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We numerically study the matching between workers and firms in the setting of [Choné and Kra-
marz, 2022] where firms choose their size and aggregate their employees’ skills to produce output.
To allow for skill aggregation within firms and for endogenous choice of size, we rely on weak forms
of optimal transport developed in [Gozlan et al., 2017] and [Choné et al., 2022], where the transport
cost is allowed to be nonlinear in the transport plan and mass is transported from the worker’s
space to the firms’ space through normalized or unnormalized kernels.

In this paper, we develop mirror descent algorithms to solve the primal and dual versions of
weak optimal transport problems with normalized and unnormalized kernels. The main numerical
challenge lies in the transportation constraints that are costly to project onto. We derive an upper
bound of the error which we use to monitor the convergence of the algorithms.

We run experiments to check the consistency of the algorithms in cases where the transport
plan or the value of the optimum are characterized as closed-form solutions or through differential
equation. In the case where workers have multidimensional skills, we check theoretical predictions
about how the wages and the sorting of workers into firms vary as the proportion of specialist
workers in the economy increases.
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1 INTRODUCTION
This paper provides numerical methods to compute optimal matching between workers and
firms in a setting where workers differ in their skills and firms (i) endogenously choose
their size; (ii) aggregate their employees’ skills to produce output; and (iii) differ in their
exogenous production technology, i.e., in the way they transform their employees’ aggregate
skills into output. The firms’ ability to aggregate the skills of their employees is what makes
labor markets different from most markets where buyers generally cannot aggregate the
characteristics of consumption goods.1

Considering the two distributions that represent firms’ heterogeneity in technology and
workers’ heterogeneity in skills, [Choné and Kramarz, 2022] express this many-to-one match-
ing problem in the framework of optimal transport (OT) theory. In the primal version of
the problem, the objective is to maximize total output in the economy. Yet the output
produced by a firm obtains by applying its production function to the total skills of its
employees. Because production functions are generally nonlinear, the produced output is
not the sum of the output that would be produced by each individual employee separately.
The objective of the primal problem, therefore, cannot be expressed as the integral of a
variable (a “transport cost”) that would depend on each individual firm and each individual
worker.

For this fundamental reason, the ability of firms to aggregate their employees’ skills re-
quires to extend the standard OT framework in two directions. First, it requires to allow
the transport cost between a firm with technology 𝑥 and workers with skills 𝑦 to depend
non linearly on the measure 𝜋𝑥 (𝑑𝑦) of the employees’ skills. This idea has been formalized
by [Alibert et al., 2019, Gozlan et al., 2017] and given rise to the notion of weak optimal
transport, hereafter abbreviated as WOT. In the WOT framework, the measure or “kernel”
𝜋𝑥 (𝑑𝑦) is constrained to be a probability measure. Second, in our matching problem, the
total mass of the 𝜋𝑥 (𝑑𝑦) represents the number of workers employed by a firm with tech-
nology 𝑥 . At a competitive equilibrium, this number may vary across firms. In particular,
more productive firms tend to recruit more employees. To allow the sizes of firms to be en-
dogenously determined in equilibrium, [Choné et al., 2022] generalized the WOT framework
and introduced the notion of weak optimal transport with unnormalized kernel, henceforth
WOTUK, where the kernels 𝜋𝑥 (𝑑𝑦) are positive measures that can have any nonnegative
mass.

In this paper, we present algorithms to solve the WOT and WOTUK problems numeri-
cally, when the considered measures are discrete. If the production function is concave, weak
optimal transport (WOT) defines a convex optimization problem over the transportation
polytope [Paty and Cuturi, 2020]. Nevertheless, algorithms to compute WOT when the
measures are discrete have only been proposed in the special case of quadratic barycentric
WOT [Cazelles et al., 2021] (see subsection 2.2 for a precise definition). In their recent
preprint, [Korotin et al., 2022] propose to use neural networks to approximate the WOT
problem, but do not provide guarantees for their optimization procedure.

The paper is organized as follows. In Sections 2 and 3, we recall theoretical results for
the primal and dual versions of the WOT and WOTUK problems while providing economic
interpretations in our matching context. We present numerical algorithms in Section 4
and provide an upper bound for the approximation of the primal objective. In Section 5, we
show the convergence of the algorithm and compute the numerical guarantee on an economic

1Two cars do not provide the same utility as a single, more powerful one.
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example. In Section 6, we confront the algorithm to various theoretical predictions. Section 7
concludes and present avenues for future work.

2 FROM OPTIMAL TRANSPORT TO WEAK OPTIMAL TRANSPORT
2.1 Optimal Transport and Matching
A classic problem in labor economics [Eeckhout and Kircher, 2018, Heckman and Scheinkman,
1987, Kelso and Crawford, 1982] is to understand the matching between workers and firms,
i.e. to explain why workers work in their employing firms, and conversely, why firms hire
some employees and not others. Optimal transport has been used in the economics litera-
ture [Galichon, 2016, Lindenlaub, 2017] to model workers-to-firms matching.

Firms differ in technologies and workers differ in skills. Let X ⊂ R𝑝 , 𝑝 ≥ 1, denote the
set of firms’ types (or technologies) and likewise, let Y ⊂ R𝑞, 𝑞 ≥ 1, denote the set of
workers’ types in the economy. Given a probability distribution of firm types 𝜇 ∈ P (X)
and a probability distribution of worker types 𝜈 ∈ P (Y), a coupling 𝜋 ∈ P (X × Y) of 𝜇
and 𝜈 represents the matching between firms and workers, in the sense that 𝜋 (𝐴 × 𝐵), for
𝐴 ⊂ X, 𝐵 ⊂ Y Borel sets, is the proportion of firms whose type is in 𝐴 that employ a worker
whose type is in 𝐵. The primal problem is to maximize the total output in the economy:

OT(𝜇, 𝜈) def= sup
𝜋 ∈Π (𝜇,𝜈)

∬
X×Y

𝐹 (𝑥,𝑦) 𝑝𝑖 (𝑑𝑥, 𝑑𝑦) (1)

where Π(𝜇, 𝜈) is the set of all couplings between 𝜇 and 𝜈, i.e.

Π(𝜇, 𝜈) =
{
𝜋 ∈ P (X × Y) , ∀𝐴 ⊂ X, 𝐵 ⊂ Y Borel, 𝜋 (𝐴 × Y) = 𝜇 (𝐴), 𝜋 (X × 𝐵) = 𝜈 (𝐵)

}
,

and 𝐹 : X × Y → R is the production function, i.e. 𝐹 (𝑥,𝑦) is the output (in $) produced by
a worker of type 𝑦 ∈ Y working in a firm of type 𝑥 ∈ X.

Problem (1) corresponds to the definition of the Kantorovich [1942] problem in optimal
transport with cost function −𝐹 . It admits the following dual formulation:

OT(𝜇, 𝜈) = inf
𝜒 ∈C(X),𝜑 ∈C(Y)

𝜒⊕𝜑≥𝐹

∫
𝜒 𝑑𝜇 +

∫
𝜑 𝑑𝜈 (2)

where for C(X) (resp. C(Y)) is the set of real continuous functions over X (resp. over Y),
and 𝜒 ⊕ 𝜑 ∈ C(X × Y) is the function 𝜒 ⊕ 𝜑 : (𝑥,𝑦) ↦→ 𝜒 (𝑥) + 𝜑 (𝑦). In the labor market
context, 𝜒 (𝑥) and 𝜑 (𝑦) represent respectively the profit of firms with type 𝑥 and the wage
of workers with type 𝑦.

