tau = (single quantile or vector of

quantiles), data=(dataset), method=("br" or "fn"))

I To obtain inference on all quantiles put tau = -1 (or any
number outside [0, 1]).

I method ="br" corresponds to the Simplex (default), while
”fn” is an interior point method.

I a tutorial is available at Roger Koenker’s webpage.
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Computational aspects

An example

I I look at the impact of various factors on birth weight, following
Abreveya (2001). Indeed, a low birth weight is often associated with
subsequent health problems, and is also related to educational
attainment and labor market outcomes.

I Quantile regression provides a more complete story than just
running a probit on the dummy variable (birth weight < arbitrary
threshold).

I The analysis is based on exhaustive 2001 US data on birth
certificates. I restrict the sample to singleton births with mothers
black or white, between the ages of 18 and 45, resident in the US
(roughly 2.9 million observations).

I Apart from the gender, information on the mother is available:
marital status, age, being black or white, education, date of the first
prenatal visit, being a smoker or not, number of cigarettes smoked
per day...
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Computational aspects

An example

I SAS code:
ods graphics on;

proc quantreg data=birth weights ci=sparsity/iid alg=interior(tolerance=1e-4);

model birth weight = boy married black age age2 high school some college

college prenatal second prenatal third no prenatal smoker

nb cigarettes /quantile= 0.05 to 0.95 by 0.05 plot quantplot;

run;

ods graphics off;

I Stata code:
sqreg birth weigh boy married black age age2 high school some college prenatal second

prenatal third no prenatal smoker nb cigarettes, quantiles(0.05 0.1 0.2 0.3 0.4

0.5 0.6 0.7 0.8 0.9 0.95)

I Stata is quite long here (1 hour for a single quantile with 20
bootstrap replications). To run SAS on large databases like
this one, you may have to increase the available memory.
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An example
                            Quantile and Objective Function 
 
                        Quantile                            0.1 
                        Objective Function         31108564.261 
                        Predicted Value at Mean       2727.4037 
 
 
                                  Parameter Estimates 
 
                                    Standard   95% Confidence 
        Parameter       DF Estimate    Error       Limits      t Value Pr > |t| 
 
        Intercept        1 2150.419  41.9615 2068.176 2232.662   51.25   <.0001 
        boy              1  83.8925   3.8034  76.4380  91.3471   22.06   <.0001 
        married          1  64.9045   4.9650  55.1734  74.6357   13.07   <.0001 
        black            1 -251.465   5.4947 -262.234 -240.696  -45.77   <.0001 
        age              1  38.3584   3.0443  32.3916  44.3251   12.60   <.0001 
        age2             1  -0.6657   0.0523  -0.7682  -0.5631  -12.73   <.0001 
        high_school      1   6.5725   5.7090  -4.6170  17.7620    1.15   0.2496 
        some_college     1  36.6800   6.4022  24.1319  49.2281    5.73   <.0001 
        college          1  76.1075   6.7700  62.8384  89.3765   11.24   <.0001 
        prenatal_second  1  -4.1840   5.9940 -15.9321   7.5641   -0.70   0.4852 
        prenatal_third   1  22.2022  12.2669  -1.8405  46.2449    1.81   0.0703 
        no_prenatal      1 -472.532  19.1648 -510.095 -434.970  -24.66   <.0001 
        smoker           1 -156.928  10.6564 -177.815 -136.042  -14.73   <.0001 
        nb_cigarettes    1  -5.8266   0.8140  -7.4221  -4.2311   -7.16   <.0001 
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Panel data

The model and problems

I A way to address endogeneity is to follow units through time, using
panel data.

