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Appendix B GARCH(1,1)-type test when the pa-
rameter d is considered fixed

B.1 Asymptotics for the Wald statistic

Non-identification of the parameter d under HGARCH
0 makes the derivation of the

Wald asymptotic distribution infeasible. In the main text of the paper, we proposed
to estimate this distribution by bootstrap. Another solution is to consider that the
unidentified parameter is known and set to a value d > 1

2
. Under this assumption,

the identification problem disappears and we can use Theorem 4 to obtain the
asymptotic distribution of the Wald statistic.

Proposition 4. Under the assumptions of Theorem 4, under HGARCH
0 ,

WGARCH
n (d)

L→ 1

2
∆0 +

1

2
χ2

1,

where ∆0 is the Dirac measure at 0. Thus, the critical region of asymptotic level
ν is given by {WGARCH

n > χ2
1(1− 2ν)}.

This test can easily be extended to an asymmetric volatility model with a different
δ. Consider, the APARCH(∞) specification presented in (8). Testing for the
adequacy of the GJR-GARCH model (δ = 2) or the TGARCH (δ = 1) can then
be achieved by testing for H0 : γ0 = 0 against HAPARCH(∞)

1 : γ0 > 0. We can thus
define the Wald statistic in a similar manner and derive its asymptotic distribution
under the null.
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B.2 Finite sample properties of the statistic

We propose to study the empirical behavior of the test statistics defined in Sec-
tion B.1. In the following simulations, we use Gaussian innovations (ηt ∼ N (0, 1)).

We first study the empirical level of the statistic. Figure 4a presents kernel es-
timators for Wn(d) when testing for a GARCH(1,1), a GJR-GARCH(1,1) and a
TGARCH(1,1) against an APARCH(∞) model of form (8) with δ = 2 and 1 respec-
tively under H0. The parameters used for the simulations are θ0 = (0.2, 0.15, 0.75)
for the GARCH model and θ0 = (0.2, 0.05, 0.2, 0.75) for both the GJR-GARCH
and the TGARCH. All kernels estimators are obtained from 1000 replications and
are close to their theoretical asymptotic distributions. The relative rejection fre-
quency of the test statistics, at the asymptotic levels 5%, are respectively 5.70%,
5.10% and 5.70% which is not significantly different from 5%.

We now turn to the empirical properties of the statistics under H1 : γ0 > 0. We
first study the empirical power of the statistics under the assumption that param-
eters d and δ are well specified. We consider the parametric form of Model (8)
with θ0 = (ω0, α

+
0 , α

−
0 , β0, γ0) = (0.25, 0.05, 0.15, 0.7, γ0) where γ0 ranges from 0 to

0.25, d = 1, and either δ = 2 or δ = 1 which corresponds to testing for a GJR-
GARCH(1,1) or a TGARCH(1,1). In addition we consider an ARCH(∞) specified
as Model (7) where θ0 = (ω0, α0, β0, γ0) = (0.25, 0.1, 0.7, γ0) where γ0 ranges from
0 to 0.25 and d = 1 which allows us to test for a GARCH(1,1). Figure 4b compares
the observed powers of the three tests, that is, the relative frequency of rejection
of the null hypothesis H0 : γ0 = 0 on the 1000 independent realizations of length
n = 2500 and n = 5000, as a function of γ0. On these simulations, we see that the
three test statistics seem powerful even for low values of γ0.

We then consider the empirical power of the test statistics when either d or δ
is assumed known but is misspecified. We simulate 1000 replications of size
5000 of the parametric form of Model (8) with θ0 = (ω0, α

+
0 , α

−
0 , β0, γ0, d0) =

(0.25, 0.05, 0.1, 0.7, 0.25, 1.0) and δ = 2. We then conduct the GJR-GARCH(1,1)
test assuming γ = 2 is well specified but d is misspecified. Table 4a presents the
observed power of the test at different asymptotic level ν and for different values
of d. Even when d is far from its true value, the empirical power remains high.
In addition we conduct the test assuming, this time, that d = 1.0 is well specified
but the power δ is misspecified. This is equivalent to testing that a short memory
APARCH(1,1) with power δ is suited to model a persistent TARCH(∞). Table 4b
presents the observed power of the test at different asymptotic level ν and for dif-
ferent values of δ. Again, even when δ is misspecified, the empirical power remains
high, meaning our test statistic appears robust to misspecifications in d and δ.
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(a) χ2
1/2 density (red solid line) and ker-

nel density estimators when testing for a
GARCH (dark blue square), a GJR-GARCH
(blue cross) and a TGARCH(light blue dot) on
1000 simulations with n = 5000.

(b) Observed powers of the GARCH test(dark
blue square), GJR-GARCH test (light blue
dot), and TGARCH test (blue cross) has a
function of γ0, on 1000 simulations with n =
2500 (dashed line) and n = 5000 (solid line).

Figure 4 – Empirical behavior of the Wald statistics when d is fixed.

Appendix C Additional Monte Carlo experiments
We assess the finite sample properties of the QML estimator in the case where
δ = 2 and α

+(−)
i (θ) = γ+(−)i−(d+(−)+1) with θ = (ω, γ+, d+, γ−, d−), which corre-

sponds to an hyperbolic decay. We have simulated a thousand samples of different
sizes n for θ0 = (1.0, 0.40, 0.85, 0.40, 0.85), which generates a standard ARCH(∞)
process, as well as θ0 = (1.0, 0.40, 1.2, 0.20, 0.75), which generates a TARCH(∞)
process. On each realisation, we fitted a TARCH(∞) by QML, which gave us
a thousand estimators θ̃n. Table 5 presents the empirical mean and root mean
squared error (RMSE) of these estimators (in brackets). We can note that the
estimations results are satisfactory, although the parameters d+(−) may require a
large sample size to be precise.

Appendix D Additional application

D.1 Are GARCH(1,1)-type specifications suitable to model
peripheral stocks?

The results in Table 2 provide a compelling argument in favor of applying models
with strong persistence to less developed markets. Additionally, if this persistence
stems from a market inefficiency, it should also imply heterogeneity at the stock
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ν
1% 5% 10%

d

0.55 70.9% 89.3% 94.6%
1.0 91.3% 96.6% 98.3%
1.5 92.7% 96.8% 98.4%
2.0 92.3% 96.6% 97.9%
2.5 91.2% 96.3% 97.6%
5.0 89.6% 95.7% 97.3%
7.5 89.5% 95.5% 97.3%
10.0 89.5% 95.5% 97.3%

(a) Observed power of the GJR-
GARCH(1,1) test when d = 1.0 and
d is misspecified.

ν
1% 5% 10%

δ

0.5 82.1% 91.1% 93.7%
1.0 86.9% 94.1% 96.4%
1.5 89.4% 95.7% 97.9%
2.0 91.3% 96.6% 98.3%
2.5 90.5% 97.0% 98.4%
3.0 85.8% 95.5% 97.9%

(b) Observed power of the
APARCH(1,1) test when δ is
misspecified.

Table 4 – Observed power of the GARCH(1,1)-type test under H1 : γ0 > 0 for an
asymptotic level ν of 1%, 5%, and 10%, when the model is misspecified.

ARCH(∞) TARCH(∞)
ω γ+ d+ γ− d− ω γ+ d+ γ− d−

θ0 1.00 0.40 0.85 0.40 0.85 1.00 0.40 1.20 0.20 0.75

θ̃1000 1.08 0.40 0.85 0.40 0.87 1.04 0.40 1.20 0.20 0.89
(0.19) (0.07) (0.53) (0.07) (0.50) (0.15) (0.08) (0.59) (0.06) (0.73)

θ̃2000 1.06 0.40 0.85 0.40 0.86 1.03 0.40 1.19 0.20 0.82
(0.14) (0.05) (0.47) (0.05) (0.43) (0.11) (0.05) (0.48) (0.04) (0.70)

θ̃5000 1.04 0.40 0.85 0.40 0.85 1.01 0.40 1.19 0.20 0.75
(0.08) (0.03) (0.38) (0.03) (0.38) (0.07) (0.04) (0.39) (0.03) (0.70)

Table 5 – Estimation results for 1000 simulations of size n of a symmetric
ARCH(∞) process and a TARCH(∞) process with α+(−)

i (φ) = γ+(−)i−d
+(−)−1

level within developed markets. Assets that are less traded should therefore exhibit
stronger persistence than highly traded ones. We propose to test this hypothesis by
studying the Fama and French[4] Size equity portfolios. Every year, the authors
sort in ascending order of market equity all the NYSE, AMEX, and NASDAQ
stocks and construct 10 decile portfolios labelled "Dec1", "Dec2", etc. Our dataset
contains their daily returns from January 1975 to March 2020 and was obtained
from Kenneth French’s website1. For each portfolio, we compute the Wald statistic
WGJR
n to test the hypothesis that the GJR-GARCH(1,1) is well suited to model

returns series. The results are presented in Figure 5. It is clear that on our whole
sample, the GJR-GARCH(1,1) specification is strongly rejected for smaller Size
portfolios. Moreover, we find that the portfolios composed of large stocks do not
exhibit strong persistence, which confirms our finding for the US indices in Table 2.

1https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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However, when focusing on the 1995-onward period, the results are quite different.
Indeed, we do not reject the GJR-GARCH(1,1) for the low Size portfolios, which
would imply that Size stocks have become less peripheral. A possible explanation
could be that the search for higher returns has sparked investors’ interest in small
stocks, resulting in more efficient market conditions. Actually, the Size premium’s
existence has been disputed since the early nineties (see for example van Dijk[8]),
which would support our tests results on the above mentioned time frame.

Figure 5 – Wald statistics WGJR
n computed on the portfolios formed on Size from

1975 (in blue) and from 1995 (in light blue). The rejection threshold of HGJR
0 at

the 5% asymptotic level is represented by the red dashed line.

Appendix E Detailed proofs and technical results
This appendix provides the proofs and technical results of the paper in a detailed
manner. In particular, proofs of Theorem 4 and Propositions 1 and 4 were left out
of the paper for the sake of brevity and are developed hereafter.

E.1 Existence of a stationary APARCH(∞) solution

We develop in this section the proof of Theorem 1. The proof is based on a Volterra
expansion and, in this sense, follows the work of Giraitis, Kokoszka and Leipus[6],
Kazakevičius and Leipus[7], and Douc, Roueff and Soulier[3].

Proof of Theorem 1. First, let us remark that σt > 0 which implies for any t,
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1εt≥0 = 1ηt≥0, and consider the random variable

St = ω + ω
∞∑
k=1

∑
i1,...,ik≥1

ai1,t−i1 ...aik,t−i1−...−ik |ηt−i1 |δ...|ηt−i1−...−ik |δ

= ω + ω
∞∑
k=1

∑
i1,...,ik≥1

[
α+
i1
1ηt−i1≥0 + α−i1 1ηt−i1<0

]
|ηt−i1|δ...[

α+
ik
1ηt−i1−...−ik≥0 + α−ik 1ηt−i1−...−ik<0

]
|ηt−i1−...−ik |δ

defined in [0,+∞]. Since s ∈ (0, 1], we have

Sst ≤ ωs + ωs
∞∑
k=1

∑
i1,...,ik≥1

[
α+
i1
1ηt−i1≥0 + α−i1 1ηt−i1<0

]s |ηt−i1|δs...[
α+
ik
1ηt−i1−...−ik≥0 + α−ik 1ηt−i1−...−ik<0

]s
|ηt−i1−...−ik |δs

≤ ωs + ωs
∞∑
k=1

∑
i1,...,ik≥1

[
(α+

i1
)s 1ηt−i1≥0 + (α−i1)

s 1ηt−i1<0

]
|ηt−i1 |δs...[

(α+
ik

)s 1ηt−i1−...−ik≥0 + (α−ik)
s 1ηt−i1−...−ik<0

]
|ηt−i1−...−ik |δs

and from the independence of (ηt), it follows that

ESst ≤ ωs + ωs
∞∑
k=1

∑
i1,...,ik≥1

E
([

(α+
i1

)s 1ηt−i1≥0 + (α−i1)
s 1ηt−i1<0

]
|ηt−i1 |δs

)
...

E
([

(α+
ik

)s 1ηt−i1−...−ik≥0 + (α−ik)
s 1ηt−i1−...−ik<0

]
|ηt−i1−...−ik |δs

)
,

and thus
ESst ≤ ωs

[
1 +

∞∑
k=1

(A+
s µ

+
δs + A−s µ

−
δs)

k

]
≤ ωs

1− (A+
s µ

+
δs + A−s µ

−
δs)

<∞,

whence St is finite almost surely. In addition, we have
∞∑
i=1

ai,t−iSt−i|ηt−i|δ

= ω
∞∑
i0=1

ai0,t−i0|ηt−i0|δ+

ω
∞∑
i0=1

ai0,t−i0|ηt−i0 |δ
∞∑
k=1

∑
i1,...,ik≥1

ai1,t−i0−i1 ...aik,t−i0−...−ik |ηt−i0−i1|δ...|ηt−i0−i1−...−ik |δ

= ω
∞∑
k=0

∑
i0,...,ik≥1

ai0,t−i0 ...aik,t−i0−...−ik |ηt−i0|δ...|ηt−i0−...−ik |δ

and thus we obtain the recursive equation

St = ω +
∞∑
i=1

ai,t−iSt−i|ηt−i|δ.
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By setting εt = S
1/δ
t ηt, we obtain a strictly stationary and nonanticipative solution

of (3) and E|εt|δs ≤ µδsω
s/(1− (A+

s µ
+
δs + A−s µ

−
δs)).

Now denote by (ε∗t ) any strictly stationary and nonanticipative solution of (3)
such that E|ε∗t |δs < ∞. For all q ≥ 1, by q recursive substitutions of the ε∗δt−i, we
obtain

σδt = ω +
∞∑
i=1

ai,t−i|εt−i|∗δ

=

{
ω + ω

q∑
k=1

∑
i1,...,ik≥1

ai1,t−i1 ...aik,t−i1−...−ik |ηt−i1|δ...|ηt−i1−...−ik |δ
}

+
∑

i1,...,iq+1≥1

ai1,t−i1 ...aiq+1,t−i1−...−iq+1 |ηt−i1|δ...|ηt−i1−...−iq |δ|εt−i1−...−iq+1|∗δ

:= {St,q}+Rt,q.