2.2 Weak Optimal Transport
The Kantorovich problem (1) can be rewritten as:

sup
𝜋 ∈Π (𝜇,𝜈)

∫
X

[∫
Y
𝐹 (𝑥,𝑦) 𝜋𝑥 (𝑑𝑦)

]
𝜇 (𝑑𝑥) (3)

where (𝜋𝑥 )𝑥 ∈X ⊂ P (Y) is the (𝜇-almost surely unique) probability kernel that allows to
disintegrate 𝜋 with respect to 𝜇 as 𝜋 (𝑑𝑥, 𝑑𝑦) = 𝜇 (𝑑𝑥)𝜋𝑥 (𝑑𝑦). In other words, 𝜋𝑥 is the law of
𝑌 |𝑋 = 𝑥 when (𝑋,𝑌 ) ∼ 𝜋 .

Gozlan et al. [2017] introduce the weak optimal transport problem as

WOT(𝜇, 𝜈) def= sup
𝜋 ∈Π (𝜇,𝜈)

∫
X
F (𝑥, 𝜋𝑥 ) 𝜇 (𝑑𝑥) (4)
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where F : X ×P (Y) → R, i.e. F (𝑥, 𝑝) now denotes the production (in $) of a firm of type
𝑥 ∈ X hiring employees with distribution 𝑝 ∈ P (Y). The classic Kantorovich problem is
the special case of WOT where F (𝑥, 𝑝) =

∫
Y 𝐹 (𝑥,𝑦) 𝑝 (𝑑𝑦).

In our economic context, the probability kernel 𝜋𝑥 represents the distribution of types
among the workers hired by firms with type 𝑥 . The economic interpretation of the reworded
problem (3) is that the output produced by a firm of type 𝑥 ∈ X is the sum of the output
produced by its employees,

∫
𝐹 (𝑥,𝑦) 𝜋𝑥 (𝑑𝑦). In particular, the production of a firm of type

𝑥 ∈ X depends linearly on the distribution of its employees’ types, 𝜋𝑥 ∈P (Y). Choné and
Kramarz [2022] relax this restriction and allow firms to aggregate the skills of their employees
in more general way. The production of a firm of type 𝑥 ∈ X depends non-linearly on the
distribution 𝜋𝑥 ∈P (Y) of its employees’ types.

Barycentric WOT problem. We will say that the WOT problem (4) is barycentric when
F (𝑥, 𝑝) only depends on the barycenter of 𝑝, that is when F (𝑥, 𝑝) = 𝐹

(
𝑥,

∫
𝑦 𝑝 (𝑑𝑦)

)
for

some function 𝐹 : X × conv(Y) → R, where conv(Y) is the convex hull of Y.2 In the
economic context, the barycentric specification is valid if the production of a firm depends
on the distribution of its employees’ types, 𝑝 ∈ P (Y), only through their aggregate skills,∫
𝑦 𝑝 (𝑑𝑦).

2.3 Duality
Just like the Kantorovich problem (1) admits the dual formulation (2), the WOT problem (4)
also admits a dual formulation under some assumptions on F . For the WOT problem to be
convex, and hence hope for strong duality to hold, we require that 𝑝 ↦→ F (𝑥, 𝑝) is convex
for all 𝑥 ∈ X. We refer to [Gozlan et al., 2017, Section 9] for the technical assumptions and
details.

Under these assumptions, the WOT problem (4) admits the following dual formula-
tion [Gozlan et al., 2017, Theorem 9.5]:

WOT(𝜇, 𝜈) = inf
𝜑 ∈C(Y)

∫
X
𝑅F (𝜑) 𝑑𝜇 +

∫
Y
𝜑 𝑑𝜈 (5)

where 𝑅F (𝜑)(𝑥) = sup𝑝∈P (Y) F (𝑥, 𝑝) −
∫
𝜑 𝑑𝑝.

This dual formulation can in turn be interpreted in our economic framework: 𝜑 (𝑦) repre-
sents the wage of the worker with type 𝑦 ∈ Y. Given a wage function 𝜑, a firm of type 𝑥 ∈ X
hires workers according to a probability distribution 𝑝 ∈ P (Y) chosen to maximize profit
defined as output F (𝑥, 𝑝) minus wage bill

∫
𝜑 (𝑦) 𝑝 (𝑑𝑦). 𝑅F (𝜑)(𝑥) is therefore the maximum

profit the firm type 𝑥 ∈ X can attain given the wage function 𝜑, so that
∫
X 𝑅F (𝜑) 𝑑𝜇 is the

total profit in the economy. The wages are then chosen so as to minimize the sum of the
profits and of the wages.

When the cost function F is barycentric, i.e. when F (𝑥, 𝑝) = 𝐹
(
𝑥,

∫
𝑦 𝑝 (𝑑𝑦)

)
for some

𝐹 : X × conv(Y) → R [Gozlan et al., 2017, Proof of Theorem 2.11] prove another dual
formulation:

WOT(𝜇, 𝜈) = inf
𝜓 ∈C(conv(Y))

convex, Lipschitz

∫
X
𝑄𝐹 (𝜓 ) 𝑑𝜇 +

∫
Y
𝜓 𝑑𝜈 (6)

2The particular case where 𝐹 (𝑥, 𝑦) = ∥𝑥 − 𝑦 ∥2 is called the quadratic barycentric WOT problem.
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where 𝑄𝐹 (𝜓 )(𝑥) = sup𝑦∈conv(Y) 𝐹 (𝑥,𝑦) −𝜓 (𝑦). [Gozlan et al., 2017, Proof of Theorem 2.11]
gives a way to construct a minimizer 𝜓★ of the dual (6) from a minimizer 𝜑★ of the more
general dual problem (5), by simply taking for 𝜓★ the largest convex function that is smaller
than 𝜑★, i.e.:

𝜓★ : 𝑧 ↦→ inf
𝑝∈P (Y)∫
𝑦 𝑝 (𝑑𝑦)=𝑧

∫
Y
𝜑★𝑑𝑝. (7)

The convexity of dual minimizers in the barycentric case is easy to interpret in our
economic setting. Here the output produced by a firm depends only on the aggregate skill
of its employees. If the wage function is 𝜑★, 𝜓★(𝑧) given by (7) represents the lowest wage
bill that a firm must spend to achieve the aggregate skill 𝑧 =

∫
𝑦 𝑝 (𝑑𝑦). The convexity of the

wage thus directly results from the firms’ ability to aggregate the skills of their employees.