I Idea in the linear model with mean restrictions: introducing a fixed
effect that captures this endogeneity and getting rid of it through
differencing:

Yit = Xitβ + αi + εit , E (εit |Xi1, ...,XiT ) = 0

⇒WYit = WXitβ + W εit , E (W εit |WXit) = 0. (17)

where W is the within operator, WUit = Uit − U i .
E (W εit |WXit) = 0 implies that the OLS estimator (=within
estimator) of (17) is consistent.
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Panel data

The model and problems

I E (W εit |WXit) = 0 holds by linearity of the expectation. This is not
true for quantiles, however. Thus, if

Yit = Xitβτ + αiτ + εitτ , qτ (εit |Xi1, ...,XiT ) = 0, (18)

a quantile regression on the within equations does not provide a
consistent estimator of βτ in general.

I Moreover, making the “large” quantile regression of Yit on
(Xit , (1j)j=1...n) does not work because of the incidental parameters
problem: the number of parameters to estimate (βτ , α1τ , ..., αnτ )
tends to infinity as n→∞.

I This problem makes the asymptotic properties of estimators
nonstandard. In general the estimators are inconsistent.

I Another issue is the computational burden, because one has to
optimize over a very large space.
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Panel data

A solution: Canay (2011)

I A solution has been proposed by Canay (2011). Suppose that

Yit = XitβUit + αi , (19)

where αi and Uit are unobserved, Uit |Xit , αi ∼ U[0, 1]. Then, Eq.
(18) holds with εit = Xit(βUit − βτ ).

I The main restriction is that individual heterogeneity correlated with
Xit should have a pure location effect. No scale effect for instance
(as in a model Yit = Xit(βUit + γi ) + αi ).

I Canay (2011) proposes the following simple two-step estimator:

1. Within estimation of the linear regression

Yit = Xitβµ + αi + uit , with E (uit |Xit , αi ) = 0.

From this estimation of βµ = E [βU ], we can estimate

individual fixed effects: α̂i = 1
T

∑T
t=1(Yit − Xit β̂µ).

2. Standard quantile regression of Ỹit = Yit − α̂i on Xit .
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Panel data

A solution: Canay (2011)

I Canay shows that the corresponding estimator is consistent and
asymptotically normal estimator, but only as T →∞. Very strong
condition (very often T ≤ 10...).

I Koenker (2004) proposes an estimator based on the “large” quantile
regression, with an L1 penalization of the fixed effects. But it is
more cumbersome and suffers from the same limitations (location
effect, consistency only as T →∞).

I Both have been implemented on R (see Ivan Canay’s website and
the package rqpd for Koenker’s solution).

I For the moment no consistent estimator has been proposed for fixed
T .
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Nonlinear models

Introduction

I We consider here extensions of the quantile linear regression
to nonlinear models of the form

Y = g(X ′β0 + ε), (20)

where g is a nonlinear function.

I It is difficult to use restrictions of the kind E (ε|X ) = 0 in (20)
because in general, E (Y |X ) 6= g(X ′β0).

I On the other hand, by an equivariance property, quantile
restrictions are easy to use in such models.
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Nonlinear models

The basic idea

The equivariance property can be stated as follows:

Proposition
Let g be an increasing, left continuous function, then

g(qτ (Y )) = qτ (g(Y )).

Proof: recall that qτ (g(Y )) = inf{x ∈ R/Fg(Y )(x) ≥ τ}. we have

τ ≤ P(Y ≤ qτ (Y )) ≤ P(g(Y ) ≤ g(qτ (Y ))).

Thus, g(qτ (Y )) ≥ qτ (g(Y )). Conversely, let u = qτ (g(Y )) and
g−(v) = sup{x/g(x) ≤ v}. Then

τ ≤ P(g(Y ) ≤ u) ≤ P(Y ≤ g−(u)).

As a result, g−(u) ≥ qτ (Y ). Because g is left continuous,

g(g−(u)) ≤ u. Thus, qτ (g(Y )) = u ≥ g(qτ (Y )), which ends the proof.
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Nonlinear models

The basic idea

I Now consider Model (20) with qτ (ε|X ) = 0. If g is increasing and
left continuous, we have

qτ (Y |X ) = g(qτ (X ′β0 + ε|X )) = g(X ′β0).