Since (ε∗t ) is nonanticipative, it is independent of ηt′ for any t′ > t. Hence, since
s ∈ (0, 1],

ERs
t,q ≤

∑
i1,...,iq+1≥1

E
([

(α+
i1

)s 1ηt−i1≥0 + (α−i1)
s 1ηt−i1<0

]
|ηt−i1|δs

)
...

E
([

(α+
iq+1

)s 1ηt−i1−...−iq+1
≥0 + (α−iq+1

)s 1ηt−i1−...−iq+1
<0

]
|ε∗t−i1−...−iq+1

|δs
)

≤ (A+
s µ

+
δs + A−s µ

−
δs)

q
(
A+
s E|1ηt≥0ε

∗
t |δs + A−s E|1ηt<0ε

∗
t |δs
)

Since A+
s µ

+
δs + A−s µ

−
δs < 1, we have

∑
q≥1

ERs
t,q <∞, whence Rt,q tends to 0 almost

surely as q → ∞. Furthermore, St,q tends to St almost surely as q → ∞, which
implies σδt = St almost surely and yields ε∗t = εt almost surely.

In addition, Theorem 36.4 in Billingsley[2] entails the ergodicity of the stationary
solution, hence concluding the proof.

E.2 Statistical inference of an APARCH(∞) process

We develop in this section the proofs of the main results of Section 2 on consistency
and asymptotic normality of the QMLE in our model. Note that in the following
proofs, it will not be restrictive to assume ρ < 1.

Let us define the theoretical criterion

Qn(θ) =
1

n

n∑
t=1

lt(θ), lt(θ) = log σ2
t (θ) +

ε2
t

σ2
t (θ)

, and θ̂n = Argmin
θ∈Θ

Qn(θ).

The theoretical QML estimator θ̂n is infeasible, and we will thus study the feasible
estimator θ̃n, which is conditional to initial values. We will show that the choice

7



of the initial values is unimportant for the asymptotic properties of the QMLE.

In the following, we denote I+(φ) (respectively I−(φ)) the sets {i such that α+(−)
i (φ) 6=

0}, and we define I+
t (respectively I−t ) as I+(−)

t = {i such that εt−i ≥ 0 (resp. <
0)}, yielding the following rewriting of (9) as

σδt (θ0) = ω0 +
∑
i∈I+t

α+
i (φ0)|εt−i|δ +

∑
j∈I−t

α−j (φ0)|εt−j|δ. (E.1)

We first state and prove the property mentioned in the remark about assumption
A5.

Proposition 2. Under assumptions A1-A4, if there exists 0 < τ < ρ− (d + 1)−1

such that

sup
i∈I+(φ0)

sup
φ∈Φ

α+
i (φ0)

(α+
i )1−τ (φ)

≤ K and sup
i∈I−(φ0)

sup
φ∈Φ

α−i (φ0)

(α−i )1−τ (φ)
≤ K, (E.2)

then
Eθ0 sup

θ∈Θ

σ2
t (θ0)

σ2
t (θ)

<∞.

Proof of Proposition 2. Let us first note that if c > 0 and for all i in a set I,

ai ≥ 0 and bi ≥ 0 then
∑

i∈I ai

c+
∑

j∈I bj
≤
∑

i∈I
ai

c+ bi
. Since ωL > 0 and for all θ ∈ Θ

we have α+(−)
i (θ) ≥ 0, using the previous elementary inequality , equation (E.1)

gives

sup
θ∈Θ

σδt (θ0)

σδt (θ)

= sup
θ∈Θ

ω0 +
∑
i∈I+t

α+
i (φ0)|εt−i|δ +

∑
j∈I−t

α−j (φ0)|εt−j|δ

ω +
∑
i′∈I+t

α+
i′ (φ)|εt−i′ |δ +

∑
j′∈I−t

α−j′(φ)|εt−j′|δ

≤ K + sup
θ∈Θ

∑
i∈I+t ∩I+(φ0)

α+
i (φ0)|εt−i|δ

ω + α+
i (φ)|εt−i|δ

+ sup
θ∈Θ

∑
i∈I−t ∩I−(φ0)

α−i (φ0)|εt−i|δ

ω + α−i (φ)|εt−i|δ
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and using the fact that for any s > 0, we have x/(1 + x) ≤ xs, we obtain

sup
θ∈Θ

σδt (θ0)

σδt (θ)

≤ K + sup
θ∈Θ

ω−s
∑

i∈I+t ∩I+(φ0)

α+
i (φ0)

α+
i (φ)

(α+
i )s(φ)|εt−i|δs

+sup
θ∈Θ

ω−s
∑

i∈I−t ∩I−(φ0)

α−i (φ0)

α−i (φ)
(α−i )s(φ)|εt−i|δs

≤ K + sup
θ∈Θ

ω−s
∑

i∈I+t ∩I+(φ0)

α+
i (φ0)

(α+
i )1−τ (φ)

(α+
i )s−τ (φ)|εt−i|δs

+sup
θ∈Θ

ω−s
∑

i∈I−t ∩I−(φ0)

α−i (φ0)

(α−i )1−τ (φ)
(α−i )s−τ (φ)|εt−i|δs

≤ K +Ksup
θ∈Θ

∑
i∈I+t ∩I+(φ0)

(α+
i )s−τ (φ)|εt−i|δs +Ksup

θ∈Θ

∑
i∈I−t ∩I−(φ0)

(α−i )s−τ (φ)|εt−i|δs

≤ K +K
∞∑
i=1

i−(d+1)(s−τ)|εt−i|δs

using assumptions A3(ii) and (E.2). This yields

Eθ0sup
θ∈Θ

σδt (θ0)

σδt (θ)
≤ K + ω−sK ′

∞∑
i=1

i−(d+1)(s−τ)Eθ0 |εt−i|δs.

By taking s = ρ we have that (d+1)(s−τ) > 1 by assumption A4, we thus obtain

Eθ0sup
θ∈Θ

σδt (θ0)

σδt (θ)
<∞.

If δ ≥ 2, Jensen inequality yields Eθ0sup
θ∈Θ

σ2
t (θ0)

σ2
t (θ)

< ∞, and if δ < 2, Minkowski

inequality gives A4, we thus obtain[
Eθ0sup

θ∈Θ

(
σδt (θ0)

σδt (θ)

)2/δ
]δ/2
≤ K +K

∞∑
i=1

i−(d+1)(ρ−τ) [Eθ0 |εt−i|2ρ]
δ/2

<∞

from assumption A3(ii), which concludes the proof.

The following lemma shows the asymptotic irrelevance of the initial values.

Lemma 1. Under assumptions A1-A5, lim
n→∞

sup
θ∈Θ
|Qn(θ)− Q̃n(θ)| = 0.
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Proof of Lemma 1. Consider

Qn(θ)− Q̃n(θ) =
1

n

n∑
t=1

log σ2
t (θ) +

ε2
t

σ2
t (θ)

− log σ̃2
t (θ)− ε2

t

σ̃2
t (θ)

=
1

n

n∑
t=1

log
σ2
t (θ)

σ̃2
t (θ)

+
1

n

n∑
t=1

ε2
t

(
1

σ2
t (θ)

− 1

σ̃2
t (θ)

)
= An(θ) +Bn(θ).

and remark that σ2
t (θ) ≥ σ̃2

t (θ), since we have

σδt (θ) = σ̃δt (θ) +
∞∑
i=t

ai,t−i(φ)|εt−i|δ ≥ σ̃δt (θ). (E.3)

We denote χt = sup
θ∈Θ
|σδt (θ)− σ̃δt (θ)|, and we have from assumption A3(ii)

χt = sup
θ∈Θ

∞∑
i=t

ai,t−i(φ)|εt−i|δ

≤ K
∞∑
i=t

i−(d+1)|εt−i|δ

≤ K
∞∑
i=0

(i+ t)−(d+1)|ε−i|δ,

whence
Eχρt ≤ K

∞∑
i=0

(i+ t)−(d+1)ρ E|ε−i|δρ.

Since from assumption A4, E |εt|δρ < ∞, with ρ(d + 1) > 1, and since for any
k > 1 we have ∫ ∞

t

x−kdx =

[
−x

−k+1

k − 1

]∞
t

=
t−k+1

k − 1
,

we obtain
Eχρt ≤ Kt−(d+1)ρ+1.

This shows that χt has a finite moment of order ρ and thus is finite almost surely.
Furthermore, since ρ(d + 1) > 1, the dominated convergence theorem entails
lim
t→∞

χt = 0 almost surely.

Then, we have

|An(θ)| =
1

n

n∑
t=1

log
σ2
t (θ)

σ̃2
t (θ)

=
2

δn

n∑
t=1

log

[
1 +

σδt (θ)− σ̃δt (θ)

σ̃2
t (θ)

]
≤ K

n

n∑
t=1

σδt (θ)− σ̃δt (θ)
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since log(1 + x) ≤ x for x ≥ 0 and, for all t, σ̃2
t (θ) ≥ ω. Therefore, we obtain

sup
θ∈Θ
|An(θ)| ≤ K

n

n∑
t=1

χt (E.4)

and from Cesaro mean convergence theorem, we obtain lim
n→∞

sup
θ∈Θ
|An(θ)| = 0 al-

most surely.

Consider now

|Bn(θ)| =
1

n

n∑
t=1

ε2
t

(
1

σ̃2
t (θ)

− 1

σ2
t (θ)

)
=

1

n

n∑
t=1

ε2
t

(
σ2
t (θ)− σ̃2

t (θ)

σ2
t (θ)σ̃2

t (θ)

)
≤ K

n

n∑
t=1

η2
t

σ2
t (θ0)

σ2
t (θ)

[σ2
t (θ)− σ̃2

t (θ)]

≤ K

n

n∑
t=1

η2
t

σ2
t (θ0)

σ2
t (θ)

max[σ2−δ
t (θ), σ̃2−δ

t (θ)]

σ̃2
t (θ)

[
σδt (θ)− σ̃δt (θ)

]
whence

sup
θ∈Θ
|Bn(θ)| ≤ K

n

n∑
t=1

η2
t sup
θ∈Θ

σ2
t (θ0)

σ2
t (θ)

max[σ2−δ
t (θ), σ̃2−δ

t (θ)]

σ̃2
t (θ)

χt.

If δ ≥ 2, σ2−δ
t (θ) ≤ σ̃2−δ

t (θ) and since σ̃−δt (θ) ≤ ω−δ <∞ from A1, we have

sup
θ∈Θ
|Bn(θ)| ≤ K

n

n∑
t=1

η2
t sup
θ∈Θ

σ2
t (θ0)

σ2
t (θ)

[σ̃2
t (θ)]−δχt ≤

K

n

n∑
t=1

η2
t sup
θ∈Θ

σ2
t (θ0)

σ2
t (θ)

χt.

If δ < 2, σ2−δ
t (θ) ≥ σ̃2−δ

t (θ) and we have

sup
θ∈Θ
|Bn(θ)| ≤ K

n

n∑
t=1

η2
t sup
θ∈Θ

σ2
t (θ0)

σ2
t (θ)

σ2
t (θ)

σ̃2
t (θ)

χt.

From assumptions A3(ii) and A4, we have

sup
θ∈Θ

η2
t

σ2
t (θ0)

σ2
t (θ)

σ2
t (θ)

σ̃2
t (θ)

= sup
θ∈Θ

η2
t

σ2
t (θ0)

σ2
t (θ)

[
σδt (θ)

σ̃δt (θ)

]2/δ

≤ Ksup
θ∈Θ

η2
t

σ2
t (θ0)

σ2
t (θ)

[
1 +

∞∑
i=t

i−d−1|εt−i|δ
]2/δ

≤ Ksup
θ∈Θ

η2
t

σ2
t (θ0)

σ2
t (θ)

[
1 +

∞∑
i=0

i−d−1|ε−i|δ
]2/δ

≤ Ksup
θ∈Θ

η2
t

σ2
t (θ0)

σ2
t (θ)

(E.5)
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where K is finite almost surely and does not depend on t since
∞∑
i=0

i−(d+1)|ε−i|δ

admits a moment of order ρ and thus is finite almost surely.

Thus, we have

sup
θ∈Θ
|Bn(θ)| ≤ K

n

n∑
t=1

η2
t sup
θ∈Θ

σ2
t (θ0)

σ2
t (θ)

χt.

By ergodicity and independance of η2
t with σ2

t , we have that
1

n

n∑
t=1

η2
t sup
θ∈Θ

σ2
t (θ0)

σ2
t (θ)

tends to Eη2
t E sup

θ∈Θ

σ2
t (θ0)

σ2
t (θ)

almost surely as n tends to infinity. Since χt → 0

almost surely and Eη2
t E sup

θ∈Θ

σ2
t (θ0)

σ2
t (θ)

< ∞ by assumptions A2 and A5, from

Toeplitz lemma we obtain lim
n→∞

sup
θ∈Θ
|Bn(θ)| = 0 almost surely.

We can conclude

lim
n→∞

sup
θ∈Θ
|Qn(θ)− Q̃n(θ)| ≤ lim

n→∞
sup
θ∈Θ
|An(θ)|+ lim

n→∞
sup
θ∈Θ
|Bn(θ)| = 0.

Proof of Theorem 2. The proof of the strong consistency of the QMLE is achieved
by proving the four following intermediate results and a compactness argument:

(a) Asymptotic irrelevance of the initial values
lim
n→∞

sup
θ∈Θ
|Qn(θ)− Q̃n(θ)| = 0

(b) Identifiability of the parameter
(∃t ∈ Z such that σδt (θ) = σδt (θ0) a.s.) ⇒ θ = θ0

(c) The limit criterion is minimized at the true value
Eθ0 |lt(θ0)| <∞, and if θ 6= θ0, Eθ0lt(θ) > Eθ0lt(θ0)

(d) Compactness of Θ and ergodicity of (lt(θ))
For any θ 6= θ0, there exists a neighborhood V (θ) such that
lim inf
n→∞

inf
θ∗∈V (θ)

Q̃n(θ∗) > Eθ0l1(θ0) a.s.