3 WEAK OPTIMAL TRANSPORT WITH UNNORMALIZED KERNEL (WOTUK)
3.1 From WOT to WOTUK
Choné et al. [2022] relax the assumption that 𝜋𝑥 in (3) and (4) is a probability measure.
They allow 𝜋𝑥 to be a positive measure. Denoting by M (Y) the set of positive measures over
Y, they introduce the weak optimal transport problem with unnormalized kernel (WOTUK)
as

WOTUK(𝜇, 𝜈) def= sup
𝑞∈M (Y)X∫
𝑞𝑥 𝜇 (𝑑𝑥)=𝜈

∫
X
F (𝑥, 𝑞𝑥 ) 𝜇 (𝑑𝑥) (8)

where F : X ×M (Y) → R. The constraint
∫
𝑞𝑥 𝜇 (𝑑𝑥) = 𝜈 expresses that the unnormalized

kernel 𝑞 transports 𝜇 onto 𝜈. Choné et al. [2022] connect the WOTUK problem (8) to a
WOT problem as follows. Letting

Π(≪ 𝜇, 𝜈) def= {𝜋 ∈ Π(𝜂, 𝜈) , 𝜂 ∈P (X), 𝜂 ≪ 𝜇},
denote the set of probability measure over X that are absolutely continuous with respect to
𝜇, they show that

WOTUK(𝜇, 𝜈) = sup
𝜂∈P (X)
𝜂≪𝜇

sup
𝜋 ∈Π (𝜂,𝜈)

∫
F

(
𝑥,
𝑑𝜂

𝑑𝜇
(𝑥)𝜋𝑥

)
𝜇 (𝑑𝑥) (9)

= sup
𝜋 ∈Π (≪𝜇,𝜈)

∫
F

(
𝑥,
𝑑𝜋1
𝑑𝜇
(𝑥)𝜋𝑥

)
𝜇 (𝑑𝑥) (10)

where 𝜋𝑥 ∈P (Y) is the unique disintegration of 𝜋 with respect to 𝜂, i.e. such that 𝜋 (𝑥,𝑦) =
𝜂 (𝑑𝑥)𝜋𝑥 (𝑑𝑦), and 𝜋1 is the first marginal of 𝜋 . At given 𝜂, we thus go back to the WOT
problem studied in Section 2. Instead of constraining the first marginal of 𝜋 to be 𝜇, the
WOTUK problem only imposes that the first marginal is absolutely continuous with respect
to 𝜇. Choné et al. [2022] show that the density of 𝜂 with respect to 𝜇 is nothing else than
the mass of 𝑞𝑥 , i.e., 𝑑𝜂𝑑𝜇 (𝑥) =

𝑑𝜋1
𝑑𝜇 (𝑥) = 𝑞𝑥 (Y).

In the economic setting of [Choné and Kramarz, 2022], 𝑞𝑥 (Y) represents the number of
employees (i.e., the size) of firms with type 𝑥 . Allowing 𝑞𝑥 to be an unnormalized positive
measure instead of a probability measure avoids having to impose that all firms have the
same size. In contrast to earlier literature, firms’ sizes are unknowns to be (optimally)
determined rather than given parameters.
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Conical WOTUK problem. The conical WOTUK problem corresponds to the case where

F (𝑥, 𝑞) = 𝐹
(
𝑥,

∫
Y
𝑦 𝑞(𝑑𝑦)

)
for some 𝐹 : X × cone(Y) → R, where the conical hull of Y is given by

cone(Y) def=
{

𝑛∑
𝑖=1

𝜆𝑖𝑦𝑖 , 𝜆1, . . . , 𝜆𝑛 ∈ R+, 𝑦1, . . . , 𝑦𝑛 ∈ Y, 𝑛 ≥ 1

}
.

In [Choné and Kramarz, 2022], a firm’s output depends on the conical combination of its
employees’ types,

∫
𝑦 𝑞𝑥 (𝑑𝑦). The combination is said to be “conical” because the mass of

𝑞𝑥 is not necessarily equal to one. In other words, the aggregate skill of the workers hired
by a firm is not their average skills as in the WOT setting, but their average skills scaled
by the positive factor 𝑞𝑥 (Y) that represents the number of employees.

3.2 Duality
The WOTUK problem (8) admits dual formulations that are similar to those of the dual
WOT (5) and (6). The main difference with the results of subsection 2.3 lies in replacing
P (Y) by M (Y) and conv(Y) by cone(Y).

Under some technical assumptions on F , detailed in [Choné et al., 2022], the theorem
3.2 in the same reference proves that the WOTUK problem (8) admits the following dual
formulation:

WOTUK(𝜇, 𝜈) = inf
𝜑 ∈C𝑏 (Y)

∫
X
𝐾F (𝜑) 𝑑𝜇 +

∫
Y
𝜑 𝑑𝜈 (11)

where 𝐾F (𝜑) (𝑥) = sup𝑚∈M (Y) F (𝑥,𝑚) −
∫
𝜑 𝑑𝑚.

Similarly, [Choné et al., 2022, Theorem 5.1] proves that the conical WOTUK problem
admits the dual formulation:

WOTUK(𝜇, 𝜈) = inf
𝜓 ∈C(cone(Y)) convex,
positively homogeneous

∫
X
𝐽𝐹 (𝜓 ) 𝑑𝜇 +

∫
Y
𝜓 𝑑𝜈 (12)

where 𝐽𝐹 (𝜓 ) (𝑥) = sup𝑦∈cone(Y) 𝐹 (𝑥,𝑦) − 𝜓 (𝑦). They show that a minimizer 𝜓★ of the dual
problem (12) is derived from a minimizer 𝜑★ of the more general dual problem (11) by
taking for 𝜓★ the largest convex and positively homogeneous function that is smaller than
𝜑★, i.e.:

𝜓★ : 𝑧 ↦→ inf
𝑚∈M (Y)∫
𝑦 𝑑𝑚 (𝑦)=𝑧

∫
Y
𝜑★𝑑𝑚. (13)

In the economic setting of [Choné and Kramarz, 2022], a dual optimizer 𝜑 is a wage
function: 𝜑 (𝑦) represents the wage paid to a worker of type 𝑦 ∈ Y. As 𝑅F (𝜑)(𝑥) and
𝑄𝐹 (𝜓 )(𝑥) in subsection 2.3, 𝐾F (𝜑)(𝑥) and 𝐽𝐹 (𝜓 )(𝑥) are two forms for the profit function, i.e.,
for the maximal profit that firms of each type 𝑥 ∈ X achieve under the wage functions 𝜑 or
𝜓 .

4 ALGORITHMS
In this section, we only consider the case of discrete measures 𝜇 ∈ P (X) and 𝜈 ∈ P (Y).
We will write 𝜇 =

∑𝑛
𝑖=1 𝑎𝑖𝛿𝑥𝑖 where 𝑛 ≥ 1 is the number of firm types, 𝑥1, . . . , 𝑥𝑛 ∈ X are the

firm types and 𝑎 ∈ R𝑛 represents the proportion of the firm types in the economy (𝑎 > 0
and

∑𝑛
𝑖=1 𝑎𝑖 = 1). Likewise, we will write 𝜈 =

∑𝑚
𝑗=1 𝑏 𝑗𝛿𝑦 𝑗 where 𝑚 ≥ 1 is the number of
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worker types, 𝑦1, . . . , 𝑦𝑚 ∈ Y are the worker types and 𝑏 represents the proportions of the
worker types in the population (𝑏 > 0 and

∑𝑚
𝑗=1 𝑏 𝑗 = 1). Since we consider here maximization

problems, we will require that the cost function F is concave and differentiable with respect
to its second argument.

4.1 The primal problems
A matching 𝜋 ∈ Π(𝜇, 𝜈) is now represented by a matrix 𝑃 ∈ R𝑛×𝑚 such that 𝑃𝑖 𝑗 represents
the proportion of the firm type 𝑥𝑖 which is matched with the worker type 𝑦 𝑗 . For the WOT
problem (4), the marginal constraints on 𝑃 translate into:

Π(𝜇, 𝜈) = {𝑃 ∈ R𝑛×𝑚+ , 𝑃1 = 𝑎, 𝑃⊤1 = 𝑏}.
For the WOTUK problem (9), the set of constraints is simply

Π(≪ 𝜇, 𝜈) = {𝑃 ∈ R𝑛×𝑚+ , 𝑃⊤1 = 𝑏}
because as explained in Section 3.1 the first marginal 𝑃1 = 𝜂 is unconstrained and 𝜂 is an
unknown variable to be determined. The difference between the WOT problem (4) and the
WOTUK problem (9) lies in the constraint set only. The WOTUK problem corresponds to
the WOT problem where the first marginal constraint has been removed, which establishes
an interesting link with the unbalanced optimal transport theory [Chizat et al., 2018].