I By the same argument as previously, it follows that

β0 ∈ arg min
β

E [ρτ (Y − g(X ′β))] .

I Thus, compared to a linear quantile regression, we simply add g in
the program.

I This comes however at the cost of some identification, estimation
and implementation issues, as we shall see below.
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Nonlinear models

The basic idea

I Although this idea is general, we study in details two
examples: binary and tobit models. In the first,
g(x) = 1{x > 0} and in the second, g(x) = max(x , 0).

I Note that an alternative nonlinear model would be

Y = µ(X , β0) + ε, qτ (ε|X ) = 0.

Such an extension leads to a similar optimization program as
above and is thus not considered afterwards.
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Nonlinear models

First example: binary models

I Consider the following model:

Y = 1{X ′β0 + ε > 0}.

I We would like to identify and estimate β without imposing
arbitrary assumptions such as ε|X ∼ N (0, 1) (Probit models).

I In particular, we would like to allow for heteroskedasticity and
leave the distribution of ε unspecified.

I Note that a scale normalization is necessary. We suppose for
instance that the first component of β0 is equal to 1 or -1.
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Nonlinear models

First example: binary models

I First attempt: E (ε|X ) = 0.

I We have

P(Y = 1|X = x) =

∫ ∞
−x ′β0

dFε|X=x(u),

and the model imposes that
∫∞
−∞ udFε|X=x(u) = 0.

I Consider β 6= β0. For all x , it is possible (exercise...) to build
a distribution function Gx 6= Fε|X=x such that:∫ ∞

−x ′β
dGx(u) = P(Y = 1|X = x)∫ ∞

−∞
udGx(u) = 0.

I This implies that β0 is not identified here.
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Nonlinear models

First example: binary models

I Second attempt: qτ (ε|X ) = 0. In this case, by the
equivariance property:

qτ (Y |X ) = 1{X ′β0 > 0}.

I To achieve identification, we must therefore have:

1{X ′β > 0} = 1{X ′β0 > 0} a.s.⇒ β = β0.

I The following conditions are sufficient for that purpose
(Manski, 1988):

A1 there exists one variable (say X1) which is continuous and
whose density (conditional on X−1) is almost everywhere
positive.

A2 The (Xk)1≤k≤K are linearly independent.
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Nonlinear models

First example: binary models

I We use the standard characterization and consider:

β̂ = arg min
β

1

n

n∑
i=1

ρτ (Yi − 1{X ′i β > 0}).

I When τ = 1/2, the estimator is called the maximum score
estimator, because one can show that:

β̂ = arg max
β

1

n

n∑
i=1

Yi1{X ′i β > 0}+ (1− Yi )1{X ′i β ≤ 0}.

I Note that this program is neither differentiable in β, nor even
continuous. This raises trouble in both the asymptotic
behavior of β̂ and its computation.
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Nonlinear models

First example: binary models

I Kim and Pollard (1990) show that

n1/3(β̂ − β0)
L−→ Z = arg max

θ∈Vect(β0)⊥
W (θ),

where W is a multidimensional gaussian process (see Kim and
Pollard for its exact distribution).

I The reason why we get a nonstandard convergence rate is that
contrary to previously, β̂ does not solve a (even approximate) first
order condition. For general discussion on rates of convergence of
M-estimator, see e.g. Van der Vaart (1998), Section 5.8.

I Inference is difficult because the distribution of Z has no exact form
and depends on nuisance parameters. Moreover, bootstrap fails in
this context (see Abrevaya and Huang, 2005). Instead, one may use
subsampling (see Delgado, Rodriguez-Poo and Wolf, 2001).
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Nonlinear models

First example: binary models

I There are also some computational issues, because
(i) the objective function is a step function and
(ii) we cannot rewrite the program as a linear programming
problem.