In the following, we detail the demonstration of the four previous points:
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• (a) Asymptotic irrelevance of the initial values
This is directly obtained from Lemma 1.

• (b) Identifiability of the parameter:
Let θ ∈ Θ, such that, for some t ∈ Z, we have σδt (θ) = σδt (θ0) almost surely.
Assume θ 6= θ0, and suppose that

α+
1 (φ0)1εt−1≥0 + α−1 (φ0)1εt−1<0 6= α+

1 (φ)1εt−1≥0 + α−1 (φ)1εt−1<0. (E.6)

Then we have

ω0 +
∞∑
i=1

α+
i (φ0)|εt−i|δ1εt−i≥0 + α−i (φ0)|εt−i|δ1εt−i<0

= ω +
∞∑
i=1

α+
i (φ)|εt−i|δ1εt−i≥0 + α−i (φ)|εt−i|δ1εt−i<0

⇔
([
α+

1 (φ0)− α+
1 (φ)

]
1ηt−1≥0 +

[
α−1 (φ0)− α−1 (φ)

]
1ηt−1>0

)
σδt−1(θ0)|ηt−1|δ

= ω − ω0 +
∞∑
i=2

([
α+
i (φ)− α+

i (φ0)
]
1ηt−i≥0

+
[
α−i (φ)− α−i (φ0)

]
1ηt−i<0

)
σδt−i(θ0)|ηt−i|δ.

Whence
([
α+

1 (φ0)− α+
1 (φ)

]
1ηt−1≥0 +

[
α−1 (φ0)− α−1 (φ)

]
1ηt−1<0

)
|ηt−1|δ be-

longs to F
(
|ηt−2|δ, |ηt−3|δ, ...

)
and thus, by independence, is almost surely

constant, which yields{ [
α+

1 (φ0)− α+
1 (φ)

]
1ηt−1≥0 |ηt−1|δ is constant almost surely[

α−1 (φ0)− α−1 (φ)
]
1ηt−1<0 |ηt−1|δ is constant almost surely . (E.7)

Since from assumption A2 η1 takes at least two positive (respectively neg-
ative) values, (E.7) implies almost surely α+

1 (φ0) = α+
1 (φ) and α−1 (φ0) =

α−1 (φ), which contradicts (E.6). Recursively, we obtain that σ2
t (θ) = σ2

t (θ0)
implies that, for all i, α+

i (φ0) = α+
i (φ) and α−i (φ0) = α−i (φ) and thus, from

assumption A3(i), φ+ = φ+
0 and φ− = φ−0 almost surely, whence ω = ω0

almost surely, and thus θ = θ0 almost surely.

• (c) The limit criterion is minimized at the true value:
First, notice that, even if the limit criterion may not be integrable at some
point of Θ, it is well defined in R ∪ {+∞}. Indeed

Eθ0
[
l−t (θ)

]
= Eθ0 max[0;−lt(θ)]

= Eθ0 max

[
0;− log σ2

t (θ)− ε2
t

σ2
t (θ)

]
≤ Eθ0 max [0;− log σ2

t (θ)]

≤ Eθ0 max

[
0;−2

δ
logω

]
<∞.

.
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Furthermore, we can show that it is integrable at θ0. Using Jensen inequality
and assumption A3(ii), we obtain

Eθ0 [lt(θ0)] = Eθ0
[
log σ2

t (θ0) +
σ2
t (θ0)η2

t

σ2
t (θ0)

]
= 1 + Eθ0 log σ2

t (θ0)

= 1 + Eθ0
2

δρ
log(σδt (θ0))ρ

≤ 1 +
2

δρ
logEθ0(σδt (θ0))ρ

≤ 1 +
1

ρ
log

(
ωρ +

∞∑
i=1

aρi,t−i(φ)Eθ0 |εt−i|δρ
)

≤ 1 +
1

ρ
log

(
ωρ +K

∞∑
i=1

i−(d+1)ρEθ0 |εt−i|δρ
)

<∞

since, from assumption A4, E |εt|δρ <∞ and ρ(d+ 1) > 1. Thus, Eθ0 |lt(θ0)|
is well defined in R.

In addition, we have

Eθ0 [lt(θ)]− Eθ0 [lt(θ0)] = Eθ0
[
log

σ2
t (θ)

σ2
t (θ0)

]
+ Eθ0

[
σ2
t (θ0)η2

t

σ2
t (θ)

− η2
t

]
≥ − log

[
Eθ0

σ2
t (θ0)

σ2
t (θ)

]
+ Eθ0

[
σ2
t (θ0)

σ2
t (θ)

]
− 1

≥ 0

since, for any x > 0, log x ≤ x− 1.
We can conclude by noticing that Eθ0 [lt(θ)] = Eθ0 [lt(θ0)] if and only if
σ2
t (θ0)

σ2
t (θ)

= 1 almost surely, and thus, by identifiability of the parameter, if

and only if θ = θ0.

• (d) Compactness of Θ and ergodicity of (lt(θ))
For all θ ∈ Θ, and any positive integer k, let Vk(θ) be the open ball of center
θ and radius 1/k. Because of the asymptotic irrelevance of the initial values,
we have

lim inf
n→∞

inf
θ∗∈Vk(θ)∩Θ

Q̃n(θ∗) ≥ lim inf
n→∞

inf
θ∗∈Vk(θ)∩Θ

Qn(θ∗)

−lim sup
n→∞

sup
θ∈Θ
|Qn(θ)− Q̃n(θ)|

≥ lim inf
n→∞

1

n

n∑
t=1

inf
θ∗∈Vk(θ)∩Θ

lt(θ
∗).
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The sequences (lt(θ
∗)) and

(
inf

θ∗∈Vk(θ)∩Θ
lt(θ
∗)

)
being measurable functions

of εt and its past values, they are ergodic and strictly stationary, and admit
an expectation in R ∪ {∞}. Using the ergodic theorem for non-integrable
processes 2, we have

lim inf
n→∞

1

n

n∑
t=1

inf
θ∗∈Vk(θ)∩Θ

lt(θ
∗) = Eθ0 inf

θ∗∈Vk(θ)∩Θ
l1(θ∗).

By Beppo-Levi theorem, Eθ0 inf
θ∗∈Vk(θ)∩Θ

l1(θ∗) increases to Eθ0l1(θ) as k →∞.

The limit criterion being minimized at the true value θ0, we obtain

lim inf
n→∞

inf
θ∗∈Vk(θ)∩Θ

Q̃n(θ∗) > Eθ0l1(θ0).

The conclusion of the proof uses a compactness argument. First note that for any
neighborhood V (θ0) of θ0,

lim sup
n→∞

inf
θ∗∈V (θ0)

Q̃n(θ∗) ≤ lim
n→∞

Q̃n(θ0)

≤ lim
n→∞

Qn(θ0)

≤ Eθ0l1(θ0).

The compact set Θ is covered by the union of an arbitrary neighborhood V (θ0) of
θ0 and the set of the neighborhoods V (θ), θ ∈ Θ/V (θ0), satisfying lim inf

n→∞
inf

θ∗∈V (θ)
Q̃n(θ∗) ≥

Eθ0l1(θ0). Thus, there exists a finite subcover of Θ of the form V (θ0), V (θ1), ...,
V (θk), whence

inf
θ∈Θ

Q̃n(θ) = min
i=0,1,...,k

inf
θ∗∈V (θi)∩Θ

Q̃n(θ).

We obtain that, for n large enough, θ̃n belongs to V (θ0) almost surely. Since this
is true for any neighborhood V (θ0), we have shown that, almost surely,

θ̃n →
n→∞

θ0.

2If (Xt) is an ergodic and strictly stationary process and if EX1 exists in R ∪ {+∞} then

1

n

n∑
t=1

Xt →
n→∞

EX1 a.s.
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We will know state and prove the property mentioned in the remark about as-
sumption A11.

Proposition 3. Under assumptions A1-A4, if for all τ > 0, there exists a neigh-
borhood V (θ0) of θ0 such that

sup
i∈I+(φ0)

sup
φ∈V (φ0)

α+
i (φ0)

(α+
i )1−τ (φ)

≤ K and sup
i∈I−(φ0)

sup
φ∈V (φ0)

α−i (φ0)

(α−i )1−τ (φ)
≤ K. (E.8)

then, for all k>0, there exists some neighborhood V (θ0) of θ0 such that

Eθ0 sup
θ∈V (θ0)

[
σ2
t (θ0)

σ2
t (θ)

]k
<∞.

Proof of Proposition 3. For all s ∈ (0, 1], and for all k > s, (10) and Hölder
inequality yield

σδt (θ0)

= ω0 +
∞∑
i=1

ai,t−i(φ0)|εt−i|δ

= ω0ω
s
k
−1ω1− s

k +
∞∑
i=1

ai,t−i(φ0)a
s
k
−1

i,t−i(φ)a
1− s

k
i,t−i(φ)|εt−i|δ

s
k |εt−i|δ−δ

s
k

=
∞∑
i=0

xiyi

with
x0 = ω0ω

s
k
−1 and y0 = ω1− s

k

xi = ai,t−i(φ0)a
s
k
−1

i,t−i(φ)|εt−i|δ
s
k yi = a

1− s
k

i,t−i(φ)|εt−i|δ−δ
s
k

for all i > 0. Since xi and yi are positive for all i ≥ 0, from Hölder inequality, we
have

σδt (θ0) ≤

(
∞∑
i=0

x
k
s
i

) s
k
(
∞∑
i=0

y
1

1−s/k
i

)1− s
k

.

Replacing xi and yi by their expression, we obtain

σδt (θ0) ≤ K

[
ω
k
s
0 ω

1− k
s +

∞∑
i=1

a
k
s
i,t−i(φ0)a

1− k
s

i,t−i(φ)|εt−i|δ
] s
k [
σδt (θ)

]1− s
k .

Since
[
σδt (θ)

]− s
k ≤ K, we obtain[

σδt (θ0)

σδt (θ)

]k
≤ K

[
1 +

∞∑
i=1

aki,t−i(φ0)as−ki,t−i(φ)|εt−i|δs
]

≤ K

[
1 +

∑
i∈I+t ∩I+(φ0)

(α+
i )k(φ0)

(α+
i )k(φ)

(α+
i )s(φ)|εt−i|δs +

∑
i∈I−t ∩I−(φ0)

(α−i )k(φ0)

(α−i )k(φ)
(α−i )s(φ)|εt−i|δs

]
,
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whence, from (E.8) and assumption A3(ii), there exists a neighborhood such that

sup
θ∈V (θ0)

[
σδt (θ0)

σδt (θ)

]k
≤ K

[
1 +

∑
i∈I+t ∩I+(φ0)

sup
φ∈V (φ+

0 )

(α+
i )s−kτ (φ)|εt−i|δs +

∑
i∈I−t ∩I−(φ0)

sup
φ∈V (φ0)

(α−i )s−kτ (φ)|εt−i|δs
]

≤ K

[
1 +

∞∑
i=1

i−(d+1)(s−kτ)|εt−i|δs
]

and thus, by taking s = ρ, there exists a neighborhood such that

Eθ0 sup
θ∈V (θ0)

[
σδt (θ0)

σδt (θ)

]k
≤ K

[
1 +

∞∑
i=1

i−(d+1)(ρ−kτ)Eθ0 |εt−i|δρ
]
<∞

from assumption A4, and since from the arbitrariness of τ in (E.8), we can find a
τ such that (d+ 1)(ρ− kτ) > 1.

Before developing the proofs of Theorems 3 and 4, it is useful to state the following
lemmas. Note that the function lt(θ) may be non-defined in a neighborhood of θ0

when θ0 ∈ ∂Θ since the conditional volatility process σδt (θ) can take negative val-
ues. For ease of notation, we denote by ∂σδt (θ0)/∂θ the vector of partial derivatives
(∂σδt (θ0)/∂θi)i=1,...,r+1 where the j-th derivatives is replaced by the right derivative
when φ0,j = φj. The same convention is applied to the derivatives of lt, Qt, σ̃δt , l̃t,
and Q̃t.

Lemma 2. Under assumptions A1-A10, for all ih = 1, ..., r+1, h = 1, ..., k, k ≤ 3,
and for all p > 0, we have

Eθ0 sup
θ∈Θ

∣∣∣∣ 1

σδt (θ)

∂kσδt (θ)

∂θi1 ...∂θik

∣∣∣∣p <∞.
Proof of Lemma 2. From (E.1) and assumption A10(i), we have, for all j1 ∈
{1, ..., r},

∂σδt
∂θ1

=
∂σδt
∂ω

= 1 and
∂σδt
∂θ1+j1

=
∂σδt
∂φj1

=
∑
i∈I+t

∂α+
i

∂φj1
|εt−i|δ +

∑
i∈I−t

∂α−i
∂φj1
|εt−i|δ. (E.9)

It is thus sufficient to show that for all jh ∈ {1, ..., r}, h = 1, ..., k, k ≤ 3, we have

Eθ0 sup
θ∈Θ

∣∣∣∣ 1

σδt (θ)

∂kσδt (θ)

∂φj1 ...∂φjk

∣∣∣∣p <∞
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From (E.9), and assumptions A3(ii) and A10(i) we have

sup
θ∈Θ

∣∣∣∣ ∂kσδt (θ)

∂φj1 ...∂φjk

∣∣∣∣ ≤ sup
θ∈Θ

∑
i∈I+t

∣∣∣∣ ∂kα+
i (φ)

∂φj1 ...∂φjk

∣∣∣∣ |εt−i|δ + sup
θ∈Θ

∑
i∈I−t

∣∣∣∣ ∂kα−i (φ)

∂φj1 ...∂φjk

∣∣∣∣ |εt−i|δ
≤ K

∑
i∈I+t

sup
θ∈Θ

(α+
i )(1−ξ)(θ)|εt−i|δ +K

∑
i∈I−t

sup
θ∈Θ

(α−i )(1−ξ)(θ)|εt−i|δ

≤ K
∞∑
i=1

i−(d+1)(1−ξ)|εt−i|δ

and from the Hölder inequality we obtain, for all p > ρ

sup
θ∈Θ

∣∣∣∣ ∂kσδt (θ)

∂φj1 ...∂φjk

∣∣∣∣
≤ K

∞∑
i=1

i−(d+1)(1−ξ)|εt−i|
δρ
p |εt−i|δ−

δρ
p [ai,t−i(φ)]1−

ρ
p [ai,t−i(φ)]

ρ
p
−1

≤ K

[
∞∑
i=1

[
i−(d+1)(1−ξ)] pρ a1− p

ρ

i,t−i(φ)|εt−i|δ
] ρ
p
[
∞∑
i=1

ai,t−i(φ)|εt−i|δ
]1− ρ

p

≤ K

[
∞∑
i=1

[
i−(d+1)(1−ξ)] pρ a1− p

ρ

i,t−i(φ)|εt−i|δ
] ρ
p [
σδt (θ)

]1− ρ
p ,

whence, from assumptions A3(ii) and A10(i),

sup
θ∈Θ

∣∣∣∣ 1

σδt (θ)

∂kσδt (θ)

∂φj1 ...∂φjk

∣∣∣∣p ≤ K
∞∑
i=1

i−(d+1)(1−ξ)psup
φ∈Φ

aρ−pi,t−i(φ)|εt−i|δρ

≤ K
∞∑
i=1

i−(d+1)(ρ−pξ)|εt−i|δρ

and thus

Eθ0sup
θ∈Θ

∣∣∣∣∣ 1

σδt (θ)

∂kσδt (θ)

∂φ+
j1,1
...∂φ+

j1,k

∣∣∣∣∣
p

≤ K

∞∑
i=1

i−(d+1)(ρ−pξ)Eθ0 |εt−i|δρ

for all ξ > 0. Since ρ >
1

d+ 1
, we may choose ξ such that (d+ 1)(ρ− pξ) > 1 and

thus we have Eθ0 sup
θ∈Θ

∣∣∣∣ 1

σδt (θ)

∂kσδt (θ)

∂θi1 ...∂θik

∣∣∣∣p <∞.