Let us now write the objective for the WOT and WOTUK problems in the discrete
setting. The disintegration 𝜋𝑥𝑖 representing the workers hired by the firm of type 𝑥𝑖 writes
1
𝑎𝑖

∑𝑚
𝑗=1 𝑃𝑖 𝑗𝛿𝑦 𝑗 . For simplicity, we make the following change of notations: we define F̃ : X×R𝑚

by

F̃ : (𝑥, 𝑝) ↦→ F
(
𝑥,

𝑚∑
𝑗=1

𝑝 𝑗𝛿𝑦 𝑗

)
.

Note that F̃ depends on 𝑦1, . . . , 𝑦𝑚 and that 𝜕 F̃
𝜕𝑝 𝑗
(𝑥, 𝑝) =

〈
𝛿𝑦 𝑗 ,∇2F

(
𝑥,

∑𝑚
𝑘=1 𝑝𝑘𝛿𝑦𝑘

)〉
where

⟨·, ·⟩ : M (X) ×M (X)∗ is the duality bracket. We will use the notation 𝑃𝑖: = (𝑃𝑖 𝑗 )1≤ 𝑗≤𝑚 for
1 ≤ 𝑖 ≤ 𝑛.

With these notations, the objective of the WOT problem (4) and of the WOTUK prob-
lem (9) writes:

𝑓 (𝑃) def=
𝑛∑
𝑖=1

𝑎𝑖F
(
𝑥𝑖 ,

1
𝑎𝑖

𝑚∑
𝑗=1

𝑃𝑖 𝑗𝛿𝑦 𝑗

)
=

𝑛∑
𝑖=1

𝑎𝑖 F̃
(
𝑥𝑖 ,

𝑃𝑖:
𝑎𝑖

)
.

Since the constraints sets Π(𝜇, 𝜈) and Π(≪ 𝜇, 𝜈) are convex and F and F̃ are convex in
their second argument, both the discrete WOT and WOTUK problems are convex (although
not strictly) optimization problems. In order to solve them, we propose to apply a mirror
ascent on 𝑃 (using the Kullback-Leibler divergence). The gradient of the total output writes:

𝜕𝑓

𝜕𝑃𝑖 𝑗
(𝑃) =

[
∇2F̃

(
𝑥𝑖 ,

𝑃𝑖:
𝑎𝑖

)]
𝑗

.

After each gradient step, the resulting matching 𝑃 should be projected (for the KL diver-
gence) onto Π(𝜇, 𝜈) (for the WOT problem) or Π(≪ 𝜇, 𝜈) (for the WOTUK problem). For
the WOT problem, we have to solve min𝑄 ∈Π (𝜇,𝜈) KL(𝑄 |𝑃). This problem is equivalent to
the entropic OT problem (20) with cost function − log 𝑃 and regularization strength 𝜀 = 1,
and can therefore be efficiently solved using the Sinkhorn algorithm [Cuturi, 2013]. For
the WOTUK problem, we have to solve min𝑄 ∈Π (≪𝜇,𝜈) KL(𝑄 |𝑃) which admits the following
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closed-form solution (see a proof in Appendix B.1): 𝑄★ = 𝑃 ⊙ 𝑏/𝑃⊤1 where ⊙ and / are the
elementwise multiplication and division.

Numerical guarantee. Along the mirror ascent iterations over 𝑃 , we can monitor the con-
vergence by looking at the gap

G(𝑃) def= sup
𝑄 ∈𝐾

𝑓 (𝑄) − 𝑓 (𝑃)

where 𝐾 = Π(𝜇, 𝜈) for the WOT problem and 𝐾 = Π(≪ 𝜇, 𝜈) for the WOTUK problem. By
definition, G(𝑃) ≥ 0 and by the concavity of 𝑓 , G(𝑃) ≤ G(𝑃), where

G(𝑃) = sup
𝑄 ∈𝐾
⟨∇𝑓 (𝑃), 𝑄 − 𝑃⟩. (14)

In the WOT case, 𝐾 = Π(𝜇, 𝜈), the upper bound G(𝑃) on G(𝑃) corresponds to an optimal
transport problem (with cost matrix −∇𝑓 (𝑃)) and can either be computed exactly or be
itself upper bounded using the solution 𝑄★ of an entropic OT problem (efficiently solved
using the Sinkhorn algorithm).

In the WOTUK case, 𝐾 = Π(≪ 𝜇, 𝜈), the upper bound G(𝑃) on G(𝑃) admits the following
closed form solution: 𝑄★𝑖 𝑗 = 𝑏 𝑗 if 𝑖 = argmax1≤𝑘≤𝑛 [∇𝑓 (𝑃)]𝑘 𝑗 and 𝑄★𝑖 𝑗 = 0 otherwise.

The algorithm stops when G(𝑃) ≤ 𝜀 𝑓 (𝑃) for a tolerance 𝜀 > 0. We summarize the mirror
ascent method for the WOT and WOTUK problems in Algorithm 1.

Algorithm 1 Mirror Ascent Algorithm for WOT and WOTUK (primal)

Input Stepsize 𝛾 > 0, tolerance 𝜀
Initialize 𝑃 = 𝑎𝑏⊤

while G(𝑃) > 𝜀 𝑓 (𝑃) do
𝑃 ← 𝑃 exp (𝛾 ∇𝑓 (𝑃))
For WOT:
𝑃 ← Sinkhorn(𝑎,𝑏, kernel = 𝑃)

For WOTUK:
𝑃 ← 𝑃 ⊙ 𝑏/𝑃⊤1

end while
Return 𝑃

4.2 The dual problems
In the discrete setting, the general dual for WOT (5) writes:

min
𝜑 ∈R𝑚+

⟨𝑏, 𝜑⟩ + max
𝑃 ∈R𝑛×𝑚+
𝑃1=𝑎

𝑛∑
𝑖=1

𝑎𝑖 F̃
(
𝑥𝑖 ,

𝑃𝑖:
𝑎𝑖

)
− 1⊤𝑃𝜑 (15)

and likewise for the general dual for the WOTUK problem (11):

min
𝜑 ∈R𝑚+

⟨𝑏, 𝜑⟩ + max
𝑃 ∈R𝑛×𝑚+

𝑛∑
𝑖=1

𝑎𝑖 F̃
(
𝑥𝑖 ,

𝑃𝑖:
𝑎𝑖

)
− 1⊤𝑃𝜑. (16)

Let us define

ℎ : (𝜑, 𝑃) ↦→
𝑛∑
𝑖=1

𝑎𝑖 F̃
(
𝑥𝑖 ,

𝑃𝑖:
𝑎𝑖

)
− 1⊤𝑃𝜑.
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To solve problems (15) and (16), we propose to run a mirror descent on 𝜑 (with the
Kullback-Leibler divergence). The objective is itself a maximization problem (over 𝑃). The
envelope theorem yields the gradient of the objective, provided the optimal 𝑃 is given. At
each gradient step on 𝜑, we therefore propose to run a mirror ascent on 𝑃 at fixed 𝜑. For
the WOTUK problem (16), no projection are needed, while for the WOT problem (15), we
need to project 𝑃 onto {𝑃 ∈ R𝑛×𝑚+ , 𝑃1 = 𝑎} during the ascents. The proof in Appendix B.1
directly adapts to this case, and the projection amounts to reweighting the rows of 𝑃 .