I A first algorithm is provided by Manski and Thompson
(1986), but it may reach a local solution only. A recent
solution based on mixed integer programming has been
proposed by Florios and Skouras (2008).

I To my knowledge, it has not been implemented yet in
standard softwares.
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Nonlinear models

First example: binary models

I To circumvent the trouble caused by the nonregularity of the
objective function, Horowitz (1992) has proposed to replace
1{X ′β > 0} by K (X ′β/hn), where K is a smooth distribution
function and hn → 0, in the objective function.

I He shows under mild regularity conditions that his estimator
has a faster rate of convergence (still lower than

√
n yet) and

is asymptotically normal. He also shows the validity of the
bootstrap.

I Implementation is also easier as the objective function is
smooth.
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Nonlinear models

Second example: Tobit models

I Consider the simple tobit model:

Y = max(0,X ′β0 + ε).

I Such a model is useful for consumption or top-coding (in
which case max and 0 are replaced by min and y), among
others.

I The standard Tobit estimator is the ML estimator of a model
where ε|X ∼ N (0, σ2).

I Powell (1984) considers instead the quantile restriction:
qτ (ε|X ) = 0.



Semi and Nonparametric Econometrics

Nonlinear models

Second example: Tobit models

I In this case, as mentioned before:

qτ (Y |X ) = max(0,X ′β0).

I Thus, identification of β0 is ensured as soon as:

max(0,X ′β) = max(0,X ′β0)⇒ β = β0.

I This is true for instance if E (XX ′1{X ′β0 ≥ δ}) (for some
δ > 0) is full rank and the distribution of ε conditional on X
admits a density at 0.
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Nonlinear models

Second example: Tobit models

I The estimator satisfies

β̂ = arg min
β

1

n

n∑
i=1

ρτ
(
Yi −max(0,X ′i β)

)
.

I Contrary to the previous binary model, the program is
continuous (and differentiable except on some points). A
consequence is that the behavior of β̂ is more standard.

I Powell shows indeed that
√

n
(
β̂ − β0

)
L−→ N

(
0, J−1HJ−1

)
where

J = E
[
fετ |X (0|X )1{X ′β0 ≥ 0}XX ′

]
,

H = E
[
1{X ′β0 ≥ 0}XX ′

]
.



Semi and Nonparametric Econometrics

Nonlinear models

Second example: Tobit models

I Buchinsky (1991, 1994) proposes an iterative linear programming
algorithm based on the decomposition:

β̂ = arg min
β

1

n

 ∑
i/X ′i β≥0

ρτ (Yi − X ′i β) +
∑

i/X ′i β<0

ρτ (Yi )

 .
1. Set D0 = {1, ..., n}, β̂0 = 0 (for instance) and m = 1.

2. Repeat until β̂m = β̂m−1:

Estime a quantile regression on Dm−1. Let β̂m be the

corresponding estimator and Dm = {i/X ′i β̂m ≥ 0}. Set
m = m + 1.

I Buchinsky (1994) shows that if this algorithm converges, then it
converges to a local minimum of the objective function.

I This algorithm is implemented in Stata for τ = 1/2 (clad).
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Second example: Tobit models

I Inference can be based on the estimation of the asymptotic
variance, as in quantile regression.

I Alternatively, one may use a modified bootstrap proposed by
Bilias, Chen and Ying (2000):
For b = 1 to B:
- Draw with replacement a sample of size n from the initial
sample (Yi ,Xi )i=1...n. Let (k∗b1, ..., k

∗
bn) denote the

corresponding indices of the observations;
- Compute β̂∗b = arg minβ

∑n
j=1 ρτ (Yk∗bj

−X ′k∗bj
β)1{X ′k∗bj β̂ > 0}.

I Note that each bootstrap estimator β̂∗b can be obtained easily
by a standard quantile regression since the indicator term does
not depend on β.
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