The following lemma shows the integrability of the criterion derivatives at θ0.

Lemma 3. Under the assumptions of Theorem 3 or Theorem 4,

Eθ0

∥∥∥∥∂lt(θ0)

∂θ

∂lt(θ0)

∂θ′

∥∥∥∥ <∞ and Eθ0

∥∥∥∥∂2lt(θ0)

∂θ∂θ′

∥∥∥∥ <∞
18



Proof. We have lt(θ) = log σ2
t (θ) +

ε2
t

σ2
t (θ)

, thus we obtain

∂lt(θ)

∂θ
=

2

δ

[
1− ε2

t

σ2
t

] [
1

σδt

∂σδt
∂θ

]
∂2lt(θ)

∂θ∂θ′
=

2

δ

[
1− ε2

t

σ2
t

] [
1

σδt

∂2σδt
∂θ∂θ′

]
+

2

δ

[
δ + 2

δ

ε2
t

σ2
t

− 1

] [
1

σδt

∂σδt
∂θ

] [
1

σδt

∂σδt
∂θ′

]
.

(E.10)

Note that at θ0,
ε2
t

σ2
t (θ0)

= η2
t is independent of σ2

t and its derivatives. It thus

suffices to show

Eθ0

∥∥∥∥ 1

σδt

∂σδt
∂θ

(θ0)

∥∥∥∥ <∞, Eθ0 ∥∥∥∥ 1

σδt

∂2σδt
∂θ∂θ′

(θ0)

∥∥∥∥ <∞ and Eθ0

∥∥∥∥ 1

σ2δ
t

∂σδt
∂θ

∂σδt
∂θ′

(θ0)

∥∥∥∥ <∞.
From (E.1) and Lemma 2, we have that for any j1, j2 ∈ {1, ..., r}

∂σδt
∂ω

(θ0) = 1 and
∣∣∣∣ 1

σδt

∂σδt
∂φj1

∣∣∣∣ (θ0) <∞

which proves the first inequality, and

∂2σδt
∂ω∂φj1

(θ0) = 0 and
∣∣∣∣ 1

σδt

∂2σδt
∂φj1∂φj2

∣∣∣∣ (θ0) <∞

which proves the second inequality.

Since
1

σδt

∂σδt
∂ω

and
1

σδt

∂σδt
∂φj1

are bounded at θ0, we can conclude that

Eθ0

∥∥∥∥ 1

σ2δ
t

∂σδt
∂θ

∂σδt
∂θ′

(θ0)

∥∥∥∥ <∞
which finishes the proof.

The following lemma shows the non-singularity of J and how it connects with the
variance of the criterion derivatives.

Lemma 4. Under the assumptions of Theorem 3 or Theorem 4,

J is invertible and Vθ0
[
∂lt(θ0)

∂θ

]
= (κη − 1)J

Proof. Since at θ0,
ε2
t

σ2
t (θ0)

= η2
t is independent of σ2

t and its derivatives, we have

Eθ0
[
∂lt
∂θ

(θ0)

]
=

2

δ
Eθ0 [1− η2

t ]Eθ0
[

1

σδt

∂σδt
∂θ

(θ0)

]
= 0
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because Eθ0η2
t = 1 from assumptions A2.

Moreover, in view of integrability of the derivatives of the criterion at θ0, J =

Eθ0
[
∂2lt(θ0)

∂θ∂θ′

]
exists, and from assumption A7 we can write

Vθ0
[
∂lt
∂θ

(θ0)

]
=

4

δ2
Eθ0 [(1− η2

t )
2]Eθ0

[
1

σδt

∂σδt
∂θ

1

σδt

∂σδt
∂θ′

(θ0)

]
=

4

δ2
[1− 2Eθ0η2

t + Eθ0η4
t ]Eθ0

[
1

σ2δ
t

∂σδt
∂θ

∂σδt
∂θ′

(θ0)

]
= (κη − 1)J .

Assume now that J is singular, then there exists a non-zero vector Λ = [λ0, (λ)′]′,
with λ ∈ Rr, such that almost surely

Λ′JΛ = 0

⇔ Eθ0

[
1

σ2δ
t (θ0)

(
Λ′
∂σδt (θ0)

∂θ

)2
]

= 0

⇔ Λ′
[
∂σδt (θ0)

∂θ

]
= 0

⇔ λ0 +
∞∑
i=1

[
r∑
j=1

λj
∂α+

i (φ0)

∂φj
1εt−i≥0 +

r∑
k=1

λk
∂α−i (φ0)

∂φk
1εt−i<0

]
|εt−i|δ = 0.

Now, assume
r∑
j=1

λj
∂α+

1 (φ0)

∂φj
1εt−1≥0 +

r∑
k=1

λk
∂α−1 (φ0)

∂φk
1εt−1<0 6= 0, then it follows[

r∑
j=1

λj
∂α+

1 (φ0)

∂φj
1ηt−1≥0 +

r∑
k=1

λk
∂α−1 (φ0)

∂φk
1ηt−1<0

]
|ηt−1|δσδt−1(θ0)

= −λ0 −
∞∑
i=2

[
r∑
j=1

λj
∂α+

i (φ0)

∂φj
1ηt−i≥0 +

r∑
k=1

λk
∂α−i (φ0)

∂φk
1ηt−i<0

]
|ηt−i|δσδt−i(θ0)

whence ηδt−1 ∈ F
(
ηδt−2, ...

)
and thus, by independence,

r∑
j=1

λj
∂α+

1 (φ0)

∂φj
1ηt−1≥0|ηt−1|δ is constant almost surely

r∑
k=1

λk
∂α−1 (φ0)

∂φk
1ηt−1<0|ηt−1|δ is constant almost surely

(E.11)

However, since, from assumption A2, η1 takes at least two positive (respectively
negative) values, (E.11) implies almost surely

λ
′ ∂α+

1 (φ0)

∂φ
= 0

λ
′ ∂α−1 (φ0)

∂φ
= 0.
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Iterating this argument we obtain that for all i+(−)
h = i

+(−)
h (φ0), i

+(−)
h = 1, ..., r, we

have λ
′ ∂α

+(−)
ih

(φ0)

∂φ
= 0 and thus from assumption A10(ii) we must have λ = 0.

This implies λ0 = 0 and contradicts the singularity of J .

The following lemma shows the uniform integrability of the second and third order
of the criterion derivatives.

Lemma 5. Under the assumptions of Theorem 3 or Theorem 4, for any ε > 0,
there exists a neighborhood V(θ0) of θ0 such that for all k1, k2, k3 ∈ {1, . . . , r+ 1},

Eθ0 sup
θ∈V (θ0)

∣∣∣∣ ∂2lt(θ0)

∂θk1∂θk2

∣∣∣∣ <∞ and Eθ0 sup
θ∈V (θ0)

∣∣∣∣ ∂3lt(θ0)

∂θk1∂θk2∂θk3

∣∣∣∣ <∞ a.s.

Proof. From (E.10), we have

∂2lt(θ)

∂θ∂θ′
=

2

δ

[
1− ε2

t

σ2
t

] [
1

σδt

∂2σδt
∂θ∂θ′

]
+

2

δ

[
δ + 2

δ

ε2
t

σ2
t

− 1

] [
1

σδt

∂σδt
∂θ

] [
1

σδt

∂σδt
∂θ′

]
.

In addition, we have

∂3lt(θ)

∂θi1∂θi2∂θi3
=

2

δ

{[
1− ε2

t

σ2
t

] [
1

σδt

∂3σδt
∂θi1∂θi2∂θi3

]
+

[
δ + 2

2

ε2
t

σ2
t

− 1

] [
1

σδt

∂σδt
∂θi1

] [
1

σδt

∂2σδt
∂θi2∂θi3

]
+

[
δ + 2

2

ε2
t

σ2
t

− 1

] [
1

σδt

∂σδt
∂θi2

] [
1

σδt

∂2σδt
∂θi1∂θi3

]
+

[
δ + 2

2

ε2
t

σ2
t

− 1

] [
1

σδt

∂σδt
∂θi3

] [
1

σδt

∂2σδt
∂θi1∂θi2

]
+2

[
1− δ2 + 3δ + 2

δ2

ε2
t

σ2
t

] [
1

σδt

∂σδt
∂θi1

] [
1

σδt

∂σδt
∂θi2

] [
1

σδt

∂σδt
∂θi3

]}
(θ).

By assumption A11, there exists a neighborhood V (θ0) of θ0 such that,

Eθ0 sup
θ∈V (θ0)

[
σ2
t (θ0)

σ2
t (θ)

]2

<∞, (E.12)

and the triangle inequality gives∥∥∥∥∥ sup
θ∈V (θ0)

ε2
t

σ2
t (θ)

∥∥∥∥∥
2

=
√
κη

∥∥∥∥∥ sup
θ∈V (θ0)

σ2
t (θ0)

σ2
t (θ)

∥∥∥∥∥
2

<∞

by assumption A7.
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Using Lemma 2, we have for all i1, i2, i3 ∈ {1, ..., r + 1}

Eθ0sup
θ∈Θ

∣∣∣∣ 1

σδt (θ)

∂σδt (θ)

∂θi1

∣∣∣∣p <∞,
Eθ0sup

θ∈Θ

∣∣∣∣ 1

σδt (θ)

∂2σδt (θ)

∂θi1∂θi2

∣∣∣∣p <∞,
Eθ0sup

θ∈Θ

∣∣∣∣ 1

σδt (θ)

∂3σδt (θ)

∂θi1∂θi2∂θi3

∣∣∣∣p <∞,
(E.13)

and we thus obtain, using the Cauchy-Schwartz inequality and the Hölder inequal-
ity,

Eθ0 sup
θ∈Vτ (θ0)

∣∣∣∣[1− ε2
t

σ2
t (θ)

] [
1

σδt (θ)

∂3σδt (θ)

∂θi1∂θi2∂θi3

]∣∣∣∣ <∞,
Eθ0 sup

θ∈Vτ (θ0)

∣∣∣∣[δ + 2

2

ε2
t

σ2
t (θ)

− 1

] [
1

σδt (θ)

∂σδt (θ)

∂θi1

] [
1

σδt (θ)

∂2σδt (θ)

∂θi2∂θi3

]∣∣∣∣
≤

∥∥∥∥∥ sup
θ∈Vτ (θ0)

∣∣∣∣δ + 2

2

ε2
t

σ2
t (θ)

− 1

∣∣∣∣
∥∥∥∥∥

2

∥∥∥∥sup
θ∈Θ

∣∣∣∣ 1

σδt (θ)

∂σδt (θ)

∂θi1

∣∣∣∣∥∥∥∥
4

∥∥∥∥sup
θ∈Θ

∣∣∣∣ 1

σδt (θ)

∂2σδt (θ)

∂θi2∂θi3

∣∣∣∣∥∥∥∥
4

<∞,
and

Eθ0 sup
θ∈Vτ (θ0)

∣∣∣∣[1− δ2 + 3δ + 2

δ2

ε2
t

σ2
t (θ)

] [
1

σδt (θ)

∂σδt (θ)

∂θi1

] [
1

σδt (θ)

∂σδt (θ)

∂θi2

] [
1

σδt (θ)

∂σδt (θ)

∂θi3

]∣∣∣∣
≤

∥∥∥∥∥ sup
θ∈Vτ (θ0)

∣∣∣∣1− δ2 + 3δ + 2

δ2

ε2
t

σ2
t (θ)

∣∣∣∣
∥∥∥∥∥

2

max
h

∥∥∥∥sup
θ∈Θ

∣∣∣∣ 1

σδt (θ)

∂σδt (θ)

∂θih

∣∣∣∣∥∥∥∥3

6

<∞,

which concludes the proof.

The following lemma shows the asymptotic irrelevance of the initial values on the
derivatives of the criterion.