We can construct dual minimizers for the barycentric WOT (6) and conical WOTUK (12)
from a solution 𝜑★ of (15) and (16) respectively, using the results given in (7) and (13)
respectively. In the discrete setting, these linear programs respectively write:

𝜓★ : 𝑧 ↦→ min
𝑝∈R𝑚+∑𝑚
𝑗=1 𝑝 𝑗=1∑𝑚

𝑗=1 𝑝 𝑗 𝑦 𝑗=𝑧

⟨𝑝, 𝜑★⟩

and for WOTUK
𝜓★ : 𝑧 ↦→ min

𝑝∈R𝑚+∑𝑚
𝑗=1 𝑝 𝑗 𝑦 𝑗=𝑧

⟨𝑝, 𝜑★⟩.

Since we may be interested in differentiating those functions 𝜓★, we rather compute the
dual problems of the above linear programs (see a proof in the Appendix B.2):

𝜓★ : 𝑧 ↦→ max
𝜆∈R𝑞 ,𝜇∈R

∀𝑗, ⟨𝜆,𝑦 𝑗 ⟩+𝜇≤𝜑★ 𝑗

⟨𝜆, 𝑧⟩ + 𝜇 and 𝜓★ : 𝑧 ↦→ max
𝜆∈R𝑞

∀𝑗, ⟨𝜆,𝑦 𝑗 ⟩≤𝜑★ 𝑗

⟨𝜆, 𝑧⟩.

We summarize the mirror ascent method for the WOT and WOTUK problems in Algo-
rithm 2.

Algorithm 2 Mirror Descent Algorithm for WOT and WOTUK (dual)

Input 𝛾1 > 0, 𝛾2 > 0, 𝐾1, 𝐾2 ∈ N
Initialize 𝜑 ∈ R𝑚+ and 𝑃 = 𝑎𝑏⊤

for 𝑘1 = 0 to 𝐾1 do
for 𝑘2 = 0 to 𝐾2 do
𝑃 ← 𝑃 exp (𝛾1 ∇𝑃ℎ(𝜑, 𝑃))
For WOT:
𝑃 ← diag (𝑎/𝑃1) 𝑃

end for
𝜑 ← 𝜑 exp (−𝛾2 [𝑏 − 𝑃⊤1])

end for
Use a linear programming solver to compute 𝜓 (𝑧) for 𝑧 ∈ Y:
For WOT:

𝜓 (𝑧) = max
𝜆∈R𝑞 ,𝜇∈R

∀𝑗, ⟨𝜆,𝑦 𝑗 ⟩+𝜇≤𝜑 𝑗

⟨𝜆, 𝑧⟩ + 𝜇.

For WOTUK:
𝜓 (𝑧) = max

𝜆∈R𝑞
∀𝑗, ⟨𝜆,𝑦 𝑗 ⟩≤𝜑 𝑗

⟨𝜆, 𝑧⟩.

Return Dual variables 𝜑 𝑗 ,𝜓 (𝑦 𝑗 ) for 1 ≤ 𝑗 ≤ 𝑚.
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5 CONVERGENCE OF THE ALGORITHM
All the experiments have been run on a Google Colab Notebook using JAX. (A Notebook is
provided as supplementary material.) We used the following packages: OTT [Cuturi et al.,
2022] for entropic optimal transport and POT [Flamary et al., 2021] for exact optimal
transport.

Workers have two-dimensional skills and firms’ technologies differ in two dimensions, i.e.,
𝑝 = 𝑞 = 2. Firms’ production function are assumed to be Constant Elasticity of Substitution:

𝐹 (𝑥,𝑦) = 𝑧

𝜂

[
(1 − 𝛼) 𝑦𝜎1 + 𝛼 𝑦𝜎2

]𝜂/𝜎
,

where 𝑥 = (𝑧, 𝛼) is a firm’s type and 𝑦 = (𝑦1, 𝑦2) is a worker’ type. In the simulations, we
take 𝜂 = 1/2 and 𝜎 = −1.

The set of firms’ types is X = { (𝑧, 𝛼) ∈ [0,∞]× [0, 1] }, where 𝑧 represents the productivity
of the firm type and 𝛼 its technical intensity in skill 2, i.e., how important that skill 𝑖 is in
its production function.

The set of worker types is Y = {(𝑦1, 𝑦2) ∈ R2+}, where 𝑦𝑖 , 𝑖 ∈ {1, 2}, represents the pro-
ficiency of the worker type in skill 𝑖. A worker’s global quality can be represented by the
Euclidian norm of the skill vector (𝑦1, 𝑦2). A worker’s skill profile, defined as his compara-
tive advantage in skill 2 over skill 1, is given by 𝜃 = arctan (𝑦2/𝑦1) ∈ [0, 𝜋/2], where 𝜃 = 0
represents an expert worker in skill 1, 𝜃 = 𝜋/2 an expert worker in skill 2, and 𝜃 = 𝜋/4 a
generalist worker.

Figures 1, 5 and 7 provide examples of discrete distributions 𝜇 and 𝜈 over X and Y.

5.1 One-dimensional heterogeneity
We first assume that workers (𝑦1, 𝑦2) have the same overall quality and differ only in their
skill profiles 𝜃 , i.e., they all have the same “quality”. Similarly, we assume that firms all
have the total factor productivity 𝑧, i.e., they differ only in their technical intensities in
each skills. In Scenario A represented on Figurefig:one:dim:few:specialist, consider firms of
same 𝑧 and with 𝛼 uniformly distributed between 0 and 1 and workers distributed according
to a Beta distribution on the positive quarter of the unit circle. The discrete distributions
involves 𝑛 =𝑚 = 200 different mass points.

Fig. 1. Scenario A: Firms have same TFP and workers have same quality (each dot represents a Dirac mass
and its size represents its weight)
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WOT WOTUK

Fig. 2. Total output as a function of the number of iterations for WOT and WOTUK with 𝑛 =𝑚 = 200 firms
and workers. (Distributions 𝜇 and 𝜈 are represented on Figure 1)

Empirically, the algorithm converges in a
few iterations, as Figure 2 shows. We can
accelerate convergence by playing with step
sizes. In Figure 3, the variable step size 𝛾𝑡 is
proportional to 1/

√
𝑡 .

Numerical guarantee. We have found that
the quantity G(𝑃) given by (14) is an upper
bound of the error in the algorithm. As ex-
plained in Sectino 4.1, the computation of G
is straightforward in the WOTUK case. For
the WOT case, we use the Sinkhorn algo-
rithm with 𝜀 = 10−4 to approximate from
above G without high computation times.
Determining theoretically the rate at which
G converges to zero seems a difficult task.
In practice, Figure 4 shows convergence in a
few iterations.

Fig. 3. Total output as a function of the number of
iterations for WOT with 𝑛 = 𝑚 = 200 firms and
workers (Distributions 𝜇 and 𝜈 are represented on
Figure 1)

WOT WOTUK

Fig. 4. Numerical guarantee G as a function of the number of iterations ran by our algorithm for WOT and
WOTUK with 200 firms and workers (Distributions 𝜇 and 𝜈 are represented on Figure 1)
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5.2 Two-dimensional heterogeneity

Fig. 5. Scenario C. Each dot represents a Dirac mass and its size represents its weight (𝑛 =𝑚 = 400 workers’
and firms’ types).