Lemma 6. Under the assumptions of Theorem 3 or Theorem 4,∥∥∥∥∥ 1√
n

n∑
t=1

(
∂lt(θ0)

∂θ
− ∂l̃t(θ0)

∂θ

)∥∥∥∥∥ P→ 0 and sup
θ∈V (θ0)

∥∥∥∥∥ 1

n

n∑
t=1

(
∂2lt(θ)

∂θ∂θ′
− ∂2l̃t(θ)

∂θ∂θ′

)∥∥∥∥∥ P→ 0

Proof. First, remark that, from assumption A3(ii) and A11, on a neighborhood
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V (θ0) of θ0, we have similarly to (E.5)

sup
θ∈V (θ0)

ε2
t

σ̃2
t (θ)

= sup
θ∈Θ

η2
t

σ2
t (θ0)

σ2
t (θ)

σ2
t (θ)

σ̃2
t (θ)

= sup
θ∈V (θ0)

η2
t

σ2
t (θ0)

σ2
t (θ)

[
σδt (θ)

σ̃δt (θ)

]2/δ

≤ K sup
θ∈V (θ0)

η2
t

σ2
t (θ0)

σ2
t (θ)

[
1 +

∞∑
i=t

i−d−1|εt−i|δ
]2/δ

≤ K sup
θ∈V (θ0)

η2
t

σ2
t (θ0)

σ2
t (θ)

[
1 +

∞∑
i=0

i−d−1|ε−i|δ
]2/δ

≤ K sup
θ∈V (θ0)

η2
t

σ2
t (θ0)

σ2
t (θ)

(E.14)

where K is finite almost surely and does not depend on t since
∞∑
i=0

i−(d+1)ε2
−i admits

a moment of order ρ and thus is finite almost surely.

We have

∂l̃t(θ)

∂θ
=

2

δ

[
1− ε2

t

σ̃2
t

] [
1

σ̃δt

∂σ̃δt
∂θ

]
(θ) =

2

δ

[
1− η2

t

σ2
t

σ̃2
t

] [
1

σ̃2
t

∂σ̃2
t

∂θ

]
(θ),

therefore we can write∣∣∣∣∣∂lt(θ0)

∂θk
− ∂l̃t(θ0)

∂θk

∣∣∣∣∣ =
2

δ

∣∣∣∣[ ε2
t

σ̃2
t

− ε2
t

σ2
t

] [
1

σδt

∂σδt
∂θk

]
+

[
1− ε2

t

σ̃2
t

] [
1

σ̃δt
− 1

σδt

] [
∂σδt
∂θk

]
+

[
1− ε2

t

σ̃2
t

] [
1

σ̃δt

] [
∂σδt
∂θk
− ∂σ̃δt
∂θk

]∣∣∣∣ (θ0)

=
2

δ
|At +Bt + Ct| (θ0)

From the Markov inequality we have

P

[∣∣∣∣∣ 1√
n

n∑
t=1

[
∂lt(θ0)

∂θk
− ∂l̃t(θ0)

∂θk

]∣∣∣∣∣ > ε

]

≤ 1

ε
Eθ0

∣∣∣∣∣ 1√
n

n∑
t=1

[
∂lt(θ0)

∂θk
− ∂l̃t(θ0)

∂θk

]∣∣∣∣∣
≤ 1

ε

2

δ

[
Eθ0

∣∣∣∣ 1√
n

n∑
t=1

At(θ0)

∣∣∣∣+ Eθ0

∣∣∣∣ 1√
n

n∑
t=1

Bt(θ0)

∣∣∣∣+ Eθ0

∣∣∣∣ 1√
n

n∑
t=1

Ct(θ0)

∣∣∣∣]
(E.15)
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First consider Eθ0

∣∣∣∣ 1√
n

n∑
t=1

At(θ0)

∣∣∣∣. From (E.3) and (E.14), we have

|At(θ0)| =

∣∣∣∣[ ε2
t

σ̃2
t

− ε2
t

σ2
t

] [
1

σδt

∂σδt
∂θk

]∣∣∣∣ (θ0)

≤ η2
t

[
max[σ2−δ

t (θ0), σ̃2−δ
t (θ0)

σ̃2
t (θ0)

]
[σδt (θ0)− σ̃δt ]

∣∣∣∣[ 1

σδt (θ0)

∂σδt (θ0)

∂θk

]∣∣∣∣
≤ Kη2

t

[
∞∑
i=t

ai,t−i(φ0)|εt−i|δ
] ∣∣∣∣ 1

σδt (θ0)

∂σδt
∂θk

(θ0)

∣∣∣∣
whence, using the independence of η2

t with σ2
t and its derivatives at θ0, along with

assumptions A2 and A8,

Eθ0 |At(θ0)|ρ ≤ KEθ0 |ηt|2ρEθ0
([

∞∑
i=t

ai,t−i(φ0)|εt−i|δ
]ρ ∣∣∣∣ 1

σδt

∂σδt
∂θk

(θ0)

∣∣∣∣ρ)
≤ KEθ0

([
∞∑
i=t

i−(d∗+1)|εt−i|δ
]ρ ∣∣∣∣ 1

σδt

∂σδt
∂θk

(θ0)

∣∣∣∣ρ) .
Since ρ < 1 from assumption A9, there exists some ξ > 0 such that ρ(1 + ξ) ≤ 1.
Hence, from Hölder inequality, along with Lemma 2, we obtain

Eθ0 |At(θ0)|ρ ≤ K

(
Eθ0

[
∞∑
i=t

i−(d∗+1)|εt−i|δ
]ρ(1+ξ)

) 1
1+ξ
(
Eθ0

∣∣∣∣ 1

σδt

∂σδt
∂θk

(θ0)

∣∣∣∣ρ
ξ+1
ξ

) ξ
1+ξ

≤ K

(
∞∑
i=t

i−(d∗+1)ρ(1+ξ)Eθ0 |εt−i|
δρ(1+ξ)

) 1
1+ξ

≤ K
∞∑
i=t

i−(d∗+1)ρ
(
Eθ0 |εt−i|

δρ(1+ξ)
) 1

1+ξ

≤ K
∞∑
i=0

(t+ i)−(d∗+1)ρ
(
Eθ0 |ε−i|

δρ(1+ξ)
) 1

1+ξ

≤ Kt−(d∗+1)ρ+1,
(E.16)

and thus
Eθ0

∣∣∣∣ 1√
n

n∑
t=1

At(θ0)

∣∣∣∣ρ ≤ n−
1
2
ρ
n∑
t=1

Eθ0 |At(θ0)|ρ

≤ Kn−
1
2
ρ
n∑
t=1

t−(d∗+1)ρ+1

≤ Kn−(d∗+ 3
2

)ρ+2

→
n→∞

0

since from assumption A9 we have (d∗ + 3
2
)ρ − 2 > 0. Using Markov inequality,

we can conclude
1√
n

n∑
t=1

|At(θ0)| tends to 0 in probability.
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Consider now Eθ0

∣∣∣∣ 1√
n

n∑
t=1

Bt(θ0)

∣∣∣∣. We have, from (E.14) and similarly to (E.5),

|Bt(θ0)| =

∣∣∣∣[1− ε2
t

σ̃2
t

] [
1

σ̃δt
− 1

σδt

] [
∂σ2

t

∂θk

]∣∣∣∣ (θ0)

≤ Kη2
t

[
σδt (θ0)− σ̃δt (θ0)

] ∣∣∣∣[ 1

σδt (θ0)

∂σδt (θ0)

∂θk

]∣∣∣∣ ,
and thus

Eθ0

∣∣∣∣ 1√
n

n∑
t=1

Bt(θ0)

∣∣∣∣ρ →
n→∞

0

from the same previous arguments. Using Markov inequality, we can conclude
1√
n

n∑
t=1

|Bt(θ0)| tends to 0 in probability.

Finally consider Eθ0

∣∣∣∣ 1√
n

n∑
t=1

Ct(θ0)

∣∣∣∣. From (E.9), and from assumptions A10(i)

and A3(ii), we have for all ξ > 0,

|Ct(θ0)| =

∣∣∣∣[1− ε2
t

σ̃2
t

] [
1

σ̃δt

] [
∂σδt
∂θk
− ∂σ̃δt
∂θk

]∣∣∣∣ (θ0)

≤ Kη2
t

∣∣∣∣∂σ2
t (θ0)

∂θk
− ∂σ̃2

t (θ0)

∂θk

∣∣∣∣
≤ Kη2

t

∞∑
i=t

max
(
α+
i (φ0), α−i (φ0)

)1−ξ |εt−i|δ

≤ Kη2
t

∞∑
i=t

i−(d+1)(1−ξ)|εt−i|δ

≤ Kη2
t

∞∑
i=0

(t+ i)−(d+1)(1−ξ)|ε−i|δ,

and thus
Eθ0

∣∣∣∣ 1√
n

n∑
t=1

Ct(θ0)

∣∣∣∣ρ ≤ n−
1
2
ρ
n∑
t=1

Eθ0 |Ct(θ0)|ρ

≤ Kn−
1
2
ρ
n∑
t=1

t−(d∗+1)ρ(1−ξ)+1

≤ Kn−(d∗+1)ρ(1−ξ)+2

→
n→∞

0

since, from assumption A8 and A9, there exists a ξ such that (d∗ + 1)ρ(1− ξ)−
2 > 0. Using Markov inequality, we can conclude

1√
n

n∑
t=1

|Ct(θ0)| tends to 0 in

probability.
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Hence (E.15) yields

P

[∣∣∣∣∣ 1√
n

n∑
t=1

[
∂lt(θ0)

∂θk
− ∂l̃t(θ0)

∂θk

]∣∣∣∣∣ > ε

]
→ 0

for all ε > 0 which concludes the proof of the first inequality.

Now consider the asymptotic impact of the initial values on the second-order
derivatives of the criterion in a neighborhood of θ0.
We denote χt = sup

θ∈V (θ0)

|σδt (θ) − σ̃δt (θ)|, and we have from (E.3) and assumption

A3(ii)

χt = sup
θ∈V (θ0)

∞∑
i=t

ai,t−i(φ)|εt−i|δ

≤ K
∞∑
i=t

i−(d+1)|εt−i|δ

≤ K
∞∑
i=0

(i+ t)−(d+1)|ε−i|δ,

whence
Eχρt ≤ K

∞∑
i=0

(i+ t)−(d+1)ρ E|ε−i|δρ

≤ Kt−(d+1)ρ+1
(E.17)

since, from assumption A4, E |εt|2ρ <∞. This shows that χt has a finite moment
of order ρ and thus is finite almost surely. Furthermore, since ρ(d + 1) > 1, the
dominated convergence theorem entails lim

t→∞
χt = 0 almost surely.

Let us now denote

χ
(i1)
t = sup

θ∈V (θ0)

∣∣∣∣∂σδt (θ)

∂θi1
− ∂σ̃δt (θ)

∂θi1

∣∣∣∣
and

χ
(i1,i2)
t = sup

θ∈V (θ0)

∣∣∣∣∂2σδt (θ)

∂θi1∂θi2
− ∂2σ̃δt (θ)

∂θi1∂θi2

∣∣∣∣
where V (θ0) is a neighborhood of θ0 and i1, i2 ∈ {1, . . . , r}. From (E.9) we easily
obtain χ(1)

t = 0, and from assumptions A10(i) and A3(ii), we have for all ξ > 0,

χ
(1+i1)
t ≤

∞∑
i=t

sup
φ∈V (φ0)

max

(∣∣∣∣∂α+
i (φ)

∂φi1

∣∣∣∣ , ∣∣∣∣∂α−i (φ)

∂φi1

∣∣∣∣) |εt−i|δ
≤ K

∞∑
i=t

i−(d+1)(1−ξ)|εt−i|δ

≤ K
∞∑
i=0

(i+ t)−(d+1)(1−ξ)|ε−i|δ,
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whence
E
(
χ

(i1)
t

)ρ
≤
∞∑
i=0

(i+ t)−(d+1)ρ(1−ξ)E|ε−i|δρ

≤ Kt−(d+1)ρ(1−ξ)+1
(E.18)

since, from assumption A4, E |εt|δρ < ∞. This shows that for any i1, χ
(i1)
t has

a finite moment of order ρ and thus is finite almost surely. Furthermore, since
ρ(d + 1) > 1, we can find a ξ > 0 such that ρ(d + 1)(1 − ξ) > 1, and thus the
dominated convergence theorem entails lim

t→∞
χ

(i1)
t = 0 almost surely. The same ar-

guments yield lim
t→∞

χ
(i1,i2)
t = 0 almost surely for any i1, i2.

Consider now

sup
θ∈V(θ0)

∣∣∣∣∣ 1n n∑
t=1

[
∂2lt(θ)

∂θi1∂θi2
− ∂2l̃t(θ)

∂θi1∂θi2

]∣∣∣∣∣
≤ 1

n

n∑
t=1

2

δ
sup
θ∈V(θ0)

∣∣∣∣[ ε2
t

σ̃2
t

− ε2
t

σ2
t

] [
1

σδt

∂2σδt
∂θi1∂θi2

]
+

[
1− ε2

t

σ̃2
t

] [(
1

σδt
− 1

σ̃δt

)
∂2σδt

∂θi1∂θi2
+

1

σ̃δt

(
∂2σδt

∂θi1∂θi2
− ∂2σ̃δt
∂θi1∂θi2

)]
+

[
2 + δ

δ

ε2
t

σ2
t

− 2 + δ

δ

ε2
t

σ̃2
t

] [
1

σδt

∂σδt
∂θi1

] [
1

σδt

∂σδt
∂θi2

]
+

[
2 + δ

δ

ε2
t

σ̃2
t

− 1

] [(
1

σδt
− 1

σ̃δt

)
∂σδt
∂θi1

+
1

σ̃δt

(
∂σδt
∂θi1
− ∂σ̃δt
∂θi1

)][
1

σδt

∂σδt
∂θi2

]
+

[
2 + δ

δ

ε2
t

σ̃2
t

− 1

] [(
1

σδt
− 1

σ̃δt

)
∂σδt
∂θi2

+
1

σ̃δt

(
∂σδt
∂θi2
− ∂σ̃δt
∂θi2

)][
1

σ̃δt

∂σ̃δt
∂θi1

]∣∣∣∣ (θ),
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which yields

sup
θ∈V(θ0)

∣∣∣∣∣ 1n n∑
t=1

[
∂2lt(θ)

∂θi1∂θi2
− ∂2l̃t(θ)

∂θi1∂θi2

]∣∣∣∣∣
≤ K

n

n∑
t=1

η2
t sup
θ∈V(θ0)

∣∣∣∣[σ2
t (θ0)

σ2
t (θ)

1

σδt (θ)

∂2σδt (θ)

∂θi1∂θi2

]∣∣∣∣ χt
+
K

n

n∑
t=1

η2
t sup
θ∈V(θ0)

∣∣∣∣σ2
t (θ0)

σ2
t (θ)

[
1

σδt (θ)

∂σδt (θ)

∂θi1

] [
1

σδt (θ)

∂σδt (θ)

∂θi2

]∣∣∣∣ χt
+
K

n

n∑
t=1

η2
t sup
θ∈V(θ0)

∣∣∣∣σ2
t (θ0)

σ2
t (θ)

[
1

σ̃δt (θ)

∂σ̃δt (θ)

∂θi1

] [
1

σδt (θ)

∂σδt (θ)

∂θi2

]∣∣∣∣ χt
+
K

n

n∑
t=1

η2
t sup
θ∈V(θ0)

∣∣∣∣σ2
t (θ0)

σ2
t (θ)

[
1

σ̃δt (θ)

∂σ̃δt (θ)

∂θi1

]∣∣∣∣ χ(i2)
t

+
K

n

n∑
t=1

η2
t sup
θ∈V(θ0)

∣∣∣∣σ2
t (θ0)

σ2
t (θ)

[
1

σδt (θ)

∂σδt (θ)

∂θi1

]∣∣∣∣ χ(i1)
t

+
K

n

n∑
t=1

η2
t sup
θ∈V(θ0)

∣∣∣∣σ2
t (θ0)

σ2
t (θ)

∣∣∣∣ χ(i1,i2)
t .

We can first notice that, from the same arguments used to show Lemma 2, for all
p > 0, i1, i2 = 1, ..., r + 1,

Eθ0sup
θ∈Θ

∣∣∣∣ 1

σ̃δt (θ)

∂σ̃δt (θ)

∂θi1

∣∣∣∣p <∞
Eθ0sup

θ∈Θ

∣∣∣∣ 1

σ̃δt (θ)

∂2σ̃δt (θ)

∂θi1∂θi2

∣∣∣∣p <∞. (E.19)

Then, from independence of η2
t with σδt and its derivatives, assumption A11,

Lemma 2, (E.14), and (E.19) we have, using Hölder inequality, for all i1, i2,

E

[
η2
t sup
θ∈V(θ0)

∣∣∣∣[σ2
t (θ0)

σ2
t (θ)

1

σδt (θ)

∂2σδt (θ)

∂θi1∂θi2

]∣∣∣∣
]
<∞

E

[
η2
t sup
θ∈V(θ0)

∣∣∣∣σ2
t (θ0)

σ2
t (θ)

[
1

σδt (θ)

∂σδt (θ)

∂θi1

] [
1

σδt (θ)

∂σδt (θ)

∂θi2

]∣∣∣∣
]
<∞

E

[
η2
t sup
θ∈V(θ0)

∣∣∣∣σ2
t (θ0)

σ2
t (θ)

[
1

σ̃δt (θ)

∂σ̃δt (θ)

∂θi1

] [
1

σδt (θ)

∂σδt (θ)

∂θi2

]∣∣∣∣
]
<∞

E

[
η2
t sup
θ∈V(θ0)

∣∣∣∣σ2
t (θ0)

σ2
t (θ)

[
1

σδt (θ)

∂σδt (θ)

∂θi1

]∣∣∣∣
]
<∞

E

[
η2
t sup
θ∈V(θ0)

∣∣∣∣σ2
t (θ0)

σ2
t (θ)

[
1

σ̃δt (θ)

∂σ̃δt (θ)

∂θi1

]∣∣∣∣
]
<∞.

(E.20)
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Since χt, χ
(i1)
t , and χ(i1,i2)

t tend to 0 almost surely as t tends to infinity, and (E.20),
Toeplitz lemma combined with Markov inequality entail

sup
θ∈V(θ0)

∣∣∣∣∣ 1n
n∑
t=1

[
∂2lt(θ)

∂θi1∂θi2
− ∂2l̃t(θ)

∂θi1∂θi2

]∣∣∣∣∣ →n→∞ 0

in probability, which concludes the proof.

Finally, the following lemma shows the asymptotic normality of the normalized
score.

Lemma 7. Under the assumptions of Theorem 3 or Theorem 4,

Zn = −J−1
n

√
n
∂Qn(θ0)

∂θ

L→ Z , with Z ∼ N (0, (κη − 1)J)

where J−1
n =

∂2Qn(θ0)

∂θθ′
is an almost surely positive definite matrix for n sufficiently

large.

Proof. Using the fact that σδt (θ0) and its derivatives belong to the σ-field generated
by {εt−i, i ≥ 0}, and the fact that Eθ0 [ε2

t |εu, u < t] = σ2
t (θ0), we have

Eθ0
[
∂lt(θ0)

∂θ
|εu, u < t

]
=

1

σδt (θ0)

[
∂σδt
∂θ

(θ0)

]
Eθ0 [ σ2

t (θ0)− ε2
t |εu, u < t] = 0

and we have from Lemma 4 that Vθ0
[
∂lt
∂θ

(θ0)

]
is finite. In view of the invertibility

of J and the assumptions on the distribution of ηt (which entails 0 < κη−1 <∞),
this covariance matrix is non-degenerate. It follows that, for all λ ∈ Rr+1, the

sequence
{
λ′

∂lt(θ0)

∂θ
, εt

}
t

is a square integrable ergodic stationary martingale

difference. The Cramer-Wold theorem and the following corollary entail

1√
n

n∑
t=1

∂lt
∂θ

(θ0)
L→ N (0, (κη − 1)J)

Corollary (Billingsley, 1961)[1]: if (vt,Ft)t is a stationary and ergodic sequence
of square integrable martingale increments such that σ2

v = V(vt) 6= 0 then

1√
n

n∑
t=1

vt
L→ N (0, σ2

v).

The ergodic theorem entails Jn → J as n → ∞ almost surely. Finally, the
conclusion follows from Slutsky lemma.
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We can now develop the proof of Theorem 3 on the asymptotic normality of the
QMLE.

Proof of Theorem 3. From Theorem 2, we have that θ̃n converges to θ0 which,
from assumption A6, belongs to the interior of Θ, whence the derivative of the
criterion is equal to zero at θ̃n. It follows that, by a standard Taylor expansion at
θ0, we have

0 =
∂Q̃n

∂θ
(θ̃n)

=
1√
n

n∑
t=1

∂l̃t
∂θ

(θ̃n)

=
1√
n

n∑
t=1

∂l̃t
∂θ

(θ0) +

[
1

n

n∑
t=1

∂2l̃t
∂θi∂θj

(θ∗ij)

]
√
n(θ̃n − θ0)

where the θ∗ij are between θ̃n and θ0.

We will show the result by proving that

1√
n

n∑
t=1

∂l̃t
∂θ

(θ0)
L→ N (0, (κη − 1)J) (E.21)

and that
1

n

n∑
t=1

∂2l̃t
∂θi∂θj

(θ∗ij)→ J(i, j) in probability. (E.22)

Using lemmas 3, 4, 6, and 7 along with Slutsky lemma directly yields (E.21).

Consider now a second Taylor expansion of the criterion at θ0. We have for all i
and j,

1

n

n∑
t=1

∂2lt
∂θi∂θj

(θ∗ij) =
1

n

n∑
t=1

∂2lt
∂θi∂θj

(θ0) +
1

n

n∑
t=1

∂lt
∂θ′

[
∂2lt
∂θi∂θj

(θ̃ij)

]
(θ∗ij − θ0)

where θ̃ij is between θ∗ij and θ0. The almost sure convergence of θ̃ij to θ0, the
ergodic theorem and the uniform integrability of the third-order derivatives of the
criterion (from Lemma 5) imply that almost surely

lim sup
n→∞

∥∥∥∥ 1

n

n∑
t=1

∂lt
∂θ′

[
∂2lt
∂θi∂θj

(θ̃ij)

]∥∥∥∥ ≤ lim sup
n→∞

1

n

n∑
t=1

sup
θ∈V(θ0)

∥∥∥∥ ∂lt∂θ′

[
∂2lt
∂θi∂θj

(θ)

]∥∥∥∥
≤ Eθ0 sup

θ∈V(θ0)

∥∥∥∥ ∂lt∂θ′

[
∂2lt
∂θi∂θj

(θ)

]∥∥∥∥
<∞
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Since ‖θ∗ij − θ0‖ → 0 almost surely, we have for all ε > 0,

P
[∣∣∣∣ 1n n∑

t=1

∂lt
∂θ′

[
∂2lt
∂θi∂θj

(θ̃ij)

]
(θ∗ij − θ0)

∣∣∣∣ ≤ ε

]
= 1

and by the ergodic theorem,

1

n

n∑
t=1

∂2lt
∂θi∂θj

(θ0)
P→ J(i, j).

Using Slutsky lemma along with the previous lemmas allows us to obtain (E.22)
which ends the proof.

We now turn to the proof of Theorem 4. This proof is very similar to the one
established by Francq and Zakoïan[5] in the GARCH(p,q) case when some coeffi-
cients are equal to zeros. In the following, we use the notation a

oP (1)
= b meaning

a = b+ oP (1).

Proof of Theorem 4. From the proof of Theorem 3, we have

√
n(θ̃n − θ0)

oP (1)
= Zn = −J−1

n

√
n
∂Qn(θ0)

∂θ
. (E.23)

when θ0 belongs to the interior of Θ. This relation does not hold when θ0 ∈ ∂Θ
since then at least one element of the vector (θ̃n−θ0) is a positive random variable.
We will show that, in the general case, for all θ0 ∈ Θ, we have

√
n(θ̃n − θ0)

oP (1)
= λΛ

n = arg inf
λ∈Λ

[λ−Zn]′Jn[λ−Zn]. (E.24)

Note than when θ0 belongs to the interior of Θ, we have λΛ
n = Zn and (E.24)

reduces to (E.23). λΛ
n can be seen as the orthogonal projection of Zn on Λ for the

inner product 〈x,y〉Jn = x′Jny. This projection can be approximated by
√
n(θJn(Zn)− θ0) with θJn(Zn) = arg inf

θ∈Θ
‖Zn −

√
n(θ − θ0)‖Jn

which is the the projection of Zn on the space
√
n(Θ− θ0) which increases to Λ.

Using a Taylor expansion for a function with right partial derivatives, we have for
all θ and θ0 ∈ Θ,

Q̃n(θ) = Q̃n(θ0) +
∂Q̃n(θ0)

∂θ′
(θ − θ0) +

1

2
(θ − θ0)′

∂2Q̃n(θ0)

∂θ∂θ′
(θ − θ0) +Rn(θ)

= Q̃n(θ0) +
1

2n
Z ′nJn

√
n(θ − θ0)− 1

2n

√
n(θ − θ0)′JnZn

+
1

2
(θ − θ0)′Jn(θ − θ0) +Rn(θ) +R∗n(θ)

= Q̃n(θ0) +
1

2n
‖Zn −

√
n(θ − θ0)‖2

Jn
− 1

2n
Z ′nJnZn +Rn(θ) +R∗n(θ)

(E.25)
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where Rn(θ) and R∗n(θ) are remainder terms. To conclude the proof, we will prove
the following intermediate results. For all θ0 ∈ Θ

(a)
√
n(θJn(Zn)− θ0) = OP (1)

(b)
√
n(θ̃n − θ0) = OP (1)

(c) For any sequence (θn) such that
√
n(θn − θ0) = OP (1), Rn(θn) = oP (n−1)

and R∗n(θn) = oP (n−1)

(d) ‖Zn −
√
n(θ̃n − θ0)‖2

Jn

oP (1)
= ‖Zn − λΛ

n ‖2
Jn

(e)
√
n(θ̃n − θ0)

oP (1)
= λΛ

n

(f) λΛ
n
L→ λΛ

Lemma 4 ensures that for n sufficiently large, ‖.‖Jn almost surely defines a norm.
Using the triangular inequality and the fact that θJn(Zn) minimizes ‖Zn−

√
n(θ−

θ0)‖Jn over Θ, we have

‖
√
n(θJn(Zn)−θ0)‖Jn ≤ ‖Zn−

√
n(θJn(Zn)−θ0)‖Jn+‖Zn‖Jn ≤ ‖Zn‖Jn+‖Zn‖Jn

and from Lemma 7, we have ‖Zn‖Jn +‖Zn‖Jn = OP (1) which concludes the proof
of (a).

By the Taylor expansion

Q̃n(θ) = Q̃n(θ0) +
∂Q̃n(θ0)

∂θ′
(θ − θ0) +

1

2
(θ − θ0)′

∂2Q̃n(θ∗ij)

∂θ∂θ′
(θ − θ0)

with θ∗ij between θ0 and θ, we have

Rn(θ) =
1

2
(θ − θ0)′

[
∂2Q̃n(θ∗ij)

∂θ∂θ′
− ∂2Q̃n(θ0)

∂θ∂θ′

]
(θ − θ0). (E.26)

Theorem 2, and Lemmas 5 and 6 ensure

[
∂2Q̃n(θ∗ij)

∂θ∂θ′
− ∂2Q̃n(θ0)

∂θ∂θ′

]
→ 0 as n tends

to infinity when θ = θ̃n, and thus Rn(θ̃n) = oP (‖θ̃n − θ0‖2
Jn

).

In addition,

R∗n(θ) =

[
∂Q̃n(θ0)

∂θ
− ∂Qn(θ0)

∂θ

]
(θ− θ0) +

1

2
(θ− θ0)′

[
∂2Q̃n(θ0)

∂θ∂θ′
− Jn

]
(θ− θ0).

(E.27)
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and from Lemma 6, we have R∗n(θ̃n) = oP (n−1/2‖θ̃n − θ0‖Jn) + oP (‖θ̃n − θ0‖2
Jn

).

Since θ̃n minimizes Q̃n over Θ, equation (E.25) yields

Q̃n(θ̃n)− Q̃n(θ0) =
1

2n

[
‖Zn −

√
n(θ̃n − θ0)‖2

Jn
− ‖Zn‖2

Jn

+oP (‖n1/2(θ̃n − θ0)‖Jn) + oP (‖n1/2(θ̃n − θ0)‖2
Jn

)
]
≤ 0

and thus

‖Zn −
√
n(θ̃n − θ0)‖2

Jn ≤
[
‖Zn‖Jn + oP (‖n1/2(θ̃n − θ0)

]2

.