We now assume that workers differ in both quality and skill profiles and firms differ in
both TFP and technical intensities. We keep the same marginals for the 𝛼 and 𝜃 as in
Scenario A, and take firms’ TFP 𝑧 and workers’ qualities

√
𝑦21 + 𝑦22 as uniformly distributed

on [1, 2]. In all the discrete versions of the problem that we consider, we take the number of
workers’ and firms’ types as equal, 𝑛 =𝑚, see Figure 5 with 𝑛 =𝑚 = 400. Figure 6 displays
the values of the objective as a function of the number of firms and workers. We run the
algorithm for 200 iterations for WOT and 100 iterations for WOTUK. We check that the
WOTUK objective is higher than the WOT, consistently with the former problem being
less constrained than the latter.

Fig. 6. Total output for WOT and WOTUK as a function of the number of firm’s types (equal to the number
of workers’ types). “Error bars” based on upper bound G (Distributions 𝜇 and 𝜈 are represented on Figure 5)
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6 OUR ALGORITHM AGAINST THEORETICAL PREDICTIONS
In this section, we check the consistency of our algorithm by comparing simulations against
theoretical results. The specifications considered in Subsections 6.1, 6.2 and 6.3 are conical in
the sense that a firm’s output depends only on the sum of its employees’ skills. Subsection 6.4
considers a one-dimensional non-conical problem.

6.1 How does the proportion of specialist workers in the economy affect the matching
equilibrium?

[Choné and Kramarz, 2022] have shown that as the proportion of specialist workers in the
economy increases the wage schedule becomes flatter and specialized firms tend to specialize
further, a phenomenon they call “polarization”. To illustrate this phenomenon, we consider
the two following situations:
• Scenario A: Specialist workers are relative rare in the economy and hence will earn

high wages at a competitive equilibrium (the distributions of firms and workers’ types
are represented on Figure 1);
• Scenario B: There are many specialist workers in the economy. The firms’ technologies

are the same as in Scenario A. See Figure 7.

Fig. 7. Each dot represents a Dirac mass, and its size represents its weight. Here, all firm types have the same
weight while there are more specialist workers in the economy than generalists (Scenario B)

Figure 8 shows the aggregate skill profile of employees (the ratio of skill 2 over skill 1)
as a function of the technical intensity in skill 2 of their employing firm. Given the discrete
nature of the workers’ and firms’ distributions 𝜇 and 𝜈, the matching between firms and
workers is not perfectly pure: the transport plan is not exactly a Monge map 𝜃 (𝛼), i.e., a
firm of type 𝛼𝑖 hires workers of different skill profiles 𝜃𝑖 . The dark blue lines represent the
mean of the skill profiles of the workers employed by a firm of type 𝛼 , and the light blue
area contains values of 𝜃 within one standard deviation from the mean.

As predicted by [Choné and Kramarz, 2022], the firms whose technology is very intensive
in skill 2 (i.e., high 𝛼) use more skill 2 relative to skill 1 in Scenario A compared to Scenario B.
In other words, firms are able to specialize to their “core business” in Scenario A. This is
because in that scenario (with many specialist workers), the salary tends to become linear
(see Figure 9) and firms freely adjust the proportion of specialists they hire to achieve
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Fig. 8. Mapping between 𝛼 ↦→ 𝜃 under WOTUK.

their optimal mix of skills. In contrast, in Scenario B, the workers’ salary is strictly convex,
implying that specialist workers are expensive (compared to generalists) and hence it is
too costly for firms to hire the specialists they would need to take full advantage of their
technology.
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(a) When there are many specialists
workers in the economy, the salary be-
comes linear.
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(b) When there are many generalist
workers in the economy, the salary is
strictly convex.

Fig. 9. The isowage curves𝜓 (𝑥1, 𝑥2) = constant in both Scenarios.

6.2 Endogenizing firms’ sizes: Comparing WOT and WOTUK
Considering the above scenarios A and C, we now compare outcomes of interest at the
optimum of the WOT and WOTUK problems. Recall that in the WOT problem all firms
must have the same number of employees, while in the WOTUK problem firms freely choose
their number of employees. We already checked in Section 5 that the objective of the primal
problem is higher under WOTUK than under WOT.

[Choné and Kramarz, 2022] show that the number of employees is not uniquely defined at
an optimum of the WOT and WOTUK problems. They establish, however, the uniqueness
of the firm-aggregate skill

∫
𝑦𝑞𝑥 (𝑑𝑦) at a competitive equilibrium. We define hereafter the

firms’ sizes as the Euclidian norm of the firm-aggregate skill, and we denote the size as
Λ𝑑 (𝛼).
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In Scenario A, Figure 10 shows that the sorting maps that describe the matching between
workers and firms are very close under WOT and WOTUK. By contrast, the figure shows
that firms’ sizes greatly differ at the optima of the two problems. In the WOT problem, the
kernel (𝑞𝑥 ) is constrained to be a family of probability measures, and because all workers’
skill vectors have norm one in this scenario, the firms’ sizes are one in that case. By contrast,
we observe that under WOTUK specialist firms are bigger than generalist firms.

Sorting Size

Fig. 10. Sorting and firm sizes under WOT and WOTUK (Scenario A, Fig. 1)

In Scenario C, firms and workers differ in two dimensions. We compute the average size of
firms with given TFP, 𝑧, and with given technical intensity in skill 2, 𝛼 . Figure 11 shows that
both under WOT and WOTUK firms with higher total factor productivity have greater size,
but the effect of TFP on size is much stronger when firms are free to adjust their number of
employees. Contrary to what happens in Scenario A, firms with different technical intensities
𝛼 can differ in size in Scenario C because in that scenario they can pick workers of different
qualities. But the ability of firms to decide how many workers they hire greatly exacerbates
their heterogeneity in size.

Fig. 11. Firms’ sizes as a function of Total Factor Productivity 𝑧 and technical intensity 𝛼 (Scenario C, Fig. 5)
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6.3 Closed-form solution for a one-dimensional conical WOTUK problem
We consider the conical example presented in Corollary 1.1 of [Choné et al., 2022]. We let
𝜇 = 𝜈 be the uniform measure on [0, 1] and we take the production function: 𝐹 (𝑥,𝑦) := 𝑥 𝑦𝜂 .
These authors exhibit multiple solutions to the WOTUK problem but show that the value
of the objective (total output) is unique and given by

𝑂 (𝜂) = 𝐶

2

𝜂

· 1
2 + 𝑎0 𝜂

,

where 𝐶 = (2 − 𝜂)/(1 − 𝜂) and 𝑎0 = 1/(1 − 𝜂). We sample the uniform laws with 200 points
and run our algorithm for 30 iterations. Figure 12 compares the theoretical and numerical
values of the objective.

Fig. 12. In red, the theoretical value of the objective 𝑂 (𝜂) for WOTUK when 𝜇 and 𝜈 are uniform. In blue,
the output of the algorithm with in light blue the “confidence interval” obtained from G

The WOT problem has been shown (see Theorem 1.3 of [Backhoff-Veraguas and Pammer,
2022]) to be stable in the sense that the solution to the discretized problem tends to the
solution of the problem associated with the continuous distribution when we refine the grid.
The property is not yet known for WOTUK. However, we also try our algorithm in the
WOTUK case for different numbers 𝑛 of sampling points. Here 𝜂 is fixed at 0.5 and we run
30 iterations. Figure 13 suggests that the objective of the discretized problem tends to the
objective of the continuous one as 𝑛 increases.