By the triangular inequality, we obtain

‖
√
n(θ̃n − θ0)‖Jn ≤ ‖

√
n(θ̃n − θ0)−Zn‖Jn + ‖Zn‖Jn

≤ 2‖Zn‖Jn + oP (‖n1/2(θ̃n − θ0‖Jn)

whence ‖
√
n(θ̃n − θ0)‖Jn [1 + oP (1)] ≤ 2‖Zn‖Jn = OP (1), which proves (b).

From lemmas 5 and 6, equation (E.26) entail Rn(θn) = oP (‖θn−θ0‖2) = oP (n−1),
which proves the first part of (c), while equation (E.27) similarly yields R∗n(θn) =
oP (n−1/2‖θn−θ0‖Jn)+oP (‖θn−θ0‖2

Jn
) = oP (n−1) which concludes the proof of (c).

By (a)-(c) and (E.25), we have

0 ≤ ‖Zn −
√
n(θ̃n − θ0)‖2

Jn
− ‖Zn −

√
n(θJn(Zn)− θ0)‖2

Jn

= 2n[Q̃n(θ̃n)− Q̃n(θJn(Zn))]− 2n[(Rn +R∗n)(θ̃n)− (Rn +R∗n)(θJn)]

≤ −2n[(Rn +R∗n)(θ̃n)− (Rn +R∗n)(θJn)] = oP (1)

since θ̃n minimizes Q̃n and θJn minimizes ‖Zn −
√
n(θJn(Zn)− θ0)‖Jn . Since for

n sufficiently large, we have
√
n(θJn − θ0) = λΛ

n , (d) holds.

The vector λΛ
n being the projection of Zn on the convex set Λ for the scalar

product 〈x,y〉Jn , it is characterized by λΛ
n ∈ Λ, 〈Znλ

Λ
n ,λ

Λ
n −λ〉 for all λ ∈ Λ (see

for example Lemma 1.1 in Zarantonello[9]). Thus we obtain

‖
√
n(θ̃n − θ0)−Zn‖2

Jn
= ‖

√
n(θ̃n − θ0)− λΛ

n ‖2
Jn

+ ‖λΛ
n −Zn‖2

Jn

+2〈
√
n(θ̃n − θ0)− λΛ

n ,λ
Λ
n −Zn〉Jn

≥ ‖
√
n(θ̃n − θ0)− λΛ

n ‖2
Jn

+ ‖λΛ
n −Zn‖2

Jn

whence, by (d),

‖
√
n(θ̃n − θ0)− λΛ

n ‖2
Jn ≤ ‖Zn −

√
n(θ̃n − θ0)‖2

Jn − ‖Zn − λΛ
n ‖2

Jn = oP (1)
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which proves (e).

Finally, Lemma 7 entails (Jn,Zn) → (J ,Z). In addition, λΛ
n = f(Jn,Zn) and

λΛ = f(J ,Z) where f is a continuous function, except on the set of the points
(Jn,Zn) such that Jn is singular, which is a set of P(J ,Z)-probability zero. Thus,
the continuous mapping theorem entails (f).

The proof of Theorem 4 directly follows from (e) and (f).

Proof of Proposition 5. It suffices to show that δ̃n = δ0 for n large enough, the
other results being easily obtained from the proofs of Theorems 2, 3 and 4. We
first show that

σδ,t(θ)

σδ0,t(θ0)
= 1 almost surely⇒ δ = δ0. (E.28)

We have, denoting η+(−)
t = ηt1ηt≥(<)0,

σδδ,t(θ) = ω +
∞∑
i=1

α+
i (φ)σδδ0,t−i(θ0)|η+

t−i|δ + α−i (φ)σδδ0,t−i(θ0)|η−t−i|δ

= ωδ,t−2(θ) + α+
1 (φ)σδδ0,t−1(θ0)|η+

t−1|δ + α−1 (φ)σδδ0,t−1(θ0)|η−t−1|δ

where ωδ,t−2(θ) = ω +
∞∑
i=2

α+
i (φ)σδδ0,t−i(θ0)|η+

t−i|δ + α−i (φ)σδδ0,t−i(θ0)|η−t−i|δ is mea-

surable with respect to Ft−2. Let Ψ = (a, b, r, c, d) ∈ (0,∞)3 × [0,∞)2 and let
the function gΨ : [0,∞) → (0;∞) defined by gΨ(x) = (a + bx)−1(c + dxr)1/r. We
have g′Ψ(x) = 0 if and only if adxr−1 = bc, whence gΨ(x) = 1 cannot have more
than two solutions, except if i) r = 1, a = c, b = d, or ii) b = d = 0 and c = ar.
Conditionally on Ft−1 we have[

σδ,t(θ)

σδ0,t(θ0)

]δ0
= gΨ+(|ηt−1|δ0)1ηt−1≥0 + gΨ−(|ηt−1|δ0)1ηt−1<0 (E.29)

where Ψ+(−) = (ωδ0,t−2(θ0), ωδ,t−2(θ), δ/δ0, α
+(−)
1 (φ0)σδ0δ0,t−1(θ0), α

+(−)
1 (φ)σδδ0,t−1(θ0)).

Thus σδ,t(θ) = σδ0,t(θ0) implies i) δ = δ0 or ii) α+
1 (φ) = α+

1 (φ0) = 0 and
α−1 (φ) = α−1 (φ0) = 0. In the latter case, (E.29) holds by replacing ηt−1 by ηt−2.
Iterating the arguments, under A2’, the first equality in (E.28) entails either i)
δ = δ0 or ii) α+

i (φ) = α+
i (φ0) = 0 and α−i (φ) = α−i (φ0) = 0 for all i ≥ 1. The lat-

ter is precluded by Assumption A3(i), thus we have shown (E.28), which concludes
the proof using Theorem 2 and arguments of its proof.

E.3 Specification tests

We develop in this section the proofs of the results of Section 3.
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Proof of Theorem 6. Let us define for 0 < h < n

rh = n−1

n∑
t=h+1

stst−h , with st = η2
t − 1,

and let rm = (r1, . . . , rm)′ for any 1 ≤ m ≤ n. Let st(θ) (respectively s̃t(θ)) be
the random variable obtained by replacing ηt by ηt(θ) = εt/σt(θ) (respectively
η̃t(θ) = εt/σ̃t(θ)). Let rh(θ) and r̃h(θ) be defined with the same convention.

We first prove the asymptotic irrelevance of the initial values on rm
√
n‖rm(θ0)− r̃m(θ0)‖ = oP (1) and sup

θ∈V(θ0)

∥∥∥∥∂rm(θ)

∂θ
− ∂r̃m(θ)

∂θ

∥∥∥∥ = oP (1). (E.30)

We have
st(θ)st−h(θ)− s̃t(θ)s̃t−h(θ) = (st(θ)− s̃t(θ))st−h(θ) + (st−h(θ)− s̃t−h(θ))s̃t(θ)

:= At(θ) +Bt(θ)

Similarly to (E.16), we have

Eθ0 |At(θ0)|ρ ≤ KEθ0

∣∣∣∣σ2
t (θ0)− σ̃2

t (θ0)

σ̃2
t (θ0)

∣∣∣∣ρ
≤ Kt−(d∗+1)ρ+1

and thus

Eθ0

∣∣∣∣∣ 1√
n

n∑
t=1

At(θ0)

∣∣∣∣∣
ρ

≤ Kn−(d∗+ 3
2

)ρ+2 →
n→∞

0

since from assumption A9 we have (d∗+ 3
2
)ρ−2 > 0. Using Markov inequality, we

can conclude
1√
n

n∑
t=1

|At(θ0)| tends to 0 in probability. Similar arguments yield

that
1√
n

n∑
t=1

|Bt(θ0)| tends to 0 in probability, which proves the first part of (E.30).

In addition, we have

∂st
∂θ
− ∂s̃t
∂θ

=
−2

δ

[[
ε2
t

σ2
t

− ε2
t

σ̃2
t

] [
1

σδt

∂σδt
∂θ

]
+
ε2
t

σ̃2
t

[
1

σδt
− 1

σ̃δt

]
∂σδt
∂θ

+
ε2
t

σ̃2
t

1

σ̃δt

[
∂σδt
∂θ
− ∂σ̃δt

∂θ

]]
whence, for all k ∈ {1, . . . , r+ 1}, using similar notations as in (E.17) and (E.18),

sup
θ∈V (θ0)

∣∣∣∣ ∂st∂θk
− ∂s̃t
∂θk

∣∣∣∣ st−h ≤ Kη2
t−hη

2
t sup
θ∈V (θ0)

σ2
t−h(θ0)

σ2
t−h(θ)

σ2
t (θ0)

σ2
t (θ)

∣∣∣∣ 1

σδt

∂σδt
∂θk

∣∣∣∣χt
+Kη2

t−hη
2
t sup
θ∈V (θ0)

σ2
t−h(θ0)

σ2
t−h(θ)

σ2
t (θ0)

σ̃2
t (θ)

∣∣∣∣ 1

σδt

∂σδt
∂θk

∣∣∣∣χt
+Kη2

t−hη
2
t sup
θ∈V (θ0)

σ2
t−h(θ0)

σ2
t−h(θ)

σ2
t (θ0)

σ̃2
t (θ)

χ
(k)
t .
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Then similarly to (E.20), from independence of η2
t with σδt and its derivatives,

assumption A11, Lemma 2, (E.14), and (E.19) we have, using Hölder inequality,
and Toeplitz lemma,

sup
θ∈V(θ0)

∣∣∣∣∣ 1n
n∑
t=1

(
∂st
∂θk
− ∂s̃t
∂θk

)
st−h

∣∣∣∣∣ →n→∞ 0

since χt and χ
(k)
t tend to 0 almost surely as t tends to infinity.

In a like manner, we obtain that

E sup
θ∈V(θ0)

∣∣∣∣∣ 1n
n∑
t=1

∂st−h
∂θk

(st − s̃t)

∣∣∣∣∣ ≤ E

[
K

n

n∑
t=1

η2
t−hη

2
t sup
θ∈V(θ0)

σ2
t−h(θ0)

σ2
t−h(θ)

∣∣∣∣ 1

σδt

∂σδt
∂θk

∣∣∣∣χt
]
→
n→∞

0

Using Markov inequality, we thus obtain that n−1
∑n

t=1 sup
θ∈V(θ0)

|∂At(θ)/∂θk| → 0

in probability as n tends to infinity. Similar arguments yield the convergence of
the term n−1

∑n
t=1 sup

θ∈V(θ0)

|∂Bt(θ)/∂θk| and thus we have shown the second part of

(E.30).
Using a Taylor expansion of r̃h at θ̃n for h = 1, . . . ,m along with (E.30) yields

√
nr̃h(θ̃n) =

√
nr̃h(θ0)+

∂r̃h(θ
∗
n)

∂θ

√
n(θ̃n−θ0)

oP (1)
=
√
nrh(θ0)+

∂rh(θ
∗
n)

∂θ

√
n(θ̃n−θ0)

for some θ∗n between θ0 and θ̃n. In addition, assumption A11 and Lemma 2 entail
that there exists a neighborhood V(θ0) of θ0 such that for all i, j ∈ {1, . . . , r + 1}

sup
θ∈V(θ0)

Eθ0

∣∣∣∣∂2st(θ)st−h(θ)

∂θi∂θj

∣∣∣∣ <∞.
Using a second Taylor expansion, the ergodic theorem, and Theorem 2, we thus
obtain for all 0 < h < n

∂rh(θ
∗
n)

∂θ
→ Eθ0

[
∂stst−h(θ0)

∂θ

]
= −2

δ
Eθ0

[
st−h(θ0)

1

σδt (θ0)

∂σδt (θ0)

∂θ

]
since Eθ0 [st∂st−h(θ0)/∂θ] = 0 and thus we have

√
nr̃m(θ̃n)

oP (1)
=
√
nrm(θ0) +Cm

√
n(θ̃n − θ0). (E.31)

We now derive the asymptotic distribution of
√
n(rm(θ0), θ̃n − θ0). Let us de-

note st−1:t−m = (st−1, . . . , st−m)′ and remark that rm(θ0)
oP (1)
= n−1

∑n
t=1 stst−1:t−m.

From the proof of Theorem 3, we have

√
n(θ̃n − θ0)

oP (1)
= J−1 1√

n

n∑
t=1

(η2
t − 1)

1

σ2
t (θ0)

∂σ2
t (θ0)

∂θ
,
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thus the central limit theorem applied to the martingale difference{(
st

1

σ2
t

∂σ2
t (θ0)

∂θ′
, sts

′
t−1:t−m

)′
;F(ηu, u ≤ t)

}
shows that

√
n

(
θ̃n − θ0

rm(θ0)

)
oP (1)
=

1√
n

n∑
t=1

st

 J−1 1

σ2
t

∂σ2
t (θ0)

∂θ
st−1:t−m


L→ N

(
0,

[
(κη − 1)J−1 (κη − 1)J−1C ′m

(κη − 1)CmJ
−1 (κη − 1)2Im

])
.

(E.32)

From (E.31) and (E.32), we obtain

√
nr̃m(θ̃n)

L→ N (0,D) , with D = (κη − 1)2Im − (κη − 1)CmJ
−1C ′m

and we can show that D̂ →D almost surely as n→∞. Finally, we show that D
is invertible. From assumption A2, the law of η2

t is non degenerated hence κη > 1
and it suffices to show the non singularity of

(κη − 1)Im −CmJ
−1C ′m = Eθ0V V ′, with V = s−1:−m +CmJ

−1 2

δ

1

σ2
0

∂σ2
0(θ0)

∂θ
.

If this matrix is singular, then there exists λ = (λ1, . . . , λm)′ such that λ 6= 0 and

λ′s−1:−m + µ′
1

σ2
0

∂σ2
0(θ0)

∂θ
a.s., where µ =

2

δ
λ′CmJ

−1. (E.33)

If µ = (µ1, . . . , µr+1) = 0, then λ′s−1:−m = 0 almost surely, and thus there exists
j ∈ {1, . . . ,m} such that s−j ∈ F(st, t 6= −j), which is impossible since st are
independent and non degenerated, and thus we have µ 6= 0. Denoting by Rt any
random variable measurable with respect to F(ηu, u ≤ t), we have

µ′
∂σ2

0(θ0)

∂θ
= µ1 +

∞∑
i=1

[
r+1∑
j=2

µj
∂α+

i (φ0)

∂φj
1η−i≥0 +

r+1∑
k=2

µk
∂α−i (φ0)

∂φk
1η−i<0

]
σδ−i(θ0)|η−i|δ

= µ1 +

[
r+1∑
j=2

µj
∂α+

1 (φ0)

∂φj
|η+
−1|δ +

r+1∑
k=2

µk
∂α−1 (φ0)

∂φk
|η−−1|δ

]
σδ−1(θ0) +R−2

where η+(−)
t = ηt1ηt≥(<)0. In addition, we have

σδ0(θ0)λ′s−1:−m = (ω0 + a1,t−1(φ0)|η−1|δσδ−1(θ0) +R−2)(λ1η
2
−1 +R−2)

= λ1σ
δ
−1(θ0)a1,t−1(φ0)|η−1|δ+2 + (ω0λ1 +R−2)η2

−1 +R−2.
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Thus (E.33) entails almost surely

0 = λ1σ
δ
−1(θ0)α+

1 (φ0)|η+
−1|δ+2 +

[
r+1∑
j=2

µj
∂α+

1 (φ0)

∂φj

]
σδ−1(θ0)|η+

−1|δ

+(ω0λ1 +R−2)|η+
−1|2 +R−2

and

0 = λ1σ
δ
−1(θ0)α+

1 (φ0)|η−−1|δ+2 +

[
r+1∑
j=2

µj
∂α−1 (φ0)

∂φj

]
σδ−1(θ0)|η−−1|δ

+(ω0λ1 +R−2)|η−−1|2 +R−2

Since an equation of the form a|x|δ+2 + b|x|δ + c|x|2 +d = 0 cannot have more than
three positive or more than three negative roots, except if all the coefficients are

equal to 0, assumption A2’ implies
r+1∑
j=2

µj
∂α+

1 (φ0)

∂φj
= 0 and

r+1∑
j=2

µj
∂α−1 (φ0)

∂φj
= 0

almost surely. Iterating this argument, we obtain for all i+h (φ0) and i−h (φ0) a
similar result, and thus from assumption A10(ii), we must have µ = 0 which is
impossible and thus contradicts the singularity of D, concluding the proof.

Proof of Proposition 1. We begin by studying the asymptotic distribution of
statistics under the assumptions that the parameters are in the interior of the pa-
rameter space.

From (12) and Slutsky lemma, we obtain

√
n(Rθ̃n − k −Rθ0 + k) =

√
nR(θ̃n − θ0)

L→ N (0,R(κη − 1)J−1R′) (E.34)

and from the quadratic form, we thus have

√
n(Rθ̃n − k)′ [R(κη − 1)J−1R′)]

−1√
n(Rθ̃n − k)

L→ χ2
c

⇔ (R θ̃n − k)′
(
R

(
(κ̂η − 1)

n
Ĵ−1
n

)
R′
)−1

(R θ̃n − k) = Wn
L→ χ2

c

under H0 : Rθ0 − k = 0. Thus, the critical region of the Wald test at the asymp-
totic level α is {Wn > χ2

c(1− α)}.

To study the Rao-score statistic, we first introduce the Lagrangian function associ-
ated with the likelihood optimization problem constrained by H0, Q̃n(θ) + (Rθ−
k)′λ. The first-order condition is then

∂Q̃n(θ̃n|H0)

∂θ
+R′λ̃n = 0 (E.35)
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with λ̃n the Lagrange multipliers vector.

Under H0, we have √
n(Rθ̃n − k) = R

√
n(θ̃n − θ0)

and
0 =
√
n(Rθ̃n|H0 − k) = R

√
n(θ̃n|H0 − θ0)

since θ̃n|H0 is the constrained estimator. By subtraction, we thus obtain

√
n(Rθ̃n − k) = R

√
n(θ̃n − θ̃n|H0). (E.36)

Using Taylor expansions, we can also notice that

0 =
√
n
∂Q̃n(θ̃n)

∂θ

oP (1)
=
√
n
∂Q̃n(θ0)

∂θ
+
√
nJ(θ̃n − θ0) (E.37)

and
√
n
∂Q̃n(θ̃n|H0)

∂θ

oP (1)
=
√
n
∂Q̃n(θ0)

∂θ
+
√
nJ(θ̃n|H0 − θ0)

which yields by subtraction

√
n
∂Q̃n(θ̃n|H0)

∂θ

oP (1)
= −

√
nJ(θ̃n − θ̃n|H0)

hence
√
n(θ̃n − θ̃n|H0)

oP (1)
= −

√
nJ−1∂Q̃n(θ̃n|H0)

∂θ
. (E.38)

From (E.35), (E.36) and (E.38), we thus obtain

√
n(Rθ̃n − k)

oP (1)
= RJ−1R′

√
nλ̃n

which yields
√
nλ̃n

oP (1)
=
[
RJ−1R′

]−1√
n(Rθ̃n − k)

hence from (E.34), under H0,√
n

κη − 1
λ̃n

L→ N
(
0,
[
RJ−1R′

]−1
)

as n→∞. Taking the quadratic form, we obtain under H0,

n

κ̂η|H0 − 1
(λ̃′nR)Ĵ−1

n|H0
(R′λ̃n)

L→ χ2
c
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and (E.35) yields

n

κ̂η|H0 − 1

∂Q̃n(θ̃n|H0)

∂θ′
Ĵ−1
n|H0

∂Q̃n(θ̃n|H0)

∂θ
= Rn

L→ χ2
c .

It follows that the critical region of the Rao-score test at the asymptotic level α is
{Rn > χ2

c(1− α)}.

We finally focus on the Quasi Likelihood Ratio statistic. Using Taylor expansions,
we get

Q̃n(θ̃n)
oP (1)
= Q̃n(θ0) +

∂Q̃n(θ0)

∂θ′
(θ̃n − θ0) +

1

2
(θ̃n − θ0)′J(θ̃n − θ0)

and

Q̃n(θ̃n|H0)
oP (1)
= Q̃n(θ0) +

∂Q̃n(θ0)

∂θ′
(θ̃n|H0 − θ0) +

1

2
(θ̃n|H0 − θ0)′J(θ̃n|H0 − θ0),

hence, by subtraction,

(κ̂η|H0 − 1)Ln
oP (1)
= 2n

∂Q̃n(θ0)

∂θ′
(θ̃n|H0 − θ̃n) + n(θ̃n|H0 − θ0)′J(θ̃n|H0 − θ0)

−n(θ̃n − θ0)′J(θ̃n − θ0),
(E.39)

and, from (E.37),

(κ̂η|H0 − 1)Ln
oP (1)
= 2n(θ̃n − θ0)′J(θ̃n|H0 − θ̃n)

+n(θ̃n|H0 − θ0)′J(θ̃n|H0 − θ0)− n(θ̃n − θ0)′J(θ̃n − θ0)
oP (1)
= n(θ̃n − θ̃n|H0)

′J(θ̃n − θ̃n|H0).

From (E.38), it follows that under H0,

Ln
oP (1)
=

2n

κ̂η|H0 − 1

∂Q̃n(θ̃n|H0)

∂θ′
Ĵ−1
n|H0

∂Q̃n(θ̃n|H0)

∂θ
= Rn

L→ χ2
c

as n → ∞. Hence, the critical region of the Quasi Likelihood Ratio test at the
asymptotic level α is {Ln > χ2

c(1− α)}. This concludes the proof of Proposition
1(i).

We now turn to the second part of the proposition, when the parameter is allowed
to be on the boundary of the parameter space. For the ease of notation, we assume
that φi = 0 for all i = 1, . . . , r. This is often the case in contitional volatility mod-
els as boundary conditions are necessary to ensure positivity of the conditional
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variance. In addition, without loss of generality, we consider testing that the last
d2 coefficients of θ0 are on the boundary. We thus split θ0 into two components
θ0 = (θ

(1)
0 ,θ

(2)
0 )′, where θ(i)

0 ∈ Rdi , d1 + d2 = 1 + r. The null hypothesis is thus
H0 : θ

(2)
0 = Rθ0 = 0d2×1 with R = (0d2×d1 , Id2). Let H : θ

(1)
0 = Rθ0 > 0d1×1 with

R = (Id1 ,0d1×d2) denote the maintained assumption.

From (13) and a direct application of the continuous mapping theorem, we have
that, under H0,

√
n(Rθ̃n − k −Rθ0 + k) =

√
nR(θ̃n − θ0)

L→ RλΛ

which yields
Wn

L→ λΛ′R′[(κη − 1)RJ−1R′]−1λΛ′R.

We now turn to the Rao-score statistic. Since θ̃(1)
n|H0

is a consistent estimator of
θ

(1)
0 , we have θ̃(1)

n|H0
> 0 for n large enough. Therefore ∂Q̃n(θ̃n|H0)/∂θi = 0 for

i = 1, . . . , d1, or equivalently

∂Q̃n(θ̃n|H0)

∂θ
= R′

∂Q̃n(θ̃n|H0)

∂θ(2)
. (E.40)

A Taylor expansion yields

√
n
∂Q̃n(θ̃n|H0)

∂θ

oP (1)
=
√
n
∂Q̃n(θ0)

∂θ
+ J(θ̃n|H0 − θ0). (E.41)

The last d2 components of this vector relation give

√
n
∂Q̃n(θ̃n|H0)

∂θ(2)

oP (1)
=
√
n
∂Q̃n(θ0)

∂θ(2)
+RJ(θ̃n|H0 − θ0) (E.42)

while the first d1 components give

0
oP (1)
=
√
n
∂Q̃n(θ0)

∂θ(1)
+
√
nRJR

′
(θ̃

(1)
n|H0
− θ(1)

0 ) (E.43)

using
R
′
(θ̃

(1)
n|H0
− θ(1)

0 ) = θ̃n|H0 − θ0. (E.44)

In view of (E.43), we have

√
n(θ̃

(1)
n|H0
− θ(1)

0 )
oP (1)
= (RJ̃n|H0R

′
)−1
√
n
∂Q̃n(θ0)

∂θ(1)
. (E.45)
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From (E.40), (E.42), (E.44) and (E.45), we obtain

Rn =
n

κ̃n|H0 − 1

∂Q̃n(θ̃n|H0)

∂θ(2)′
RJ̃−1

n|H0
R′
∂Q̃n(θ̃n|H0)

∂θ(2)

oP (1)
=

n

κη − 1

∥∥∥∥∥∂Q̃n(θ̃n|H0)

∂θ(2)

∥∥∥∥∥
2

RJ−1R′

oP (1)
=

n

κη − 1

∥∥∥∥∥∂Q̃n(θ0)

∂θ(2)
+RJR

′
(θ̃

(1)
n|H0
− θ(1)

0 )

∥∥∥∥∥
2

RJ−1R′

oP (1)
=

n

κη − 1

∥∥∥∥∥∂Q̃n(θ0)

∂θ(2)
+RJR

′
(RJR

′
)−1∂Q̃n(θ0)

∂θ(1)

∥∥∥∥∥
2

RJ−1R′

.

Now recall that under H0,(
W1

W2

)
:=

√
n

κη − 1

(
∂Qn(θ0)

∂θ(1)
∂Qn(θ0)

∂θ(2)

)
L→ N

(
0,J =

(
J11 J12

J21 J22

))
. (E.46)

As RJ−1R′ = (J22 − J21J
−1
11 J12)−1, the asymptotic distribution of Rn is that of

(W2−J21J
−1
11 W1)′(J22−J21J

−1
11 J12)−1)(W2−J21J

−1
11 W1) under H0, which follows

a χ2
d2

since W2 − J21J
−1
11 W1 ∼ N (0,J22 − J21J

−1
11 J12).

Finally, we turn to Ln. From (E.39), we have

κ̂η|H0 − 1

2
Ln

oP (1)
= −n

[
1

2

∂Q̃n(θ0)

∂θ(1)′
(RJR

−1
)
∂Q̃n(θ0)

∂θ(1)

+
∂Q̃n(θ0)

∂θ′
(θ̃n − θ0) +

1

2
(θ̃n − θ0)′J(θ̃n − θ0)

]
.

Under H0, by showing
√
n

(
∂Q̃n(θ0)

∂θ

θ̃n − θ0

)
L→
(
−JZ
λΛ

)
, it can be seen that the

asymptotic distribution of Ln is the law of

L =
1

2
Z ′J ′R

′
J−1

11 RJZ +Z ′J ′λΛ′ − 1

2
λΛ′JλΛ.

Since,

J ′R
′
J−1

11 RJ = J − (κη − 1)Ω with (κη − 1)Ω =

(
0 0
0 J22 − J21J

−1
11 J12

)
,

we have

L = −1

2
Z′JZ +

1

2
Z ′(κη − 1)ΩZ +Z′J ′λΛ − 1

2
λΛ′JλΛ

= −1

2
(λΛ −Z)′J(λΛ −Z) +

κη − 1

2
Z′ΩZ

which concludes the proof.
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Proof of Proposition 4. First, note that, under HGARCH
0 , the continuous map-

ping theorem and Theorem 4 entail

WGARCH
n

L→ λΛ′ΩλΛ

with Ω = R′[(κη − 1)RJ−1R′]R. In addition, since we are in the case where only
one coefficient is at the boundary of the parameter space, λΛ has a trivial form.
We have Λ = Rr−1 × [0,∞) and R = (0, . . . , 0, 1). We thus get

λΛ′ = Z1Zr≥0 + PZ1Zr<0, with P = Ir − J−1R′[RJ−1R′]−1R

where Zd denotes the last component of vector Z, and thus it follows that

λΛ′ = Z − [Zr1Zr<0]c

where vector c = E[ZrZ]/V[Zd] is the last column of J−1 divided by its (r, r)-
component. We thus obtain

WGARCH
n

L→ (RλΛ)2

R[(κη − 1)J−1]R′
=

(RλΛ)2

V[Zr]
= U21U≥0 ∼

1

2
∆0 +

1

2
χ2

1

where U ∼ N (0, 1).
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