6.4 Pure solution of a one-dimensional non-conical WOTUK problem
In this subsection, we try our algorithm on a one-dimensional, non-conical, WOTUK prob-
lem for which the optimal transport plan is pure and unique. We consider the problem of
maximizing ∫ (∫

𝑘 (𝑥,𝑦) 𝑞𝑥 (𝑑𝑦)
)𝜂
𝜇 (𝑑𝑥), (17)

over the kernels (𝑞𝑥 ) that satisfy
∫
𝑞𝑥 (𝑑𝑦) 𝜇 (𝑑𝑥) = 𝜈 (𝑑𝑦) and 0 < 𝜂 < 1. Hereafter, we

take 𝜇 = 𝜈 as the uniform distribution on [0, 1]. The above specification reflects a non-
conical production function. Here the firm’s types 𝑥 may represent quality of capital (e.g., of
machine) or management style. The types 𝑦 represents workers’ qualities. An employee’s task
is produced from the interaction of the employee’s and firm’s types, with that interaction
being assumed to be log-supermodular, i.e., to satisfy 𝜕2 ln𝑘/𝜕𝑥𝜕𝑦 > 0. In our numerical
application, we adopt 𝑘 (𝑥,𝑦) = exp(𝑥𝑦). Then, the tasks produced by each employee are
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Fig. 13. In red, the theoretical value of the objective 𝑂 (𝜂 = 0.5) for WOTUK when 𝜇 and 𝜈 are uniform.
In blue, the output of the algorithm (in light blue the “confidence interval” obtained from G). 𝑛 number of
iterations.

aggregated. Finally, output is produced from the firm-aggregated task under decreasing
returns to scale (𝜂 < 1). While in the conical setting the firm’s type 𝑥 would be interacted
only with a firm-level aggregate (namely the sum of the employees’ skills), the non-conical
specification (17) involves interactions of 𝑥 with each of the individual employees’ types 𝑦
separately.

From Theorem 4.2 of [Choné et al., 2022], we know that the optimal transport plan is
unique and is of the form:

𝑞𝑥 (𝑑𝑦) = 𝑁 (𝑥) 𝛿𝑇 (𝑥) (𝑑𝑦),
where 𝑇 (𝑥) is a map from [0, 1] into [0, 1] and 𝑁 (𝑥) is a map from [0, 1] to R+. In other
words, a firm of type 𝑥 hires 𝑁 (𝑥) employees, all with the same type 𝑦 = 𝑇 (𝑥). The firm-level
aggregate task is therefore given by∫

𝑒𝑥𝑦 𝑞𝑥 (𝑑𝑦) = 𝑁 (𝑥) 𝑒𝑥𝑇 (𝑥) .

The equilibrium condition 𝑞𝜇 = 𝜈 yields a relation between the sorting map 𝑇 (𝑥) and
the size of the firms 𝑁 (𝑥). When 𝜇 and 𝜈 are uniform on [0, 1], this relation is simply
𝑁 (𝑥) = 𝑇 ′(𝑥). We thus look for 𝑇 increasing and sufficiently smooth that maximizes∫ 1

0
𝑁 (𝑥)𝜂 𝑒𝑥𝑇 (𝑥) 𝑑𝑥 =

∫ 1

0
(𝑇 ′(𝑥))𝜂 𝑒𝑥𝑇 (𝑥) 𝑑𝑥 =

∫ 1

0
𝐻 (𝑇 (𝑥),𝑇 ′(𝑥)) 𝑑𝑥 .

The Euler-Lagrange equation
𝜕𝐻

𝜕𝑇
(𝑇 (𝑥),𝑇 ′(𝑥)) = 𝑑

𝑑𝑥

[
𝜕𝐻

𝜕𝑇 ′
(𝑇 (𝑥),𝑇 ′(𝑥))

]
yields in this case

𝜂 (1 − 𝜂)𝑇 ′′ + (1 − 𝜂)𝑥 (𝑇 ′)2 − 𝜂𝑇𝑇 ′ = 0. (18)
For 𝜂 = .5, the unique solution is 𝑇 (𝑥) = 𝑥 . For other values of 𝜂, we solve numerically

the differential equation (18) with SciPy3 and compare the results to those found with our
algorithm. Figure 14 shows that the numerical solutions for the sorting map 𝑇 (𝑥) found by
the two methods perfectly coincide.
3See [Virtanen et al., 2020].
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𝜂 = .1 𝜂 = .5 𝜂 = .95

Fig. 14. In red, the solution of the equation (18). In light blue, the mapping obtained by our algorithm after
100,000 iterations for the uniform distributions 𝜇 and 𝜈 discretized with 500 points

As already mentioned, if 𝜂 = .5, all firms have the same size 𝑁 (𝑥) = 1. By contrast, when
the returns to scale are close to one (𝜂 = .95), Figure 15 shows that the size of firms is strongly
increasing in their type. Using the equality between wage and marginal productivity, the
wage of a worker 𝑦 = 𝑇 (𝑥) employed in firm 𝑥 can be recovered as

𝑤 (𝑇 (𝑥)) = 𝜂𝑒𝜂𝑥𝑇 (𝑥)𝑁 (𝑥)𝜂−1,
where 𝑁 (𝑥) = 𝑇 ′(𝑥). We find that the wage function, as the firm’s size, is strongly increasing
and convex in the firm’s type. Hence, with log-supermodular worker-firm interactions, the
matching of workers and firms generates “superstar firms” (see [Rosen, 1981]) that hire the
best workers and are both very large and very productive.

Firm size Wage

Fig. 15. Superstars: Firm’s size 𝑁 (𝑥) and worker’s wage𝑤 (𝑦) are strongly increasing for 𝜂 = .95

7 CONCLUSION AND FUTURE WORK
Over the past few years, optimal transport (OT) has found applications to various domains
such as graphics [Bonneel et al., 2016, Solomon et al., 2015], imaging [Cuturi and Peyré,
2016, Rabin and Papadakis, 2015], generative models [Arjovsky et al., 2017, Salimans et al.,
2018], biology [Hashimoto et al., 2016, Schiebinger et al., 2019], NLP [Alaux et al., 2019,
Grave et al., 2019], finance [Acciaio et al., 2020, Beiglböck et al., 2013, Galichon et al., 2014]
and economics [Galichon, 2016, Galichon and Salanié, 2015, Lindenlaub, 2017]. The key in
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making the optimal transport approach work in these applications lies in the different
forms of regularization added to the classical optimal transport problem. Most of these
reguralizations, including the celebrated entropic regularization [Cuturi, 2013], correspond
to penalized versions of the Monge-Kantorovich problem, possibly with relaxed [Chizat,
2017, Figalli, 2010] or tightened [Beiglböck et al., 2013, Paty et al., 2020] constraints.

None of the above variants allow to model workers-to-firms matching with aggregation
of workers’ skills within employing firms and endogenous choice of size by firms. For this,
we need to rely on weaker forms of optimal transport.4 In this paper, we have proposed
algorithms to compute solutions to weak optimal transport with normalized or unnormalized
kernel problems in the discrete setting, both in their primal and dual formulations.

Assuming exogenous labor supply, the matching problem studied in this paper is equiv-
alent to finding competitive equilibria in a pure exchange economy with a continuum of
agents and commodities.5 In our context, the agents and commodities are respectively the
firms and the workers’ skill sets. [Choné and Kramarz, 2022] make labor supply endoge-
nous by allowing workers and firms to trade (possibly at some cost) stand-alone skills on
separate markets. In practice, this “unbundling” of skills is made possible by new technolo-
gies, increased access to outsourcing, and by online platforms where buyers and sellers can
trade specialized tasks. In equilibrium, workers choose how much skills to unbundle (given
the wages offered by employing firms) while wages are determined from the firms’ demand
for work (given the workers’ unbundling choices). Developing algorithms to solve for such
equilibria is an important avenue for future research.
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A OTHER EXAMPLES OF WOT PROBLEMS
Entropic optimal transport. The entropic optimal transport (EOT) problem [Wilson,

1969] is a variant of the Kantorovich problem in which an entropic regularization term
is added:

S𝜀 (𝜇, 𝜈)
def
= inf
𝜋 ∈Π (𝜇,𝜈)

∬
X×Y

𝑐 𝑑𝜋 + 𝜀 KL(𝜋 |𝜇 ⊗ 𝜈) (19)

= inf
𝜋 ∈Π (𝜇,𝜈)

∫
𝑐 𝑑𝜋 + 𝜀

∫
log

𝑑𝜋

𝑑𝜇 ⊗ 𝜈 𝑑𝜋 (20)

where 𝑐 ∈ C(X×Y) is the cost function, 𝜀 > 0 is the regularization strength, and KL(·|·) is the
relative entropy (or Kullback-Leibler divergence). Considering the disintegration (𝜋𝑥 )𝑥 ∈X of
𝜋 with respect to 𝜇, and noting that 𝑑𝜋

𝑑𝜇⊗𝜈 (𝑥,𝑦) =
𝑑𝜋𝑥

𝑑𝜈 (𝑦), problem (20) rewrites:

inf
𝜋 ∈Π (𝜇,𝜈)

∫
X

[∫
Y

(
𝑐 (𝑥,𝑦) + 𝜀 log 𝑑𝜋

𝑥

𝑑𝜈
(𝑦)

)
𝑑𝜋𝑥 (𝑦)

]
𝑑𝜇 (𝑥)

which corresponds to the WOT problem (4) with

F (𝑥, 𝑝) =
∫
Y

(
𝑐 (𝑥,𝑦) + 𝜀 log 𝑑𝑝

𝑑𝜈
(𝑦)

)
𝑝 (𝑑𝑦)

=
∫
Y
𝑐 (𝑥,𝑦) 𝑝 (𝑑𝑦) + 𝜀 KL(𝑝 |𝜈).

Martingale optimal transport. The martingale optimal transport (MOT) problem [Bei-
glböck et al., 2013] is a variant of the Kantorovich problem in which the optimal transport
plan is constrained to be a martingale:

sup
𝜋 ∈Π (𝜇,𝜈)

𝜇 a.e.,
∫
𝑦 𝑑𝜋𝑥 (𝑦)=𝑥

∬
X×Y

𝐹 (𝑥,𝑦) 𝑑𝜋 (𝑥,𝑦).

Up to the fact that F is now allowed to take value +∞, this problem corresponds to the
WOT problem (4) with F (𝑥, 𝑝) =

∫
𝑐 (𝑥,𝑦) 𝑝 (𝑑𝑦) − 𝜄

(
𝜇 a.e.,

∫
𝑦 𝑝 (𝑑𝑦) = 𝑥

)
where 𝜄 (𝑎) equals

0 if the assertion 𝑎 is true, and +∞ if 𝑎 is false.

B PROOFS
B.1 Proof for the projection onto Π(≪ 𝜇, 𝜈)
Projecting a matrix 𝑃 ∈ R𝑛×𝑚+ onto Π(≪ 𝜇, 𝜈) means solving the following optimization
problem:

min
𝑄 ∈Π (≪𝜇,𝜈)

KL(𝑄 |𝑃) = min
𝑄 ∈R𝑛×𝑚+
𝑄⊤1=𝑏

KL(𝑄 |𝑃) = min
𝑄 ∈R𝑛×𝑚
𝑄⊤1=𝑏

∑
𝑖, 𝑗

𝑄𝑖 𝑗

(
log

𝑄𝑖 𝑗

𝑃𝑖 𝑗
− 1

)
where we can drop the non-negativity constraint over 𝑄 for it is already constrained by the
log in the objective.

The Lagrangian of the problem is

𝐿(𝑄, 𝜆) =
∑
𝑖, 𝑗

𝑄𝑖 𝑗

(
log

𝑄𝑖 𝑗

𝑃𝑖 𝑗
− 1

)
+ ⟨𝜆,𝑏 −𝑄⊤1⟩
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where 𝜆 ∈ R𝑚 is the Lagrange multiplier for the constraint 𝑄⊤1 = 𝑏. The problem is convex,
so the first-order condition is sufficient for optimality. So the solution should verify

log
𝑄𝑖 𝑗

𝑃𝑖 𝑗
= 𝜆 𝑗

hence
𝑄𝑖 𝑗 =

𝑃𝑖 𝑗𝑏 𝑗∑
𝑖′ 𝑃𝑖′ 𝑗

.

B.2 Proof for the dual formulation of𝜓★
Let us first compute the dual problem corresponding to

min
𝑝∈R𝑚+∑𝑚
𝑗=1 𝑝 𝑗=1∑𝑚

𝑗=1 𝑝 𝑗 𝑦 𝑗=𝑧

⟨𝑝, 𝜑⟩.

One has:

min
𝑝∈R𝑚+∑𝑚
𝑗=1 𝑝 𝑗=1∑𝑚

𝑗=1 𝑝 𝑗 𝑦 𝑗=𝑧

⟨𝑝, 𝜑⟩ = min
𝑝∈R𝑚+
⟨𝑝, 𝜑⟩ + sup

𝜆∈R𝑞 ,𝜇∈R

〈
𝜆, 𝑧 −

𝑚∑
𝑗=1

𝑝 𝑗𝑦 𝑗

〉
+ 𝜇

(
1 −

𝑚∑
𝑗=1

𝑝 𝑗

)

= sup
𝜆∈R𝑞 ,𝜇∈R

⟨𝜆, 𝑧⟩ + 𝜇 + inf
𝑝∈R𝑚+

𝑚∑
𝑗=1

𝑝 𝑗
(
𝜑 𝑗 − 𝜇 − ⟨𝜆,𝑦 𝑗 ⟩

)
= sup

𝜆∈R𝑞 ,𝜇∈R
∀𝑗, ⟨𝜆,𝑦 𝑗 ⟩+𝜇≤𝜑 𝑗

⟨𝜆, 𝑧⟩ + 𝜇

where we have swapped the min and the max using the strong duality theorem for linear
programs.

Likewise, the dual of
min
𝑝∈R𝑚+∑𝑚

𝑗=1 𝑝 𝑗 𝑦 𝑗=𝑧

⟨𝑝, 𝜑⟩

will be the same as before but without 𝜇 ∈ R, because we have dropped the associated
constraint, i.e.

min
𝑝∈R𝑚+∑𝑚

𝑗=1 𝑝 𝑗 𝑦 𝑗=𝑧

⟨𝑝, 𝜑⟩ = sup
𝜆∈R𝑞

∀𝑗, ⟨𝜆,𝑦 𝑗 ⟩≤𝜑 𝑗

⟨𝜆, 𝑧⟩.
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